

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XF

| Product Status             | Active                                                                        |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                           |
| Core Size                  | 16-Bit                                                                        |
| Speed                      | 32MHz                                                                         |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                               |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                                   |
| Number of I/O              | 17                                                                            |
| Program Memory Size        | 32KB (11K x 24)                                                               |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | 512 x 8                                                                       |
| RAM Size                   | 2K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                     |
| Data Converters            | A/D 12x12b                                                                    |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 20-SOIC (0.295", 7.50mm Width)                                                |
| Supplier Device Package    | 20-SOIC                                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka301-e-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### TABLE 4-4: ICN REGISTER MAP

| File<br>Name | Addr | Bit 15                   | Bit 14  | Bit 13  | Bit 12                   | Bit 11                 | Bit 10                   | Bit 9                    | Bit 8                  | Bit 7                 | Bit 6   | Bit 5   | Bit 4                    | Bit 3                    | Bit 2                    | Bit 1                    | Bit 0                    | All<br>Resets |
|--------------|------|--------------------------|---------|---------|--------------------------|------------------------|--------------------------|--------------------------|------------------------|-----------------------|---------|---------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------|
| CNPD1        | 0056 | CN15PDE <sup>(1)</sup>   | CN14PDE | CN13PDE | CN12PDE                  | CN11PDE                | CN10PDE <sup>(1,2)</sup> | CN9PDE <sup>(1)</sup>    | CN8PDE <sup>(3)</sup>  | CN7PDE <sup>(1)</sup> | CN6PDE  | CN5PDE  | CN4PDE                   | CN3PDE                   | CN2PDE                   | CN1PDE                   | CN0PDE                   | 0000          |
| CNPD2        | 0058 | CN31PDE <sup>(1,2)</sup> | CN30PDE | CN29PDE | CN28PDE <sup>(1,2)</sup> | CN27PDE <sup>(1)</sup> | CN26PDE <sup>(1,2)</sup> | CN25PDE <sup>(1,2)</sup> | CN24PDE <sup>(1)</sup> | CN23PDE               | CN22PDE | CN21PDE | CN20PDE <sup>(1,2)</sup> | CN19PDE <sup>(1,2)</sup> | CN18PDE <sup>(1,2)</sup> | CN17PDE <sup>(1,2)</sup> | CN16PDE <sup>(1)</sup>   | 0000          |
| CNPD3        | 005A | _                        | -       | _       | _                        | _                      | _                        | _                        | _                      | _                     | -       | _       | CN36PDE <sup>(1,2)</sup> | CN35PDE <sup>(1,2)</sup> | CN34PDE <sup>(1,2)</sup> | CN33PDE <sup>(1,2)</sup> | CN32PDE <sup>(1,2)</sup> | 0000          |
| CNEN1        | 0062 | CN15IE <sup>(1)</sup>    | CN14IE  | CN13IE  | CN12IE                   | CN11IE                 | CN10IE <sup>(1,2)</sup>  | CN9IE <sup>(1)</sup>     | CN8IE <sup>(3)</sup>   | CN7IE <sup>(1)</sup>  | CN6IE   | CN5IE   | CN4IE                    | CN3IE                    | CN2IE                    | CN1IE                    | CN0IE                    | 0000          |
| CNEN2        | 0064 | CN31IE <sup>(1,2)</sup>  | CN30IE  | CN29IE  | CN28IE <sup>(1,2)</sup>  | CN27IE <sup>(1)</sup>  | CN26IE <sup>(1,2)</sup>  | CN25IE <sup>(1,2)</sup>  | CN24IE <sup>(1)</sup>  | CN23IE                | CN22IE  | CN21IE  | CN20IE <sup>(1,2)</sup>  | CN19IE <sup>(1,2)</sup>  | CN18IE <sup>(1,2)</sup>  | CN17IE <sup>(1,2)</sup>  | CN16IE <sup>(1)</sup>    | 0000          |
| CNEN3        | 0066 | —                        | _       |         | —                        |                        | _                        | -                        | -                      | _                     | _       | _       | CN36IE <sup>(1,2)</sup>  | CN35IE <sup>(1,2)</sup>  | CN34IE <sup>(1,2)</sup>  | CN33IE <sup>(1,2)</sup>  | CN32IE <sup>(1,2)</sup>  | 0000          |
| CNPU1        | 006E | CN15PUE <sup>(1)</sup>   | CN14PUE | CN13PUE | CN12PUE                  | CN11PUE                | CN10PUE <sup>(1,2)</sup> | CN9PUE <sup>(1)</sup>    | CN8PUE <sup>(3)</sup>  | CN7PUE <sup>(1)</sup> | CN6PUE  | CN5PUE  | CN4PUE                   | <b>CN3PUE</b>            | CN2PUE                   | CN1PUE                   | CNOPUE                   | 0000          |
| CNPU2        | 0070 | CN31PUE <sup>(1,2)</sup> | CN30PUE | CN29PUE | CN28PUE <sup>(1,2)</sup> | CN27PUE <sup>(1)</sup> | CN26PUE <sup>(1,2)</sup> | CN25PUE <sup>(1,2)</sup> | CN24PUE <sup>(1)</sup> | CN23PUE               | CN22PUE | CN21PUE | CN20PUE <sup>(1,2)</sup> | CN19PUE <sup>(1,2)</sup> | CN18PUE <sup>(1,2)</sup> | CN17PUE <sup>(1,2)</sup> | CN16PUE <sup>(1)</sup>   | 0000          |
| CNPU3        | 0072 | —                        | _       |         | —                        |                        | _                        | -                        | -                      | _                     | _       | _       | CN36PUE <sup>(1,2)</sup> | CN35PUE <sup>(1,2)</sup> | CN34PUE <sup>(1,2)</sup> | CN33PUE <sup>(1,2)</sup> | CN32PUE <sup>(1,2)</sup> | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

3: These bits are not implemented in FV devices.

#### TABLE 4-24: NVM REGISTER MAP

| File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12  | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets <sup>(1)</sup> |
|-----------|------|--------|--------|--------|---------|--------|--------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|------------------------------|
| NVMCON    | 0760 | WR     | WREN   | WRERR  | PGMONLY | _      | —      | —     | —     | —     | ERASE | NVMOP5 | NVMOP4 | NVMOP3 | NVMOP2 | NVMOP1 | NVMOP0 | 0000                         |
| NVMKEY    | 0766 | _      | —      |        | —       |        |        | -     | _     |       |       |        | NVM    | KEY    |        |        |        | 0000                         |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

#### TABLE 4-25: ULTRA LOW-POWER WAKE-UP REGISTER MAP

| File Name | Addr | Bit 15 | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-----------|------|--------|--------|---------|--------|--------|--------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| ULPWCON   | 0768 | ULPEN  | —      | ULPSIDL | —      | —      | _      |       | ULPSINK |       | -     | _     | _     | —     | —     | _     |       | 0000          |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-26: PMD REGISTER MAP

| File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8 | Bit 7   | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-----------|------|--------|--------|--------|--------|--------|--------|--------|-------|---------|-------|-------|--------|--------|--------|--------|--------|---------------|
| PMD1      | 0770 | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | —      | —      | —     | I2C1MD  | U2MD  | U1MD  | SPI2MD | SPI1MD | —      | —      | ADC1MD | 0000          |
| PMD2      | 0772 | _      | _      | _      | _      | _      | IC3MD  | IC2MD  | IC1MD | _       | _     | _     | _      | _      | OC3MD  | OC2MD  | OC1MD  | 0000          |
| PMD3      | 0774 | _      | _      | _      | _      | _      | CMPMD  | RTCCMD | _     | CRCPMD  | _     | _     | _      | _      | _      | I2C2MD | _      | 0000          |
| PMD4      | 0776 | -      | _      |        | —      | _      |        | —      | —     | ULPWUMD | —     | _     | EEMD   | REFOMD | CTMUMD | HLVDMD | —      | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

# 6.4.3 READING THE DATA EEPROM

To read a word from data EEPROM, the table read instruction is used. Since the EEPROM array is only 16 bits wide, only the TBLRDL instruction is needed. The read operation is performed by loading TBLPAG and WREG with the address of the EEPROM location, followed by a TBLRDL instruction.

A typical read sequence, using the Table Pointer management (builtin\_tblpage and builtin\_tbloffset) and table read procedures (builtin\_tblrdl) from the C30 compiler library, is provided in Example 6-5.

Program Space Visibility (PSV) can also be used to read locations in the data EEPROM.

# EXAMPLE 6-5: READING THE DATA EEPROM USING THE TBLRD COMMAND

```
int attribute ((space(eedata))) eeData = 0x1234;
                                          // Data read from EEPROM
int data;
/*_____
                                       _____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the read
_____
*/
  unsigned int offset;
   \ensuremath{//} Set up a pointer to the EEPROM location to be erased
  TBLPAG = __builtin_tblpage(&eeData);
                                           // Initialize EE Data page pointer
  offset = __builtin_tbloffset(&eeData);
data = __builtin_tblrdl(offset);
                                            // Initizlize lower word of address
                                            // Write EEPROM data to write latch
```

# REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

| bit 7   | CLKLOCK: Clock Selection Lock Enabled bit                                                |  |
|---------|------------------------------------------------------------------------------------------|--|
|         | If FSCM is enabled (FCKSM1 = <u>1):</u>                                                  |  |
|         | 1 = Clock and PLL selections are locked                                                  |  |
|         | 0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit |  |
|         | If FSCM is disabled (FCKSM1 = 0):                                                        |  |
|         | Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.  |  |
| bit 6   | Unimplemented: Read as '0'                                                               |  |
| bit 5   | LOCK: PLL Lock Status bit <sup>(2)</sup>                                                 |  |
|         | 1 = PLL module is in lock or PLL module start-up timer is satisfied                      |  |
|         | 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled          |  |
| bit 4   | Unimplemented: Read as '0'                                                               |  |
| bit 3   | CF: Clock Fail Detect bit                                                                |  |
|         | 1 = FSCM has detected a clock failure                                                    |  |
|         | 0 = No clock failure has been detected                                                   |  |
| bit 2   | SOSCDRV: Secondary Oscillator Drive Strength bit <sup>(3)</sup>                          |  |
|         | 1 = High-power SOSC circuit is selected                                                  |  |
|         | 0 = Low/high-power select is done via the SOSCSRC Configuration bit                      |  |
| bit 1   | SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit                                    |  |
|         | 1 = Enables the secondary oscillator                                                     |  |
|         | 0 = Disables the secondary oscillator                                                    |  |
| bit 0   | OSWEN: Oscillator Switch Enable bit                                                      |  |
|         | 1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits   |  |
|         | 0 = Oscillator switch is complete                                                        |  |
| Note 1: | Reset values for these bits are determined by the FNOSCx Configuration bits.             |  |

- 2: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
  - **3:** When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

# 10.4 Voltage Regulator-Based Power-Saving Features

The PIC24FV32KA304 series devices have a Voltage Regulator that has the ability to alter functionality to provide power savings. The on-board regulator is made up of two basic modules: the Voltage Regulator (VREG) and the Retention Regulator (RETREG). With the combination of VREG and RETREG, the following power modes are available:

### 10.4.1 RUN MODE

In Run mode, the main VREG is providing a regulated voltage with enough current to supply a device running at full speed, and the device is not in Sleep or Deep Sleep Mode. The Retention Regulator may or may not be running, but is unused.

### 10.4.2 SLEEP (STANDBY) MODE

In Sleep mode, the device is in Sleep and the main VREG is providing a regulated voltage at a reduced (standby) supply current. This mode provides for limited functionality due to the reduced supply current. It requires a longer time to wake-up from Sleep.

# 10.4.3 RETENTION SLEEP MODE

In Retention Sleep mode, the device is in Sleep and all regulated voltage is provided solely by the Retention Regulator. Consequently, this mode has lower power consumption than regular Sleep mode, but is also limited in terms of how much functionality can be enabled. Retention Sleep wake-up time is longer than Sleep mode due to the extra time required to raise the VCORE supply rail back to normal regulated levels.

**Note:** PIC24F32KA30X family devices do not use an On-Chip Voltage Regulator, so they do not support Retention Sleep mode.

### 10.4.4 DEEP SLEEP MODE

In Deep Sleep mode, both the main Voltage Regulator and Retention Regulator are shut down, providing the lowest possible device power consumption. However, this mode provides no retention or functionality of the device and has the longest wake-up time.

|                         |                        | VICES                  |                            |                                                                                      |
|-------------------------|------------------------|------------------------|----------------------------|--------------------------------------------------------------------------------------|
| RETCGF Bit<br>(FPOR<2>) | RETEN Bit<br>(RCON<12> | PMSLP Bit<br>(RCON<8>) | Power Mode<br>During Sleep | Description                                                                          |
| 0                       | 0                      | 1                      | Sleep                      | VREG mode (normal) is unchanged during Sleep.<br>RETREG is unused.                   |
| 0                       | 0                      | 0                      | Sleep<br>(Standby)         | VREG goes to Low-Power Standby mode during<br>Sleep. RETREG is unused.               |
| 0                       | 1                      | 0                      | Retention<br>Sleep         | VREG is off during Sleep. RETREG is enabled and provides Sleep voltage regulation.   |
| 1                       | х                      | 1                      | Sleep                      | VREG mode (normal) is unchanged during Sleep.<br>RETREG is disabled at all times.    |
| 1                       | х                      | 0                      | Sleep<br>(Standby)         | VREG goes to Low-Power Standby mode during<br>Sleep. RETREG is disabled at all times |

# TABLE 10-1:VOLTAGE REGULATION CONFIGURATION SETTINGS FOR PIC24FV32KA304<br/>FAMILY DEVICES

#### REGISTER 11-2: ANSB: ANALOG SELECTION (PORTB)

| R/W-1  | R/W-1  | R/W-1  | R/W-1  | U-0 | U-0 | U-0 | U-0   |
|--------|--------|--------|--------|-----|-----|-----|-------|
| ANSB15 | ANSB14 | ANSB13 | ANSB12 | —   | —   | —   | —     |
| bit 15 |        |        |        |     |     |     | bit 8 |
|        |        |        |        |     |     |     |       |

| U-0   | U-0 | U-0 | R/W-1 | R/W-1                | R/W-1 | R/W-1 | R/W-1 |
|-------|-----|-----|-------|----------------------|-------|-------|-------|
| —     | —   | —   | ANSB4 | ANSB3 <sup>(1)</sup> | ANSB2 | ANSB1 | ANSB0 |
| bit 7 |     |     |       |                      |       |       | bit 0 |

# Legend:

bit 7

| Legena:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-12 ANSB<15:12>: Analog Select Control bits

- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active
- bit 11-5 Unimplemented: Read as '0'
- bit 4-0 ANSB<4:0>: Analog Select Control bits<sup>(1)</sup>
  - 1 = Digital input buffer is not active (use for analog input)
  - 0 = Digital input buffer is active
- Note 1: The ANSB3 bit is not available on 20-pin devices.

# REGISTER 11-3: ANSC ANALOG SELECTION (PORTC)

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0                  | U-0                  | U-0                  |
|--------|-----|-----|-----|-----|----------------------|----------------------|----------------------|
| —      | —   | —   | —   | —   | —                    | —                    | —                    |
| bit 15 |     |     |     |     |                      |                      | bit 8                |
|        |     |     |     |     |                      |                      |                      |
| U-0    | U-0 | U-0 | U-0 | U-0 | R/W-1                | R/W-1                | R/W-1                |
| _      | —   | —   | —   | —   | ANSC2 <sup>(1)</sup> | ANSC1 <sup>(1)</sup> | ANSC0 <sup>(1)</sup> |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-3 Unimplemented: Read as '0'

bit 2-0 ANSC<2:0>: Analog Select Control bits<sup>(1)</sup>

- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active

Note 1: These bits are not available on 20-pin or 28-pin devices.

bit 0

# 15.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 35. "Output Compare with Dedicated Timer" (DS39723).

All devices in the PIC24FV32KA304 family feature 3 independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events. Also, the modules can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the output compare module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 21 user-selectable Sync/trigger sources available
- Two separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths
- Configurable for single pulse or continuous pulse generation on an output event, or continuous PWM waveform generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

# 15.1 General Operating Modes

#### 15.1.1 SYNCHRONOUS AND TRIGGER MODES

By default, the output compare module operates in a Free-Running mode. The internal 16-bit counter, OCxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs.

In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the module's internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSELx bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode. Setting this bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/trigger source.

# 15.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit Timer and Duty Cycle registers. To increase the range, adjacent even and odd numbered modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even numbered module (OCy) provides the Most Significant 16 bits. Wraparounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules.

# REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
  - 1 = Transmit has not yet started, SPIxTXB is full
  - 0 = Transmit has started, SPIxTXB is empty

In Standard Buffer mode:

Automatically set in hardware when the CPU writes the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.

#### In Enhanced Buffer mode:

Automatically set in hardware when the CPU writes the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write.

#### bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

- 1 = Receive is complete, SPIxRXB is full
- 0 = Receive is not complete, SPIxRXB is empty

#### In Standard Buffer mode:

Automatically set in hardware when the SPIx transfers data from the SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

#### In Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

#### 19.2.4 RTCC CONTROL REGISTERS

# **REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER<sup>(1)</sup>**

| R/W-0                | U-0                   | R/W-0                             | R-0, HSC             | R-0, HSC               | R/W-0            | R/W-0           | R/W-0           |
|----------------------|-----------------------|-----------------------------------|----------------------|------------------------|------------------|-----------------|-----------------|
| RTCEN <sup>(2)</sup> | _                     | RTCWREN                           | RTCSYNC              | HALFSEC <sup>(3)</sup> | RTCOE            | RTCPTR1         | RTCPTR0         |
| bit 15               |                       |                                   |                      |                        |                  |                 | bit 8           |
|                      |                       |                                   |                      |                        |                  |                 |                 |
| R/W-0                | R/W-0                 | R/W-0                             | R/W-0                | R/W-0                  | R/W-0            | R/W-0           | R/W-0           |
| CAL7                 | CAL6                  | CAL5                              | CAL4                 | CAL3                   | CAL2             | CAL1            | CAL0            |
| bit 7                | L                     | L                                 |                      |                        |                  | L               | bit 0           |
|                      |                       |                                   |                      |                        |                  |                 |                 |
| Legend:              |                       | HSC = Hardw                       | are Settable/C       | learable bit           |                  |                 |                 |
| R = Readable         | bit                   | W = Writable                      | bit                  | U = Unimplem           | nented bit, read | l as '0'        |                 |
| -n = Value at I      | POR                   | '1' = Bit is set                  |                      | '0' = Bit is clea      | ared             | x = Bit is unkr | iown            |
|                      |                       |                                   |                      |                        |                  |                 |                 |
| bit 15               | RTCEN: RTC            | C Enable bit <sup>(2)</sup>       |                      |                        |                  |                 |                 |
|                      | 1 = RTCC mo           | odule is enable                   | d                    |                        |                  |                 |                 |
| bit 11               |                       |                                   | :0<br>               |                        |                  |                 |                 |
| DIL 14               |                       |                                   | ,<br>aiotoro Mrito E |                        |                  |                 |                 |
| DIL 13               | 1 = RTCVAL            | H and RTCVAL                      | I registers car      | hable bli              | w the user       |                 |                 |
|                      | 0 = RTCVAL            | H and RTCVAL                      | L registers are      | locked out from        | n being written  | to by the user  |                 |
| bit 12               | RTCSYNC: R            | TCC Value Re                      | gisters Read S       | ynchronization         | bit              | -               |                 |
|                      | 1 = RTCVAL            | H, RTCVALL ar                     | d ALCFGRPT           | registers can c        | hange while re   | ading due to a  | rollover ripple |
|                      | resulting             | in an invalid da                  | ta read. If the r    | register is read       | twice and resu   | Its in the same | data, the data  |
|                      |                       | ssumed to be v                    | alid.                | egisters can be        | read without o   | oncern over a   | rollover ripple |
| bit 11               |                       | alf Second Stat                   | ALCIGINI IN          | egisters can be        |                  | oncent over a   |                 |
| bit II               | 1 = Second h          | alf period of a                   | second               |                        |                  |                 |                 |
|                      | 0 = First half        | period of a sec                   | ond                  |                        |                  |                 |                 |
| bit 10               | RTCOE: RTC            | C Output Enab                     | le bit               |                        |                  |                 |                 |
|                      | 1 = RTCC ou           | tput is enabled                   |                      |                        |                  |                 |                 |
|                      | 0 = RTCC ou           | tput is disabled                  | l                    |                        |                  |                 |                 |
| bit 9-8              | RTCPTR<1:0            | >: RTCC Value                     | Register Wind        | dow Pointer bits       | S                |                 |                 |
|                      | Points to the c       | orresponding ה<br><1.0> value dec | CICC Value reg       | gisters when rea       | ading the RTCV   | ALH and RTC     | /ALL registers. |
|                      | RTCVAI <15:8          | 3>:                               |                      | cry read of white      | C OF ICT O WALL  |                 | 00.             |
|                      | 00 = MINUTES          |                                   |                      |                        |                  |                 |                 |
|                      | 01 = WEEKDAY          |                                   |                      |                        |                  |                 |                 |
|                      | 10 = MONTH            |                                   |                      |                        |                  |                 |                 |
|                      | RTC/AI < 7.0>         |                                   |                      |                        |                  |                 |                 |
|                      | 00 = SECONI           |                                   |                      |                        |                  |                 |                 |
|                      | 01 = HOURS            |                                   |                      |                        |                  |                 |                 |
|                      | 10 = DAY<br>11 = YFAR |                                   |                      |                        |                  |                 |                 |
|                      |                       |                                   |                      |                        |                  |                 |                 |

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- **3:** This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

| R/W-0         | R/W-0                | R/W-0                         | R/W-0                 | R/W-0                             | R/W-0                        | R/W-0              | R/W-0           |
|---------------|----------------------|-------------------------------|-----------------------|-----------------------------------|------------------------------|--------------------|-----------------|
| ALRMEN        | CHIME                | AMASK3                        | AMASK2                | AMASK1                            | AMASK0                       | ALRMPTR1           | ALRMPTR0        |
| bit 15        |                      |                               |                       |                                   |                              |                    | bit 8           |
| R/W-0         | R/W-0                | R/W-0                         | R/W-0                 | R/W-0                             | R/W-0                        | R/W-0              | R/W-0           |
| ARPT7         | ARPT6                | ARPT5                         | ARPT4                 | ARPT3                             | ARPT2                        | ARPT1              | ARPT0           |
| bit 7         |                      |                               |                       |                                   |                              |                    | bit 0           |
|               |                      |                               |                       |                                   |                              |                    |                 |
| R = Readable  | a hit                | W = Writable                  | hit                   | II = I Inimplen                   | nented hit rea               | n, se p            |                 |
| -n = Value at | POR                  | $(1)^{2} = \text{Rit is set}$ | bit                   | $0^{\circ} = \text{Bit is clear}$ | ared                         | x = Bit is unkr    | lown            |
| ii valae at   |                      |                               |                       |                                   |                              |                    |                 |
| bit 15        | ALRMEN: Ala          | arm Enable bit                |                       |                                   |                              |                    |                 |
|               | 1 = Alarm is         | enabled (clear                | ed automatica         | illy after an ala                 | irm event whe                | never ARPT<7       | :0> = 00h and   |
|               | CHIME =              | = 0)<br>disabled              |                       |                                   |                              |                    |                 |
| hit 14        |                      | ne Enable bit                 |                       |                                   |                              |                    |                 |
| 511 14        | 1 = Chime is         | enabled: ARP                  | T<7:0> bits are       | allowed to roll                   | over from 00h                | to FFh             |                 |
|               | 0 = Chime is         | disabled; ARP                 | T<7:0> bits sto       | op once they real                 | ach 00h                      |                    |                 |
| bit 13-10     | AMASK<3:0>           | >: Alarm Mask                 | Configuration b       | oits                              |                              |                    |                 |
|               | 0000 = Ever          | ry half second                |                       |                                   |                              |                    |                 |
|               | 0001 = Ever          | ry second                     |                       |                                   |                              |                    |                 |
|               | 0010 - Ever          | ry minute                     |                       |                                   |                              |                    |                 |
|               | 0100 = Ever          | ry 10 minutes                 |                       |                                   |                              |                    |                 |
|               | 0101 = Ever          | ry hour                       |                       |                                   |                              |                    |                 |
|               | 0110 = Onco          | e a day<br>e a week           |                       |                                   |                              |                    |                 |
|               | 1000 = Onc           | e a month                     |                       |                                   |                              |                    |                 |
|               | 1001 = Once          | e a year (excep               | ot when configu       | ured for Februa                   | ry 29 <sup>th</sup> , once e | every 4 years)     |                 |
|               | 101x = Rese          | erved – do not                | use                   |                                   |                              |                    |                 |
| hit 9-8       |                      | •0>• Alarm Val                | use<br>je Register Wi | ndow Pointer b                    | oits                         |                    |                 |
| bit 0 0       | Points to the c      | orresponding Al               | arm Value regis       | sters when readi                  | ing the ALRMV                | ALH and ALRM       | VALL registers. |
|               | The ALRMPT           | R<1:0> value d                | ecrements on e        | every read or wr                  | ite of ALRMVA                | _H until it reache | es '00'.        |
|               | ALRMVAL<1            | <u>5:8&gt;:</u>               |                       |                                   |                              |                    |                 |
|               | 00 = ALRMM           | IN<br>/D                      |                       |                                   |                              |                    |                 |
|               | 10 = ALRMM           | NTH                           |                       |                                   |                              |                    |                 |
|               | 11 = Unimple         | mented                        |                       |                                   |                              |                    |                 |
|               | <u>ALRMVAL&lt;7:</u> | 0>:                           |                       |                                   |                              |                    |                 |
|               |                      | EC                            |                       |                                   |                              |                    |                 |
|               | 10 = ALRMD           | AY                            |                       |                                   |                              |                    |                 |
|               | 11 = Unimple         | mented                        |                       |                                   |                              |                    |                 |
| bit 7-0       | ARPT<7:0>:           | Alarm Repeat                  | Counter Value         | bits                              |                              |                    |                 |
|               | 11111111 =           | Alarm will rep                | eat 255 more t        | imes                              |                              |                    |                 |
|               | •                    |                               |                       |                                   |                              |                    |                 |
|               | •                    |                               |                       |                                   |                              |                    |                 |
|               | 00000000 =           | Alarm will not                | repeat                | nt: it is provent                 | od from rolling              | over from OOL      | to EEb upload   |
|               | CHIME = 1.           |                               | any alahin eve        | n, it is prevent                  | .eu nom rolling              |                    |                 |
|               |                      |                               |                       |                                   |                              |                    |                 |

# REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

| U-0                                                                         | R/W-x                                                                      | R/W-x            | R/W-x           | R/W-x                | R/W-x           | R/W-x              | R/W-x   |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|-----------------|----------------------|-----------------|--------------------|---------|
| _                                                                           | MINTEN2                                                                    | MINTEN1          | MINTEN0         | MINONE3              | MINONE2         | MINONE1            | MINONE0 |
| bit 15                                                                      |                                                                            |                  |                 |                      |                 |                    | bit 8   |
|                                                                             |                                                                            |                  |                 |                      |                 |                    |         |
| U-0                                                                         | R/W-x                                                                      | R/W-x            | R/W-x           | R/W-x                | R/W-x           | R/W-x              | R/W-x   |
| _                                                                           | SECTEN2                                                                    | SECTEN1          | SECTEN0         | SECONE3              | SECONE2         | SECONE1            | SECONE0 |
| bit 7                                                                       |                                                                            |                  |                 |                      |                 |                    | bit 0   |
|                                                                             |                                                                            |                  |                 |                      |                 |                    |         |
| Legend:                                                                     |                                                                            |                  |                 |                      |                 |                    |         |
| R = Readable                                                                | e bit                                                                      | W = Writable bit |                 | U = Unimplem         |                 |                    |         |
| -n = Value at                                                               | POR                                                                        | '1' = Bit is set |                 | '0' = Bit is cleared |                 | x = Bit is unknown |         |
|                                                                             |                                                                            |                  |                 |                      |                 |                    |         |
| bit 15                                                                      | Unimplement                                                                | ted: Read as '0  | 1               |                      |                 |                    |         |
| bit 14-12                                                                   | MINTEN<2:0                                                                 | >: Binary Code   | d Decimal Valu  | ue of Minute's T     | ens Digit bits  |                    |         |
|                                                                             | Contains a va                                                              | lue from 0 to 5  |                 |                      |                 |                    |         |
| bit 11-8                                                                    | MINONE<3:0                                                                 | >: Binary Code   | ed Decimal Valu | ue of Minute's C     | Ones Digit bits |                    |         |
|                                                                             | Contains a va                                                              | lue from 0 to 9  |                 |                      |                 |                    |         |
| bit 7                                                                       | 7 Unimplemented: Read as '0'                                               |                  |                 |                      |                 |                    |         |
| bit 6-4                                                                     | it 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits |                  |                 |                      |                 |                    |         |
|                                                                             | Contains a value from 0 to 5.                                              |                  |                 |                      |                 |                    |         |
| bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits |                                                                            |                  |                 |                      |                 |                    |         |
|                                                                             | Contains a va                                                              | lue from 0 to 9  |                 |                      |                 |                    |         |

# REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

To perform an A/D conversion:

- 1. Configure the A/D module:
  - a) Configure the port pins as analog inputs and/or select band gap reference inputs (ANS<12:10>, ANS<5:0>).
  - b) Select voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
  - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
  - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
  - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
  - f) Select the interrupt rate (AD1CON2<6:2>).
  - g) Turn on the A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
  - a) Clear the AD1IF bit.
  - b) Select the A/D interrupt priority.

To perform an A/D sample and conversion using Threshold Detect scanning:

- 1. Configure the A/D module:
  - a) Configure the port pins as analog inputs (ANS<12:10>, ANS<5,0>).
  - b) Select the voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
  - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
  - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4>, AD1CON3<12:8>).
  - e) Select how the conversion results are presented in the buffer (AD1CON1<9:8>).
  - f) Select the interrupt rate (AD1CON2<6:2>).
- 2. Configure the threshold compare channels:
  - a) Enable auto-scan ASEN bit (AD1CON5<15>).
  - b) Select the Compare mode, "Greater Than, Less Than or Windowed" – CMx bits (AD1CON5<1:0>).
  - c) Select the threshold compare channels to be scanned (ADCSSH, ADCSSL).
  - d) If the CTMU is required as a current source for a threshold compare channel, enable the corresponding CTMU channel (ADCCTMUENH, ADCCTMUENL).
  - e) Write the threshold values into the corresponding ADC1BUFn registers.
  - f) Turn on the A/D module (AD1CON1<15>).

Note: If performing an A/D sample and conversion using Threshold Detect in Sleep Mode, the RC A/D clock source must be selected before entering into Sleep mode.

- 3. Configure the A/D interrupt (OPTIONAL):
  - a) Clear the AD1IF bit.
  - b) Select the A/D interrupt priority.

|               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   | -                               |                   |                  |                 |                 |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|------------------|-----------------|-----------------|--|
| R/W-0         | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R/W-0                                                                                                             | R/W-0                           | R/W-0             | R/W-0            | R/W-0           | R/W-0           |  |
| CH0NB2        | 2 CH0NB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH0NB0                                                                                                            | CH0SB4                          | CH0SB3            | CH0SB2           | CH0SB1          | CH0SB0          |  |
| bit 15        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                   |                                 |                   |                  |                 | bit 8           |  |
| P/M/-0        | P/M/-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | P/M/-0                          |                   |                  |                 | P///_0          |  |
| CHONA:        | CH0NA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHONA0                                                                                                            | CH0SA4                          | CH0SA3            | CH0SA2           | CH0SA1          | CH0SA0          |  |
| bit 7         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                   | 01100/11                        | 01100/10          | 01100/12         | 01100/11        | bit 0           |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                   |                                 |                   |                  |                 |                 |  |
| Legend:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                   |                                 |                   |                  |                 |                 |  |
| R = Reada     | able bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W = Writable I                                                                                                    | oit                             | U = Unimplen      | nented bit, read | l as '0'        |                 |  |
| -n = Value    | at POR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | '1' = Bit is set                                                                                                  |                                 | '0' = Bit is clea | ared             | x = Bit is unkn | iown            |  |
| bit 15-13     | 3 CH0NB<2:0>: Sample B Channel 0 Negative Input Select bits          111 = AN6 <sup>(1)</sup> 110 = AN5 <sup>(2)</sup> 101 = AN4         100 = AN3         011 = AN2         010 = AN1         001 = AN0         000 = AVss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |                                 |                   |                  |                 |                 |  |
| DIL 12-0      | 000 = AVss<br>CH0SB<4:0>: S/H Amplifier Positive Input Select for MUX B Multiplexer Setting bits<br>1111 = Unimplemented, do not use<br>1110 = AVpo<br>1110 = AVpo<br>1100 = Upper guardband rail (0.785 * VDD)<br>1001 = Lower guardband rail (0.215 * VDD)<br>1001 = Internal Band Gap Reference (VBG) <sup>(3)</sup><br>1001-10010 = Unimplemented, do not use<br>10001 = No channels are connected, all inputs are floating (used for CTMU)<br>10000 = No channels are connected, all inputs are floating (used for CTMU)<br>10000 = No channels are connected, all inputs are floating (used for CTMU temperature sensor input<br>1011 = AN15<br>0110 = AN14<br>0110 = AN14<br>0101 = AN13<br>0110 = AN12<br>0011 = AN11<br>0100 = AN8 <sup>(1)</sup><br>0010 = AN8 <sup>(1)</sup><br>0011 = AN5 <sup>(2)</sup><br>00100 = AN4<br>0011 = AN3<br>0010 = AN2<br>0010 = AN2 |                                                                                                                   |                                 |                   |                  |                 | e sensor input) |  |
| bit 7-5       | CH0NA<2:0><br>The same def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>CH0NA&lt;2:0&gt;:</b> Sample A Channel 0 Negative Input Select bits<br>The same definitions as for CHONB<2:0>. |                                 |                   |                  |                 |                 |  |
| bit 4-0       | CH0SA<4:0><br>The same def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : Sample A Cha<br>finitions as for C                                                                              | annel 0 Positiv<br>CHONA<4:0>.  | e Input Select b  | oits             |                 |                 |  |
| Note 1:<br>2: | This is implement<br>This is implement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed on 44-pin de<br>ed on 28-pin ar                                                                                | evices only.<br>1d 44-pin devid | ces only.         |                  |                 |                 |  |

# REGISTER 22-5: AD1CHS: A/D SAMPLE SELECT REGISTER

|              |                    |                                                                                 |                    | Standard Operating Conditions: 1.8V to 3.6V PIC24F32KA3XX |                    |                                        |                                                                                                                                       |  |
|--------------|--------------------|---------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------|--------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| DC CH/       | DC CHARACTERISTICS |                                                                                 |                    | mperature                                                 | -40°C ≤<br>-40°C ≤ | <b>2.0V to</b><br>TA ≤ +8<br>TA ≤ +1 ≥ | 5 5.5V PIC24FV32KA3XX<br>5°C for Industrial<br>25°C for Extended                                                                      |  |
| Param<br>No. | Sym                | Characteristic                                                                  | Min                | Typ <sup>(1)</sup>                                        | Мах                | Units                                  | Conditions                                                                                                                            |  |
|              | VIL                | Input Low Voltage <sup>(4)</sup>                                                |                    |                                                           |                    |                                        |                                                                                                                                       |  |
| DI10         |                    | I/O Pins                                                                        | Vss                | —                                                         | 0.2 Vdd            | V                                      |                                                                                                                                       |  |
| DI15         |                    | MCLR                                                                            | Vss                |                                                           | 0.2 Vdd            | V                                      |                                                                                                                                       |  |
| DI16         |                    | OSCI (XT mode)                                                                  | Vss                | —                                                         | 0.2 Vdd            | V                                      |                                                                                                                                       |  |
| DI17         |                    | OSCI (HS mode)                                                                  | Vss                | —                                                         | 0.2 Vdd            | V                                      |                                                                                                                                       |  |
| DI18         |                    | I/O Pins with I <sup>2</sup> C™ Buffer                                          | Vss                | —                                                         | 0.3 Vdd            | V                                      | SMBus is disabled                                                                                                                     |  |
| DI19         |                    | I/O Pins with SMBus Buffer                                                      | Vss                | —                                                         | 0.8                | V                                      | SMBus is enabled                                                                                                                      |  |
|              | Vih                | Input High Voltage <sup>(4)</sup>                                               |                    |                                                           |                    |                                        |                                                                                                                                       |  |
| DI20         |                    | I/O Pins:<br>with Analog Functions<br>Digital Only                              | 0.8 Vdd<br>0.8 Vdd |                                                           | Vdd<br>Vdd         | V<br>V                                 |                                                                                                                                       |  |
| DI25         |                    | MCLR                                                                            | 0.8 Vdd            |                                                           | Vdd                | V                                      |                                                                                                                                       |  |
| DI26         |                    | OSCI (XT mode)                                                                  | 0.7 Vdd            | —                                                         | Vdd                | V                                      |                                                                                                                                       |  |
| DI27         |                    | OSCI (HS mode)                                                                  | 0.7 Vdd            |                                                           | Vdd                | V                                      |                                                                                                                                       |  |
| DI28         |                    | I/O Pins with I <sup>2</sup> C Buffer:<br>with Analog Functions<br>Digital Only | 0.7 Vdd<br>0.7 Vdd |                                                           | Vdd<br>Vdd         | V<br>V                                 |                                                                                                                                       |  |
| DI29         |                    | I/O Pins with SMBus                                                             | 2.1                |                                                           | Vdd                | V                                      | $2.5V \le V\text{PIN} \le V\text{DD}$                                                                                                 |  |
| DI30         | ICNPU              | CNx Pull-up Current                                                             | 50                 | 250                                                       | 500                | μA                                     | VDD = 3.3V, VPIN = VSS                                                                                                                |  |
|              | lı∟                | Input Leakage<br>Current <sup>(2,3)</sup>                                       |                    |                                                           |                    |                                        |                                                                                                                                       |  |
| D150         |                    | I/O Ports                                                                       | _                  | 0.05                                                      | 0.1                | μA                                     | $Vss \le VPIN \le VDD$ , Pin at high-impedance                                                                                        |  |
| DI55         |                    | MCLR                                                                            | —                  | —                                                         | 0.1                | μA                                     | $Vss \leq V \text{PIN} \leq V \text{DD}$                                                                                              |  |
| DI56         |                    | OSCI                                                                            | —                  |                                                           | 5                  | μΑ                                     | $\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and }H{\sf S} \text{ modes} \end{split}$ |  |

### TABLE 29-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

**3:** Negative current is defined as current sourced by the pin.

4: Refer to Table 1-3 for I/O pin buffer types.



#### FIGURE 29-22: A/D CONVERSION TIMING

2: This is a minimal RC delay (typically 100 ns) which also disconnects the holding capacitor from the analog input.

| AC CHARACTERISTICS |        |                                                      | Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |          |          |            |                                       |  |
|--------------------|--------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------|---------------------------------------|--|
| Param<br>No.       | Symbol | Characteristic                                       | Min.                                                                                                                                                                                                                | Тур      | Max.     | Units      | Conditions                            |  |
|                    |        | (                                                    | Clock Pa                                                                                                                                                                                                            | rameter  | s        |            |                                       |  |
| AD50               | Tad    | A/D Clock Period                                     | 600                                                                                                                                                                                                                 | —        | —        | ns         | Tcy = 75 ns, AD1CON3 in default state |  |
| AD51               | TRC    | A/D Internal RC Oscillator<br>Period                 | -                                                                                                                                                                                                                   | 1.67     | —        | μs         |                                       |  |
|                    |        |                                                      | Convers                                                                                                                                                                                                             | ion Rate | )        |            |                                       |  |
| AD55               | TCONV  | Conversion Time                                      | _                                                                                                                                                                                                                   | 12<br>14 | _        | Tad<br>Tad | 10-bit results<br>12-bit results      |  |
| AD56               | FCNV   | Throughput Rate                                      |                                                                                                                                                                                                                     |          | 100      | ksps       |                                       |  |
| AD57               | TSAMP  | Sample Time                                          | _                                                                                                                                                                                                                   | 1        | _        | Tad        |                                       |  |
| AD58               | TACQ   | Acquisition Time                                     | 750                                                                                                                                                                                                                 | —        | —        | ns         | (Note 2)                              |  |
| AD59               | Tswc   | Switching Time from Convert to Sample                | -                                                                                                                                                                                                                   | -        | (Note 3) |            |                                       |  |
| AD60               | TDIS   | Discharge Time                                       | 12                                                                                                                                                                                                                  | _        | —        | TAD        |                                       |  |
|                    |        | (                                                    | Clock Pa                                                                                                                                                                                                            | rameter  | s        |            |                                       |  |
| AD61               | TPSS   | Sample Start Delay from<br>Setting Sample bit (SAMP) | 2                                                                                                                                                                                                                   | —        | 3        | Tad        |                                       |  |

# TABLE 29-41: A/D CONVERSION TIMING REQUIREMENTS<sup>(1)</sup>

**Note 1:** Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).

**3:** On the following cycle of the device clock.









# 44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                         | N      | <b>IILLIMETER</b> | S        |      |
|-------------------------|--------|-------------------|----------|------|
| Dimension               | Limits | MIN               | NOM      | MAX  |
| Number of Pins          | N      |                   | 44       |      |
| Pitch                   | е      |                   | 0.65 BSC |      |
| Overall Height          | A      | 0.80              | 0.90     | 1.00 |
| Standoff                | A1     | 0.00              | 0.02     | 0.05 |
| Terminal Thickness      | A3     |                   | 0.20 REF |      |
| Overall Width           | E      |                   | 8.00 BSC |      |
| Exposed Pad Width       | E2     | 6.25              | 6.45     | 6.60 |
| Overall Length          | D      |                   | 8.00 BSC |      |
| Exposed Pad Length      | D2     | 6.25              | 6.45     | 6.60 |
| Terminal Width          | b      | 0.20              | 0.30     | 0.35 |
| Terminal Length         | L      | 0.30              | 0.40     | 0.50 |
| Terminal-to-Exposed-Pad | K      | 0.20              | -        | -    |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

| CRC                                    |
|----------------------------------------|
| Registers201                           |
| Typical Operation                      |
| User Interface200                      |
| Data200                                |
| Data Shift Direction201                |
| Interrupt Operation201                 |
| Polynomial200                          |
| CTMU                                   |
| Measuring Capacitance                  |
| Measuring Time                         |
| Pulse Generation and Delay233          |
| Customer Change Notification Service   |
| Customer Notification Service          |
| Customer Support                       |
| D                                      |
| Data EEDROM Momony 63                  |
| Data EEFROM Memory                     |
| Cherations 65                          |
| Programming                            |
| Rulk Erase 67                          |
| Reading Data EEPROM 68                 |
| Single-Word Write 67                   |
| Programming Control Registers          |
| NVMADR(U) 65                           |
| NVMCON 63                              |
| NVMKEY 63                              |
| Data Memory                            |
| Address Space 37                       |
| Memory Map 37                          |
| Near Data Space                        |
| Organization                           |
| SFR Space                              |
| Software Stack51                       |
| Space Width                            |
| DC and AC Characteristics              |
| Graphs and Tables                      |
| Extended Temperature                   |
| Industrial Temperature                 |
| DC Characteristics                     |
| BOR Trip Points                        |
| Comparator Specifications274           |
| Comparator Voltage Reference274        |
| CTMU Current Source275                 |
| Data EEPROM Memory274                  |
| High/Low-Voltage Detect                |
| I/O Pin Input Specifications272        |
| I/O Pin Output Specifications          |
| Idle Current (IIDLE)                   |
| Internal Voltage Regulator             |
| Operating Current (IDD)                |
| Power-Down Current (IPD)               |
| Program Memory                         |
| remperature and voltage Specifications |
| Development Support251                 |
| E                                      |

| Electrical Characteristics   |  |
|------------------------------|--|
| Absolute Maximum Ratings     |  |
| Thermal Operating Conditions |  |
| Thermal Packaging            |  |
| V/F Graphs                   |  |
|                              |  |

| Equations                                 |          |
|-------------------------------------------|----------|
| A/D Conversion Clock Period               | 219      |
| Baud Rate Reload Calculation              |          |
| Calculating the PWM Period                | 171      |
| Calculation for Maximum PWM Resolution    | 155      |
| Device and SPIx Clock Speed Relationship  | 168      |
| PW/M Period and Duty Cycle Calculations   | 100      |
| IART Raud Rate with BRGH = 0              | 133      |
| LIARTY Baud Rate with BRGH = 1            | 170      |
| Frrata                                    | 170<br>q |
| Examples                                  |          |
| Baud Rate Error Calculation (BRGH = $0$ ) | 178      |
|                                           | 170      |
| F                                         |          |
| Flash Program Memory                      |          |
| Control Registers                         |          |
| Enhanced ICSP Operation                   |          |
| Programming Algorithm                     | 60       |
| Programming Operations                    | 58       |
| RTSP Operation                            |          |
| Table Instructions                        |          |
| -                                         |          |
| G                                         |          |
| Guidelines for Getting Started            |          |
|                                           |          |
| Н                                         |          |
| High/Low-Voltage Detect (HLVD)            | 205      |
| 1                                         |          |
| 1                                         |          |
| I/O Ports                                 |          |
| Analog Port Pins Configuration            | 136      |
| Analog Selection Registers                | 136      |
| Input Change Notification                 | 138      |
| Open-Drain Configuration                  | 136      |
| Parallel (PIO)                            | 135      |
| I <sup>2</sup> C                          |          |
| Clock Rates                               | 171      |
| Communicating as Master in Single         |          |
| Master Environment                        | 169      |
| Pin Remapping Options                     | 169      |
| Reserved Addresses                        | 171      |
| Slave Address Masking                     | 171      |
| In-Circuit Debugger                       | 250      |
| In-Circuit Serial Programming (ICSP)      | 250      |
| Input Capture                             |          |
| Cascaded (32-Bit) Mode                    | 148      |
| Operations                                | 148      |
| Synchronous, Trigger Modes                | 147      |
| Input Capture with Dedicated Timers       | 147      |
| Instruction Set                           |          |
| Opcode Symbols                            | 256      |
| Overview                                  | 257      |
| Summary                                   | 255      |
| Internet Address                          | 358      |
| Interrupts                                |          |
| Alternate Interrupt Vector Table (AIVT)   | 75       |
| Control and Status Registers              |          |
| Implemented Vectors                       | 77       |
| Interrupt Vector Table (IVT)              | 75       |
| Reset Sequence                            | 75       |
| Setup Procedures                          | 113      |
| Trap Vectors                              | 77       |
| Vector Table                              |          |

# **READER RESPONSE**

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

| TO:<br>RE: | Technical Publications Manager<br>Reader Response    | Total Pages Sent                          |
|------------|------------------------------------------------------|-------------------------------------------|
| Fror       | n. Namo                                              |                                           |
| 1101       |                                                      |                                           |
|            | Address                                              |                                           |
|            | City / State / ZIP / Country                         |                                           |
|            | Telephone: ()                                        | FAX: ()                                   |
| Арр        | lication (optional):                                 |                                           |
| Wou        | Ild you like a reply? Y N                            |                                           |
| Dev        | ice: PIC24FV32KA304 Family                           | Literature Number: DS39995D               |
| Que        | stions:                                              |                                           |
| 1.         | What are the best features of this document?         |                                           |
|            |                                                      |                                           |
| 2.         | How does this document meet your hardware and s      | software development needs?               |
|            |                                                      |                                           |
| 3.         | Do you find the organization of this document easy   | to follow? If not, why?                   |
|            |                                                      |                                           |
| 4.         | What additions to the document do you think would    | enhance the structure and subject?        |
|            |                                                      |                                           |
| 5.         | What deletions from the document could be made v     | without affecting the overall usefulness? |
|            |                                                      |                                           |
| 6.         | Is there any incorrect or misleading information (wh | at and where)?                            |
|            |                                                      |                                           |
| 7.         | How would you improve this document?                 |                                           |
|            |                                                      |                                           |