

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka301-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

	(4.0.0)			Pin Features			
		48-Pin UQFN ^(1,2,3)	Pin	PIC24FVXXKA304	PIC24FXXKA304		
			1	SDA1/T1CK/U1RTS/CTED4/CN21/RB9	SDA1/T1CK/U1RTS/CTED4/CN21 RB9		
			2	U1RX/CN18/RC6	U1RX/CN18/RC6		
g			3	U1TX/CN17/RC7	U1TX/CN17/RC7		
		RBC V V V V V V V V V V V V V V V V V V V	4	OC2/CN20/RC8	OC2/CN20/RC8		
		<u> </u>	5	IC2/CTED7/CN19/RC9	IC2/CTED7/CN19/RC9		
		JU 1604	6	IC1/CTED3/CN9/RA7	IC1/CTED3/CN9/RA7		
RC6 ☐ 2 RC7 ☐ 3 RC8 ☐ 4 RC9 ☐ 5 RA7 ☐ 6		_2 35 □ RA8	7	VCAP	C20UT/OC1/CTED1/INT2CN8/R		
			8	N/C	N/C		
		5 32 N/C	9	PGED2/SDI1/CTED11/CN16/RB10	PGED2/SDI1/CTED11/CN16/RB1		
A6 or \	VCAP		10	PGEC2/SCK1/CTED9/CN15/RB11	PGEC2/SCK1/CTED9/CN15/RB1		
	N/C	3 FIC24FAARA304 29 R C2	11	AN12/HLVDIN/CTED2/INT2/CN14/RB12	AN12/HLVDIN/CTED2/CN14/RB1		
RB10 9 RB11 10		12	AN11/SDO1/CTPLS/CN13/RB13	AN11/SDO1/CTPLS/CN13/RB13			
R	RB12	11 26 RB3	13	OC3/CN35/RA10	OC3/CN35/RA10		
R	RB13	12 ♀≠♀♀♀♀♀≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈	14	IC3/CTED8/CN36/RA11	IC3/CTED8/CN36/RA11		
			15	CVREF/AN10/C3INB/RTCC/ C1OUT/OCFA/CTED5/INT1/CN12/RB14	CVREF/AN10/C3INB/RTCC/C10UT OCFA/CTED5/INT1/CN12/RB14		
		Ra10 Ra11 RB14 VSS/AVSS VDD/AVD5 NUCLR/RA5 RA0 RB0 RB0 RB1 RB1	16	AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15	AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15		
		Z ≥	17	Vss/AVss	Vss/AVss		
			18	Vdd/AVdd	Vdd/AVdd		
			19	MCLR/RA5	MCLR/RA5		
			20	N/C	N/C		
			21	VREF+/CVREF+/AN0/C3INC/ CTED1/CN2/RA0	VREF+/CVREF+/AN0/C3INC/CN2/ RA0		
			22	CVREF-/VREF-/AN1/CN3/RA1	CVREF-/VREF-/AN1/CN3/RA1		
			23	PGED1/AN2/ULPWU/CTCMP/C1IND/ C2INB/C3IND/U2TX/CN4/RB0	PGED1/AN2/ULPWU/CTCMP/C1II C2INB/C3IND/U2TX/CN4/RB0		
			24	PGEC1/AN3/C1INC/C2INA/U2RX/ CTED12/CN5/RB1	PGEC1/AN3/C1INC/C2INA/U2R> CTED12/CN5/RB1		
			25	AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2	AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2		
			26	AN5/C1INA/C2INC/SCL2/CN7/RB3	AN5/C1INA/C2INC/SCL2/CN7/RE		
			27	AN6/CN32/RC0	AN6/CN32/RC0		
			28	AN7/CN31/RC1	AN7/CN31/RC1		
			29	AN8/CN10/RC2	AN8/CN10/RC2		
			30	VDD	VDD		
			31	Vss	Vss		
			32				
			33	OSCI/AN13/CLKI/CN30/RA2	OSCI/AN13/CLKI/CN30/RA2		
			34	OSCO/AN14/CLKO/CN29/RA3 OCFB/CN33/RA8	OSCO/AN14/CLKO/CN29/RA3		
			35	SOSCI/AN15/U2RTS/CN1/RB4			
			36		SOSCI/AN15/U2RTS/CN1/RB4		
			37	SOSCO/SCLKI/U2CTS/CN0/RA4	SOSCO/SCLKI/U2CTS/CN0/RA4		
egen	nd:	Pin numbers in bold indicate pin func-	38	SS2/CN34/RA9	SS2/CN34/RA9		
		tion differences between PIC24FV and	39	SDI2/CN28/RC3	SDI2/CN28/RC3		
		PIC24F devices.	40	SDO2/CN25/RC4	SDO2/CN25/RC4		
lote	1:	Exposed pad on underside of device is	41 42	SCK2/CN26/RC5 Vss	SCK2/CN26/RC5 Vss		
	~	connected to Vss.	42	VDD	VDD		
	2:	Alternative multiplexing for SDA1	43	N/C	N/C		
		(ASDA1) and SCL1 (ASCL1) when the I2CSEL Configuration bit is set.	44 45	PGED3/ASDA1 ⁽²⁾ /CN27/RB5	PGED3/ASDA1 ⁽²⁾ /CN27/RB5		
	3:	PIC24F32KA3XX device pins have a	46	PGEC3/ASCL1 ⁽²⁾ /CN24/RB6	PGEC3/ASCL1 ⁽²⁾ /CN24/RB6		
	•.	maximum voltage of 3.6V and are not	47	C2OUT/OC1/INT0/CN23/RB7	INT0/CN23/RB7		
		5V tolerant.	48	SCL1/U1CTS/C3OUT/CTED10/ CN22/RB8	SCL1/U1CTS/C3OUT/CTED10/ CN22/RB8		

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 Voltage Regulator Pin (VCAP)

Note:	This section applies only to PIC24F K
	devices with an On-Chip Voltage Regulator.

Some of the PIC24F K devices have an internal Voltage Regulator. These devices have the Voltage Regulator output brought out on the VCAP pin. On the PIC24F K devices with regulators, a low-ESR (< 5 Ω) capacitor is required on the VCAP pin to stabilize the Voltage Regulator output. The VCAP pin must not be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 29.0** "**Electrical Characteristics**" for additional information. Refer to **Section 29.0 "Electrical Characteristics"** for information on VDD and VDDCORE.

FIGURE 2-3: FREQUENCY vs. ESR PERFORMANCE FOR SUGGESTED VCAP

TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS

Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to 125°C
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to 85°C
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to 125°C
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to 85°C
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to 125°C
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to 85°C

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

FIGURE 4-6: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 8-3:	INTCON1: INTERRUPT CONTROL REGISTER 1	

R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:		HS = Hardware Settable	bit	
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	NSTDIS: Ir	nterrupt Nesting Disable bit		
		ot nesting is disabled		
	0 = Interru	ot nesting is enabled		
bit 14-5	Unimplem	ented: Read as '0'		
bit 4	MATHERR	: Arithmetic Error Trap Statu	s bit	
	1 = Overflo	w trap has occurred		
	0 = Overflo	w trap has not occurred		
bit 3	ADDRERR	: Address Error Trap Status	bit	
	1 = Addres	s error trap has occurred		
	0 = Addres	s error trap has not occurred	l	
bit 2	STKERR:	Stack Error Trap Status bit		
	1 = Stack e	error trap has occurred		
	0 = Stack e	error trap has not occurred		
bit 1	OSCFAIL:	Oscillator Failure Trap Status	s bit	
	- ···			

1 = Oscillator failure trap has occurred

0 = Oscillator failure trap has not occurred

bit 0 Unimplemented: Read as '0'

REGISTER 8-32: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	ULPWUIP2	ULPWUIP1	ULPWUIP0
bit 7						•	bit 0

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 6-4 ULPWUIP<2:0>: Ultra Low-Power Wake-up Interrupt Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- :

• 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

10.2.2 IDLE MODE

Idle mode has these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle, the clock is re-applied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.4 DEEP SLEEP MODE

In PIC24FV32KA304 family devices, Deep Sleep mode is intended to provide the lowest levels of power consumption available without requiring the use of external switches to completely remove all power from the device. Entry into Deep Sleep mode is completely under software control. Exit from Deep Sleep mode can be triggered from any of the following events:

- · POR Event
- MCLR Event
- RTCC Alarm (if the RTCC is present)
- External Interrupt 0
- Deep Sleep Watchdog Timer (DSWDT) Time-out
- Ultra Low-Power Wake-up (ULPWU) Event

In Deep Sleep mode, it is possible to keep the device Real-Time Clock and Calendar (RTCC) running without the loss of clock cycles.

The device has a dedicated Deep Sleep Brown-out Reset (DSBOR) and a Deep Sleep Watchdog Timer Reset (DSWDT) for monitoring voltage and time-out events. The DSBOR and DSWDT are independent of the standard BOR and WDT used with other power-managed modes (Sleep, Idle and Doze).

10.2.4.1 Entering Deep Sleep Mode

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register and then executing a Sleep command (PWRSAV #SLEEP_MODE). An unlock sequence is required to set the DSEN bit. Once the DSEN bit has been set, there is no time limit before the SLEEP command can be executed. The DSEN bit is automatically cleared when exiting the Deep Sleep mode.

Note:	To re-enter Deep Sleep after a Deep Sleep
	wake-up, allow a delay of at least 3 TCY
	after clearing the RELEASE bit.

The sequence to enter Deep Sleep mode is:

- If the application requires the Deep Sleep WDT, enable it and configure its clock source. For more information on Deep Sleep WDT, see Section 10.2.4.5 "Deep Sleep WDT".
- 2. If the application requires Deep Sleep BOR, enable it by programming the DSLPBOR Configuration bit (FDS<6>).
- 3. If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module For more information on RTCC, see Section 19.0 "Real-Time Clock and Calendar (RTCC)".
- If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).

Note: An unlock sequence is required to set the DSEN bit.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

To set the DSEN bit, the unlock sequence in Example 10-2 is required:

EXAMPLE 10-2: THE UNLOCK SEQUENCE

//Disa	able Interrupts For 5 instructions
asm	<pre>volatile("disi #5");</pre>
//Issu	le Unlock Sequence
asm	volatile
mov	#0x55, W0;
mov	W0, NVMKEY;
mov	#0xAA, W1;
mov	W1, NVMKEY;
bset	DSCON, #DSEN

Enter Deep Sleep mode by issuing a PWRSAV #0 instruction.

17.3 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator (BRG) reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

TABLE 17-1: I²C[™] CLOCK RATES⁽¹⁾

17.4 Slave Address Masking

The I2CxMSK register (Register 17-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is '0' or '1'. For example, when I2CxMSK is set to '00100000', the slave module will detect both addresses: '0000000' and '00100000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the IPMIEN bit (I2C1CON<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 17-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Required	_	I2CxB	RG Value	Actual	
System Fsc∟	Fcy	(Decimal)	(Hexadecimal)	FSCL	
100 kHz	16 MHz	157	9D	100 kHz	
100 kHz	8 MHz	78	4E	100 kHz	
100 kHz	4 MHz	39	27	99 kHz	
400 kHz	16 MHz	37	25	404 kHz	
400 kHz	8 MHz	18	12	404 kHz	
400 kHz	4 MHz	9	9	385 kHz	
400 kHz	2 MHz	4	4	385 kHz	
1 MHz	16 MHz	13	D	1.026 MHz	
1 MHz	8 MHz	6	6	1.026 MHz	
1 MHz	4 MHz	3	3	0.909 MHz	

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

TABLE 17-2: I^2C^{TM} RESERVED ADDRESSES⁽¹⁾

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	х	CBus Address
0000 010	х	Reserved
0000 011	х	Reserved
0000 1xx	х	HS Mode Master Code
1111 1xx	х	Reserved
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾

Note 1: The address bits listed here will never cause an address match, independent of the address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTRO		
bit 15						•	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0		
bit 7			I				bit (
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown		
bit 15	ALRMEN: AI	arm Enable bit							
	1 = Alarm is CHIME =		ed automatica	lly after an ala	arm event whe	never ARPT<7	:0> = 00h an		
	0 = Alarm is	disabled							
bit 14	CHIME: Chin								
		enabled; ARP disabled; ARP				to FFh			
bit 13-10		>: Alarm Mask							
		ry half second	0						
	0001 = Eve	•							
		ry 10 seconds							
	0011 = Eve								
		ry 10 minutes							
	0101 = Eve 0110 = Onc	-							
	0110 - Onc 0111 - Onc	•							
	1000 = Onc								
		e a year (excep	t when configu	ired for Februa	ry 29 th , once e	every 4 years)			
		erved – do not			•	•••			
	11xx = Res	erved – do not	use						
bit 9-8	ALRMPTR<1	I:0>: Alarm Val	ue Register Wi	ndow Pointer b	oits				
						ALH and ALRM			
	The ALRMPT	R<1:0> value d	ecrements on e	very read or wr	ite of ALRMVA	LH until it reache	es '00'.		
	<u>ALRMVAL<1</u>								
	00 = ALRMM								
	01 = ALRMW								
	10 = ALRMN 11 = Unimple								
	ALRMVAL<7								
	$\frac{ALRIVAL < 7}{0.0} = ALRMS$								
	01 = ALRMH								
	10 = ALRMIR $10 = ALRMDAY$								
	11 = Unimple	emented							
bit 7-0	ARPT<7:0>:	Alarm Repeat	Counter Value	bits					
	11111111 =	Alarm will rep	eat 255 more ti	imes					
	00000000 =	Alarm will not	repeat						
			•			over from 00h			

REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

REGISTER 26-4: FOSC: OSCILLATOR CONFIGURATION REGISTER							
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FCKSM1	FCKSM0	SOSCSEL	POSCFREQ1	POSCFREQ0	OSCIOFNC	POSCMD1	POSCMD0
bit 7							bit 0

Legend:			
R = Readable bit	P = Programmable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5	SOSCSEL: Secondary Oscillator Power Selection Configuration bit
	 1 = Secondary oscillator is configured for high-power operation 0 = Secondary oscillator is configured for low-power operation
bit 4-3	POSCFREQ<1:0>: Primary Oscillator Frequency Range Configuration bits
	 11 = Primary oscillator/external clock input frequency is greater than 8 MHz 10 = Primary oscillator/external clock input frequency is between 100 kHz and 8 MHz 01 = Primary oscillator/external clock input frequency is less than 100 kHz 00 = Reserved; do not use
bit 2	OSCIOFNC: CLKO Enable Configuration bit
	 1 = CLKO output signal is active on the OSCO pin; primary oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMD<1:0> = 11 or 00) 0 = CLKO output is disabled
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits
	 11 = Primary Oscillator mode is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = External Clock mode is selected

27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + Iit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE,Expr	Branch if Greater than or Equal	1	1 (2)	None
-	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE, Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT, Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
	BRA		Branch if Not Negative	1	1 (2)	None
		NN, Expr	Branch if Not Overflow	1	1 (2)	
	BRA	NOV, Expr	Branch if Not Zero	1	1 (2)	None
	BRA	NZ, Expr	Branch if Overflow	1		None
	BRA	OV, Expr	Branch Unconditionally	1	1 (2) 2	
	BRA	Expr	,			None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
DOM	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 28-2: INSTRUCTION SET OVERVIEW

TABLE 29-23: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard C		-40°C ≤ T	2.0V to 5 .9 A ≤ +85°C f	6V PIC24F32KA3XX 5V PIC24FV32KA3XX or Industrial for Extended
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TIOR	Port Output Rise Time	—	10	25	ns	
DO32	TIOF	Port Output Fall Time	—	10	25	ns	
DI35	Tinp	INTx Pin High or Low Time (output)	20	—	—	ns	
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү	

Note 1: Data in "Typ" column is at 3.3V, +25°C (PIC24F32KA3XX); 5.0V, +25°C (PIC24FV32KA3XX), unless otherwise stated.

FIGURE 30-25: TYPICAL VOH vs. IOH (GENERAL PURPOSE I/O, AS A FUNCTION OF TEMPERATURE, $2.0V \le VDD \le 5.5V$)

NOTES:

31.2 Package Details

The following sections give the technical details of the packages.

20-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		20	•
Pitch	е		.100 BSC	
Top to Seating Plane	А	_	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	/ILLIMETER	S	
Dimensior	Limits	MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

Revision D (March 2013)

Throughout the data sheet: corrected the name of RCON register bit 12 as RETEN, to maintain consistency with other PIC24F devices (was previously LVREN). In addition, changed the description of the bit in the RCON register (Register 7-1) to clarify its function in controlling the Retention Regulator.

Throughout the data sheet: corrected the name of FPOR Configuration register bit 2 as RETCFG, to maintain consistency with other PIC24F devices (was previously LVRCFG). In addition, changed the description of the bit in the FPOR Configuration register (Register 26-6) to clarify its function in enabling the Retention Regulator.

For Section 10.4 "Voltage Regulator-Based Power-Saving Features":

- Removed all references to Fast Wake-up Sleep mode, not implemented in this device
- Changed all references of the High-Voltage Regulator to On-Chip Voltage Regulator
- Removed all references to the Low-Voltage Regulator, which was replaced in most cases with Retention Regulator
- Clarified the Retention Regulator's operation in Section 10.4.3 "Retention Sleep Mode" (formerly "Low-Voltage Sleep Mode")
- Modified Table 10-1 for consistency with the above changes

Corrects Section 26.2 "On-Chip Voltage Regulator" to clarify the operation of the on-chip regulator in "F" and "FV" families, and include DC parameters and specifications.

For Section 29.0 "Electrical Characteristics":

- Updated captioning on all specification tables to include extended temperature data
- Amended Table 29-8 to include +125°C data for all existing specifications
- Added new Table 29-27 and Figure 29-8 to characterize external clock input specifications for general purpose timers (all subsequent tables and figures are renumbered accordingly)
- Added parameter numbers to several existing but previous unnumbered parameters in multiple tables

Updated Section 30.0 "DC and AC Characteristics Graphs and Tables":

- Added additional graphs for Extended temperature devices (Section 30.2 "Characteristics for Extended Temperature Devices (-40°C to +125°C)", Figure 30-40 through Figure 30-56)
- Replaced Figure 30-32 with an updated graph

Replaced some of the packaging diagrams in **Section 31.0** "**Packaging Information**" with the newly revised diagrams.

Updates Product Information System to include extended temperature devices in the information key.

Other minor typographic corrections throughout.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
	n: Name	
1101	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	
Арр	lication (optional):	
Wou	Ild you like a reply? Y N	
Dev	ice: PIC24FV32KA304 Family	Literature Number: DS39995D
Que	stions:	
1.	What are the best features of this document?	
2.	How does this document meet your hardware and s	software development needs?
3.	Do you find the organization of this document easy	to follow? If not, why?
4.	What additions to the document do you think would	enhance the structure and subject?
5.	What deletions from the document could be made v	without affecting the overall usefulness?
6.	Is there any incorrect or misleading information (wh	at and where)?
7.	How would you improve this document?	