

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16ka304t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	23
3.0	СРИ	
4.0	Memory Organization	35
5.0	Flash Program Memory	57
6.0	Data EEPROM Memory	63
7.0	Resets	69
8.0	Interrupt Controller	
9.0	Oscillator Configuration	115
10.0	Power-Saving Features	125
11.0	I/O Ports	135
12.0	Timer1	139
13.0	Timer2/3 and Timer4/5	141
14.0	Input Capture with Dedicated Timers	147
15.0	Output Compare with Dedicated Timers	151
16.0	Serial Peripheral Interface (SPI)	
17.0		
18.0	Universal Asynchronous Receiver Transmitter (UART)	177
19.0	Real-Time Clock and Calendar (RTCC)	
20.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	199
21.0	High/Low-Voltage Detect (HLVD)	205
22.0	12-Bit A/D Converter with Threshold Detect	
23.0	Comparator Module	225
24.0	Comparator Voltage Reference	229
25.0	Charge Time Measurement Unit (CTMU)	
26.0	Special Features	239
27.0	Development Support	251
	Instruction Set Summary	
	Electrical Characteristics	
30.0	DC and AC Characteristics Graphs and Tables	295
31.0	Packaging Information	325
Appe	endix A: Revision History	351
Index	κ	353
The I	Microchip Web Site	359
	omer Change Notification Service	
Cust	omer Support	359
Read	der Response	360
Prod	uct Identification System	

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FV16KA301, PIC24F16KA301
- PIC24FV16KA302, PIC24F16KA302
- PIC24FV16KA304, PIC24F16KA304
- PIC24FV32KA301, PIC24F32KA301
- PIC24FV32KA302, PIC24F32KA302
- PIC24FV32KA304, PIC24F32KA304

The PIC24FV32KA304 family introduces a new line of extreme low-power Microchip devices. This is a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. This family also offers a new migration option for those high-performance applications which may be outgrowing their 8-bit platforms, but do not require the numerical processing power of a digital signal processor.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] digital signal controllers. The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 64 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32-bit by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as C
- · Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FV32KA304 family incorporate a range of features that can significantly reduce power consumption during operation. Key features include:

- On-the-Fly Clock Switching: The device clock can be changed under software control to the Timer1 source or the internal, low-power RC oscillator during operation, allowing users to incorporate power-saving ideas into their software designs.
- Doze Mode Operation: When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes: There are three instruction-based power-saving modes:
 - Idle Mode: The core is shut down while leaving the peripherals active.
 - Sleep Mode: The core and peripherals that require the system clock are shut down, leaving the peripherals that use their own clock, or the clock from other devices, active.
 - Deep Sleep Mode: The core, peripherals (except RTCC and DSWDT), Flash and SRAM are shut down.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

The PIC24FV32KA304 family offers five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock modes offering the option of a divide-by-2 clock output.
- Two Fast Internal oscillators (FRCs): One with a nominal 8 MHz output and the other with a nominal 500 kHz output. These outputs can also be divided under software control to provide clock speed as low as 31 kHz or 2 kHz.
- A Phase Locked Loop (PLL) frequency multiplier, available to the external Oscillator modes and the 8 MHz FRC oscillator, which allows clock speeds of up to 32 MHz.
- A separate internal RC oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

			F					FV					
			Pin Number					Pin Number					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
CN23	11	16	13	43	47	11	16	13	43	47	I	ST	Interrupt-on-Change Inputs
CN24		15	12	42	46	-	15	12	42	46	1	ST	
CN25		_	_	37	40	-			37	40	1	ST	
CN26		_	_	38	41				38	41	I	ST	
CN27		14	11	41	45		14	11	41	45	I	ST	
CN28		_	_	36	39				36	39	I	ST	
CN29	8	10	7	31	34	8	10	7	31	34	I	ST	
CN30	7	9	6	30	33	7	9	6	30	33	I	ST	
CN31		_	_	26	28	—	_	—	26	28	I	ST	
CN32		_	—	25	27	—	—	—	25	27	1	ST	
CN33		_	—	32	35	—	—	—	32	35	1	ST	
CN34		_	—	35	38	—	—	—	35	38	I	ST	
CN35		_	_	12	13	—	_	—	12	13	I	ST	
CN36		_	_	13	14	—	_	—	13	14	I	ST	
CVREF	17	25	22	14	15	17	25	22	14	15	I	ANA	Comparator Voltage Reference Output
CVREF+	2	2	27	19	21	2	2	27	19	21	I	ANA	Comparator Reference Positive Input Voltage
CVREF-	3	3	28	20	22	3	3	28	20	22	I	ANA	Comparator Reference Negative Input Voltage
CTCMP	4	4	1	21	23	4	4	1	21	23	I	ANA	CTMU Comparator Input
CTED1	14	20	17	7	7	11	2	27	19	21	I	ST	CTMU Trigger Edge Inputs
CTED2	15	23	20	10	11	15	23	20	10	11	I	ST	
CTED3	_	19	16	6	6	_	19	16	6	6	I	ST	
CTED4	13	18	15	1	1	13	18	15	1	1	1	ST	
CTED5	17	25	22	14	15	17	25	22	14	15	I	ST	
CTED6	18	26	23	15	16	18	26	23	15	16	I	ST	
CTED7	_	_	_	5	5	_	—	_	5	5	I	ST	
CTED8	_	_	—	13	14	—	—	—	13	14	I	ST	
CTED9	_	22	19	9	10	—	22	19	9	10	I	ST	
CTED10	12	17	14	44	48	12	17	14	44	48	I	ST]
CTED11	_	21	18	8	9	—	21	18	8	9	I	ST]
CTED12	5	5	2	22	24	5	5	2	22	24	I	ST]
CTED13	6	6	3	23	25	6	6	3	23	25	1	ST	1

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC					
_	_	_	—	—	—	—	DC					
bit 15							bit 8					
R/W-0, HSC ⁽¹⁾		R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC					
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С					
bit 7							bit (
Lagandi		HSC = Hardwa	ra Cattabla/	Nooroblo hit								
Legend: R = Readable	hit	W = Writable bi			mented bit, rea	ad as 'O'						
-n = Value at P		'1' = Bit is set	ι	'0' = Bit is cle		x = Bit is unk	nown					
	OR				arca							
bit 15-9	Unimplemente	d: Read as '0'										
bit 8	DC: ALU Half C											
		from the 4 th low-	-order bit (foi	byte-sized da	ta) or 8 th Iow-o	rder bit (for wo	rd-sized data					
	of the resul		oth .									
	-	ut from the 4 th or			sult has occurr	ed						
bit 7-5		Interrupt Priority										
		errupt Priority Leverrupt Priority Lev		user interrupts	s are disabled							
		errupt Priority Lev										
	100 = CPU Interrupt Priority Level is 4 (12)											
		errupt Priority Lev										
		errupt Priority Lev										
		errupt Priority Lev										
bit 4	RA: REPEAT LC	errupt Priority Lev										
bit 4	$1 = \text{REPEAT} \log 1$	-										
		p not in progress	S									
bit 3	N: ALU Negativ	e bit										
	1 = Result was	•										
		non-negative (ze	ero or positiv	ve)								
bit 2	OV: ALU Overfl											
	1 = Overflow or 0 = No overflow	curred for signe	d (2's compl	ement) arithme	etic in this arith	nmetic operatio	on					
bit 1	Z: ALU Zero bit											
	1 = An operatio	n, which effects					esult)					
bit 0	C: ALU Carry/B				, , , , , , , , , , , , , , , , , , ,	,	,					
	1 = A carry-out	from the Most S at from the Most										
Note 1: The	IPLx Status bits	are read-onlv wh	en NSTDIS	(INTCON1<1	5>) = 1.							
	IPL<2:0> Status	•				o form the CPL	J Interrupt					
	rity I aval (IPI) T											

Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

TABLE 4-14: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	_	_		_			TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	O3FF
PORTC	02D2	-	_	_	_	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX
LATC	02D4	-	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX
ODCC	02D6	—	—	—	—	_	-	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: PORTC is not implemented in 20-pin devices or 28-pin devices.

TABLE 4-15: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	_	—		_	_	_		_			SMBUSDEL2	SMBUSDEL1		_	—	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
_	RTCIE		_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
					MI2C2IE	SI2C2IE	—
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared			iown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	RTCIE: Real-	Time Clock and	d Calendar Inte	errupt Enable bi	it		
		equest is enab equest is not e					
bit 13-3	Unimplemen	ted: Read as '	0'				
bit 2	MI2C2IE: Mas	ster I2C2 Even	t Interrupt Enal	ble bit			
		equest is enab equest is not e					
bit 1	SI2C2IE: Slav	ve I2C2 Event	Interrupt Enabl	e bit			
		equest is enab equest is not e					
1.11.0			- •				

REGISTER 8-14: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

bit 0 Unimplemented: Read as '0'

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
	NVMIP2	NVMIP1	NVMIP0									
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0					
bit 7							bit					
Legend:												
R = Readal	ble bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15	-	ited: Read as ' : NVM Interrupt										
bit 14-12												
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)								
	•											
	• 001 = Interru	pt is Priority 1										
		pt source is dis	abled									
bit 11-7		, ited: Read as '										
bit 6-4	AD1IP<2:0>:	A/D Conversio	n Complete In	nterrupt Priority	bits							
		pt is Priority 7 (
	•	. ,		, ,								
	•											
		pt is Priority 1										
		pt source is dis										
bit 3	Unimplemen	ted: Read as '	0'									
		: UART1 Trans		•								
bit 2-0				(intermed)								
bit 2-0	111 = Interru	pt is Priority 7 (highest priority	y interrupt)								
bit 2-0	111 = Interru •	pt is Priority 7(highest priority	y interrupt)								
bit 2-0		pt is Priority 7(pt is Priority 1	highest priority	y interrupt)								

REGISTER 8-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

REGISTER 8-22: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	_
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—		—	—	—	INT1IP2	INT1IP1	INT1IP0
bit 7						•	bit 0
Legend:							

R = Readable bit	= Readable bit W = Writable bit		d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
 - :

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
5							bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
I							bit
end:							
Readable bi	it	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
Value at PC)R	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
5 R	OI: Recove	r on Interrupt bi	t				
1	= Interrupt	s clear the DOZ	EN bit, and re	set the CPU an	d peripheral cl	ock ratio to 1:1	
0	= Interrupt	s have no effec	t on the DOZE	N bit			
4-12 D	OZE<2:0>:	CPU and Perip	heral Clock R	atio Select bits			
	11 = 1:128						
	10 = 1:64						
_	01 = 1:32 00 = 1:16						
	11 = 1 :8						
	10 = 1:4						
	01 = 1:2						
	00 = 1:1						
		e Enable bit ⁽¹⁾					
				peripheral clock	ratio		
		d peripheral clo		t to 1:1			
		: FRC Postscal					
		<2:0> (OSCCO		<u>111:</u>			
		kHz (divide-by-	,				
		Hz (divide-by-64 Hz (divide-by-32					
		Hz (divide-by-16					
		(divide-by-8)					
		(divide-by-4)					
		(divide-by-2) (default)				
		(divide-by-1)					
		< <u>2:0> (OSCCO</u>		<u>110:</u>			
		Hz (divide-by-2 Hz (divide-by-64					
		kHz (divide-by-					
		kHz (divide-by-					
0	11 = 62.5 k	Hz (divide-by-8))				
		Hz (divide-by-4)					
			(default)				
0	01 = 250 kH 00 = 500 kH	Hz (divide-by-2) Hz (divide-by-1) hted: Read as '	(default)				

bit 7-0 Unimplemented: Read as '0'

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾

- 111 = Center-Aligned PWM mode on OCx
 - 110 = Edge-Aligned PWM mode on OCx
 - 101 = Double Compare Continuous Pulse mode: Initialize OCx pin low; toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize OCx pin low; toggle OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- **Note 1:** The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—		—	—	—	AMSK9	AMSK8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSK<9:0>: Mask for Address Bit x Select bits

1 = Enables masking for bit x of an incoming message address; bit match is not required in this position
 0 = Disables masking for bit x; bit match is required in this position

REGISTER 17-4: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	—	SMBUSDEL2	SMBUSDEL1		—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5	SMBUSDEL2: SMBus SDA2 Input Delay Select bit
	 1 = The I2C2 module is configured for a longer SMBus input delay (nominal 300 ns delay) 0 = The I2C2 module is configured for a legacy input delay (nominal 150 ns delay)
bit 4	SMBUSDEL1: SMBus SDA1 Input Delay Select bit
	 1 = The I2C1 module is configured for a longer SMBus input delay (nominal 300 ns delay) 0 = The I2C1 module is configured for a legacy input delay (nominal 150 ns delay)
bit 3-0	Unimplemented: Read as '0'

18.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write the data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0 and then, the user may set UTXEN. This will cause the serial bit stream to begin immediately, because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

18.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 18.2 "Transmitting in 8-Bit Data Mode"**).
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

18.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK this sets up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

18.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 18.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. A receive interrupt will be generated when one or more data characters have been received, as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

18.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware-controlled pins that are associated with the UARTx module. These two pins allow the UARTx to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

18.7 Infrared Support

The UARTx module provides two types of infrared UARTx support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder.

As the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

18.7.1 EXTERNAL IrDA SUPPORT – IrDA CLOCK OUTPUT

To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

18.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

20.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction of the data that is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

20.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions. If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt.

20.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- 2. Configure the module for the desired operation:
 - a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.
 - b) Configure the data width and shift direction using the DWIDTHx and LENDIAN bits.
 - c) Select the desired interrupt mode using the CRCISEL bit.
- 3. Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.
- 4. Clear old results by writing 00h to CRCWDATL and CRCWDATH. CRCWDAT can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write the remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

20.2 Registers

There are eight registers associated with the module:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 20-1 and Register 20-2) control the operation of the module, and configure the various settings. The CRCXOR registers (Register 20-3 and Register 20-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word, input data and CRC processed output, respectively.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PVCFG ²	1 PVCFG0	NVCFG0	OFFCAL	BUFREGEN	CSCNA	_	_
bit 15							bit 8
		DAALO	DAMA		DAMA		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS ⁽¹⁾ bit 7	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM ⁽¹⁾	ALTS bit
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	own
bit 15-14	PVCFG<1:0> 11 = 4 * Inter 10 = 2 * Inter 01 = External 00 = AVDD	nal V _{BG} (2) mal V _{BG} (3)	sitive Voltage	Reference Confi	guration bits		
bit 13	NVCFG0: Co 1 = External 0 = AVss	•	e Voltage Re	ference Configura	ation bits		
bit 12	1 = Inverting		ing inputs of c	bit channel Sample-a channel Sample-a			
bit 11	1 = Conversi	A/D Buffer Reg on result is load	ded into a buf	bit fer location deter	mined by the	converted chanr	nel
bit 10	CSCNA: Sca 1 = Scans in 0 = Does not	puts	ons for CH0+	S/H Input for MU	X A Setting b	it	
bit 9-8		ted: Read as ')'				
bit 7	-	Fill Status bit ⁽¹					
	1 = A/D is fill	ing the upper h	alf of the buff	er; user should ac er; user should ac			
bit 6-2		Sample Rate In	•				
				ne conversion for ne conversion for			
				ne conversion for ne conversion for			
bit 1	BUFM: Buffer	r Fill Mode Sele	ect bit ⁽¹⁾				
	interrupt 0 = Starts fill	(Split Buffer mo	ode)	01BUF0, on the fi ADCBUF0, and	-		
Note 1:	This is only applicused when BUFM		buffer is used	l in FIFO mode (E	UFREGEN =	0). In addition,	BUFS is onl
2:	The voltage refer	ence setting wil	I not be withir	n the specificatior	with VDD be	low 4.5V.	

REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2

3: The voltage reference setting will not be within the specification with VDD below 2.3V.

REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)

ALTS: Alternate Input Sample Mode Select bit

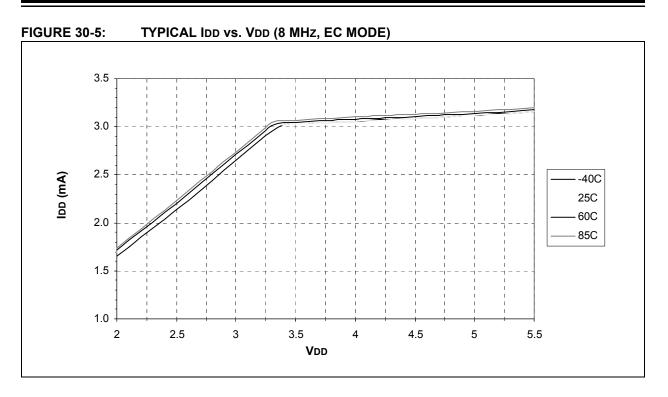
bit 0

- 1 = Uses channel input selects for Sample A on the first sample and Sample B on the next sample
- 0 = Always uses channel input selects for Sample A
- **Note 1:** This is only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.
 - 2: The voltage reference setting will not be within the specification with VDD below 4.5V.
 - 3: The voltage reference setting will not be within the specification with VDD below 2.3V.

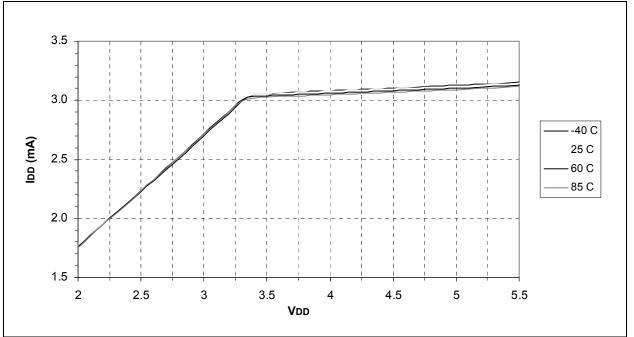
REGISTER 22-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	R-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 | | | | | | | bit 0 |


Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADRC: A/D Conversion Clock Source bit 1 = RC clock 0 = Clock is derived from the system clock
bit 14	EXTSAM: Extended Sampling Time bit 1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling
bit 13	Reserved: Maintain as '0'
bit 12-8	SAMC<4:0>: Auto-Sample Time Select bits 11111 = 31 TAD 00001 = 1 TAD 00000 = 0 TAD
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits 11111111-01000000 = Reserved 00111111 = 64 · TCY = TAD 00000001 = 2 · TCY = TAD 00000000 = TCY = TAD


CTMUCONO, CTMU CONTROL DECISTER 2

REGISTER 2		JCON2: CTM									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT				
bit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2			0-0	0-0				
	EDG2POL	EDG25EL3	EDG25EL2	EDG2SEL1	EDG2SEL0						
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15		-dae 1 Edae-Si	ansitiva Salact	bit							
DIC 15	EDG1MOD: Edge 1 Edge-Sensitive Select bit 1 = Input is edge-sensitive										
	0 = Input is level-sensitive										
bit 14		dge 1 Polarity									
	 1 = Edge 1 is programmed for a positive edge response 0 = Edge 1 is programmed for a negative edge response 										
	•		•	•							
bit 13-10	EDG1SEL<3:0>: Edge 1 Source Select bits										
	1111 = Edge 1 source is Comparator 3 output										
	1110 = Edge 1 source is Comparator 2 output										
	1101 = Edge 1 source is Comparator 1 output										
	1100 = Edge 1 source is IC3										
	1011 = Edge 1 source is IC2										
	1010 = Edge 1 source is IC1										
	1001 = Edge 1 source is CTED8										
	1000 = Edge 1 source is CTED7										
	0111 = Edge 1 source is CTED6 0110 = Edge 1 source is CTED5										
	0110 = Edge 1 source is CTED5 0101 = Edge 1 source is CTED4										
	0100 = Edge 1 source is CTED3 ⁽²⁾										
	0011 = Edge 1 source is CTED1										
	0010 = Edge 1 source is CTED2										
	0001 = Edge 1 source is OC1										
	0000 = Edge 1 source is Timer1										
bit 9	EDG2STAT: Edge 2 Status bit										
	Indicates the	status of Edge	2 and can be w	ritten to contro	of the current so	ource.					
	1 = Edge 2 has occurred										
	0 = Edge 2 has not occurred										
bit 8	EDG1STAT: Edge 1 Status bit										
	Indicates the	status of Edge	1 and can be w	ritten to contro	ol the current so	ource.					
	1 = Edge 1 ha	as occurred									
	0 = Edge 1 ha	as not occurred									
L:1 7	 0 = Edge 1 has not occurred EDG2MOD: Edge 2 Edge-Sensitive Select bit 										
bit 7	EDG2MOD: E	Edge 2 Edge-Se	ensitive Select	bit							
bit 7	EDG2MOD: E		ensitive Select	bit							

- Note 1: Edge sources, CTED11 and CTED12, are not available on PIC24FV32KA302 devices.
 - 2: Edge sources, CTED3, CTED11, CTED12 and CTED13, are not available on PIC24FV32KA301 devices.

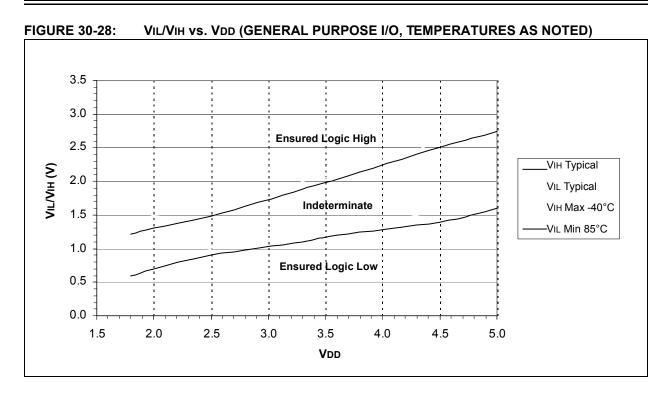


FIGURE 30-29: VIL/VIH vs. VDD (I²C[™], TEMPERATURES AS NOTED)

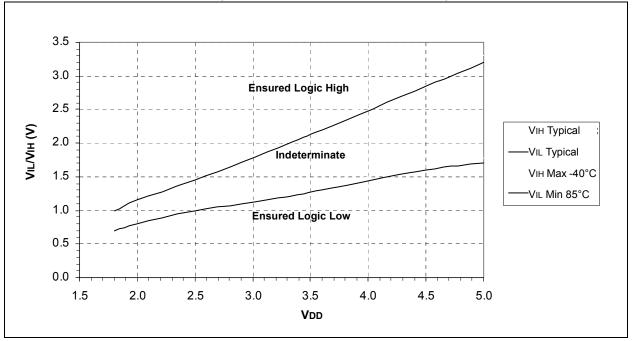


FIGURE 30-42: TYPICAL AND MAXIMUM IPD vs. VDD

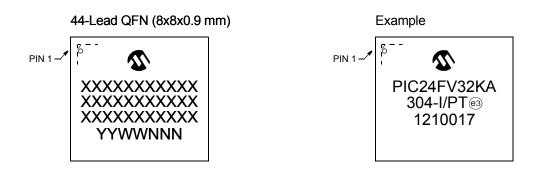
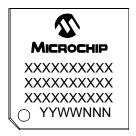
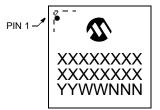

Vdd

FIGURE 30-43: TYPICAL AND MAXIMUM IPD vs. TEMPERATURE


IPD (JUA)

(PD (JA)

Temperature (°C)


44-Lead TQFP (10x10x1 mm)

Example

48-Lead UQFN (6x6x0.5 mm)

Example

