

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka301-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

R/S-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
WR	WREN	WRERR	PGMONLY	—	—	—	—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0		
bit 7							bit 0		
Legend:	HC = Hardware Clearable bit U = Unimplemented bit, read as '0'								
R = Readable	e bit	W = Writable bit		S = Settable	bit				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	known		
bit 15	WR: Write Co	ontrol bit (program	or erase)						
	1 = Initiates a	a data FFPROM e	rase or write cv	cle (can be sei	, but not clea	red in softwar	e)		
	0 = Write cyc	cle is complete (cle	eared automatic	ally by hardwa	re)		-,		
bit 14	WREN: Write	Enable bit (erase	or program)						
	1 = Enables a	an erase or progra	m operation						
	0 = No opera	tion allowed (device	ce clears this bit	on completion	of the write/e	erase operatio	on)		
bit 13	WRERR: Wri	te Flash Error Flag	g bit						
	1 = A write	operation is prem	aturely termina	ted (any MCL	R or WDT F	Reset during	programming		
	operation	ו)							
	0 = 1 he write	e operation comple	eted successfully	Ý					
bit 12	PGMONLY: F	Program Only Ena	ble bit						
	1 = Write ope	eration is executed	d without erasing	g target addres	s(es) first				
	0 = Automati	c erase-belore-wr	ite automatically by	an erase of th	e target addr	·ess(es)			
bit 11-7	Unimplemen	ted: Read as '0'	automationity by			000(00).			
bit 6	EDASE: Eras	e Operation Selev	at hit						
bit 0	1 = Performs	an erase operation	on when WR is s	eet					
	0 = Performs	a write operation	when WR is set	t					
bit 5-0	NVMOP<5:0	Programming C	peration Comm	and Byte bits					
	Erase Operat	ions (when ERAS	<u>E bit is '1'):</u>	-					
	011010 = Erases 8 words								
	011001 = Er a	ases 4 words							
	011000 = Era	ases 1 word							
		Operations (when		0').					
	0.010×100	ites 1 word	I ERAJE DILIS	<u></u>					

REGISTER 6-1: NVMCON: NONVOLATILE MEMORY CONTROL REGISTER

7.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Resets, refer to the "PIC24F Family Reference Manual", Section 40. "Reset with Programmable Brown-out Reset" (DS39728).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- Low-Power BOR/Deep Sleep BOR
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on Power-on Reset (POR) and unchanged by all other Resets.

Note: Refer to the specific peripheral or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A Power-on Reset will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer (WDT) and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	U-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	—	OC3IF	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0	R/W-0
—	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:		HS = Hardwar	e Settable hit]
R = Readable	bit	W = Writable I	nit	U = Unimplem	nented bit read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	U2TXIF: UAR	T2 Transmitter	Interrupt Flag	Status bit			
	1 = Interrupt n	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 14	U2RXIF: UAR	RT2 Receiver In	terrupt Flag St	atus bit			
	1 = Interrupt n	equest has occ	occurred				
bit 13	INT2IF: Extern	nal Interrupt 2 P	Flag Status bit				
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit				
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 11	T4IF: Timer4	Interrupt Flag S	Status bit				
	1 = Interrupt n	equest has occ	surred				
bit 10		equest has not	occurred				
bit 9		it Compare Ch) annel 3 Interru	nt Elan Status k	sit		
bit 9	1 = Interrupt r	equest has occ	urred	pri lag Status r	Л		
	0 = Interrupt r	equest has not	occurred				
bit 8-5	Unimplement	ted: Read as '0)'				
bit 4	INT1IF: Exter	nal Interrupt 1 I	-lag Status bit				
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 3	CNIF: Input C	hange Notificat	tion Interrupt F	lag Status bit			
	1 = Interrupt n	equest has occ	curred				
hit 2	CMIE: Compa	equest has not arator Interrunt	Elan Status hit				
Dit 2	1 = Interrupt n	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 1	MI2C1IF: Mas	ster I2C1 Event	Interrupt Flag	Status bit			
	1 = Interrupt r	equest has occ	urred				
1	0 = Interrupt r	equest has not	occurred				
Dit U	SI2C1IF: Slav	e I2C1 Event li	nterrupt Flag S	itatus bit			
	1 = interrupt r 0 = Interrupt r	equest has occ equest has not	occurred				

REGISTER 8-32: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—				—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—	ULPWUIP2	ULPWUIP1	ULPWUIP0
bit 7							bit 0

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 6-4 ULPWUIP<2:0>: Ultra Low-Power Wake-up Interrupt Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- :

• 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

10.2.4.5 Deep Sleep WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (FDS<7>). The device Watchdog Timer (WDT) need not be enabled for the DSWDT to function. Entry into Deep Sleep mode automatically resets the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (FDS<4>). The postscaler options are programmed by the DSWDTPS<3:0> Configuration bits (FDS<3:0>). The minimum time-out period that can be achieved is 2.1 ms and the maximum is 25.7 days. For more details on the FDS Configuration register and DSWDT configuration options, refer to **Section 26.0 "Special Features"**.

10.2.4.6 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCOSC Configuration bit (FDS<5>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention; however, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

10.2.4.7 Checking and Clearing the Status of Deep Sleep

Upon entry into Deep Sleep mode, the status bit, DPSLP (RCON<10>), becomes set and must be cleared by the software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set; this is a normal POR.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

10.2.4.8 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep functionally looks like a POR, the technique described in **Section 10.2.4.7** "**Checking and Clearing the Status of Deep Sleep**" should be used to distinguish between Deep Sleep and a true POR event.

When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers: RTCC, DSWDT, etc.) is reset.

10.2.4.9 Summary of Deep Sleep Sequence

To review, these are the necessary steps involved in invoking and exiting Deep Sleep mode:

- 1. The device exits Reset and begins to execute its application code.
- 2. If DSWDT functionality is required, program the appropriate Configuration bit.
- 3. Select the appropriate clock(s) for the DSWDT and RTCC (optional).
- 4. Enable and configure the DSWDT (optional).
- 5. Enable and configure the RTCC (optional).
- 6. Write context data to the DSGPRx registers (optional).
- 7. Enable the INT0 interrupt (optional).
- 8. Set the DSEN bit in the DSCON register.
- 9. Enter Deep Sleep by issuing a PWRSV #SLEEP_MODE command.
- 10. The device exits Deep Sleep when a wake-up event occurs.
- 11. The DSEN bit is automatically cleared.
- 12. Read and clear the DPSLP status bit in RCON, and the DSWAKE status bits.
- 13. Read the DSGPRx registers (optional).
- 14. Once all state related configurations are complete, clear the RELEASE bit.
- 15. The application resumes normal operation.

REGISTER 16-1:

R/W-0 U-0 R/W-0 U-0 U-0 R-0, HSC R-0, HSC R-0, HSC SPIEN SPIBEC0 SPISIDL SPIBEC2 SPIBEC1 bit 15 bit 8 R-0, HSC R/C-0, HS R/W-0, HSC R/W-0 R/W-0 R/W-0 R-0, HSC R-0, HSC SPIROV SPIRBF SRMPT SRXMPT SISEL2 SISEL1 SISEL0 SPITBF bit 7 bit 0 HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit Legend: C = Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPI transfers pending. Slave mode: Number of SPI transfers unread. bit 7 SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) 1 = SPIx Shift register is empty and ready to send or receive 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded (the user software has not read the previous data in the SPI1BUF register) 0 = No overflow has occurred bit 5 **SRXMPT:** SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = Receive FIFO is empty 0 = Receive FIFO is not empty bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode) 111 = Interrupt when SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when last bit is shifted into SPIxSR; as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete 100 = Interrupt when one data byte is shifted into the SPIxSR: as a result, the TX FIFO has one open spot 011 = Interrupt when SPIx receive buffer is full (SPIRBF bit is set) 010 = Interrupt when SPIx receive buffer is 3/4 or more full 001 = Interrupt when data is available in receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty (SRXMPT bit is set)

SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)

- 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	SPIFPOL		_	_	_	_	
bit 15	·			·			bit 8	
U-0	U-0	U-0	U-0 U-0 U-0 R/W-0 R/					
_	—	—	—	—	—	SPIFE	SPIBEN	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable b	it	U = Unimplem	nented bit, rea	ad as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	FRMEN: Fra	med SPIx Suppo	ort bit					
	1 = Framed S	SPIx support is e	nabled					
bit 14		SFIX Support is u	ulso Diroctio	n Control on SS	v Din hit			
DIL 14	1 = Frame System	vnc pulse input (uise Direction slave)					
	0 = Frame System	ync pulse output	(master)					
bit 13	SPIFPOL: SI	Plx Frame Sync	Pulse Polarit	y bit (Frame mo	de only)			
	1 = Frame S	ync pulse is activ	e-high					
	0 = Frame S	ync pulse is activ	e-low					
bit 12-2	Unimplemer	nted: Read as '0	,					
bit 1	SPIFE: SPIx	Frame Sync Pul	se Edge Sele	ect bit				
	1 = Frame Sync pulse coincides with the first bit clock							
h:4 0		ync puise preced	es the first d					
DILU	SPIBEN: SP	IX Ennanced But	ier Enable bl	ι				
1 = Ennanced buffer is enabled 0 = Enhanced buffer is disabled (I enacy mode)								
			ee (Logady I					

20.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction of the data that is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

20.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions. If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt.

20.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- 2. Configure the module for the desired operation:
 - a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.
 - b) Configure the data width and shift direction using the DWIDTHx and LENDIAN bits.
 - c) Select the desired interrupt mode using the CRCISEL bit.
- 3. Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.
- 4. Clear old results by writing 00h to CRCWDATL and CRCWDATH. CRCWDAT can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write the remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

20.2 Registers

There are eight registers associated with the module:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 20-1 and Register 20-2) control the operation of the module, and configure the various settings. The CRCXOR registers (Register 20-3 and Register 20-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word, input data and CRC processed output, respectively.

CMxCON: COMPARATOR x CONTROL REGISTERS REGISTER 23-1: R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R-0 CON COE CPOL CLPWR CEVT COUT bit 15 bit 8 R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 EVPOL1 **EVPOL0** CREF CCH1 CCH0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator x Enable bit 1 = Comparator is enabled 0 = Comparator is disabled bit 14 COE: Comparator x Output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator x Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12 CLPWR: Comparator x Low-Power Mode Select bit 1 = Comparator operates in Low-Power mode 0 = Comparator does not operate in Low-Power mode bit 11-10 Unimplemented: Read as '0' bit 9 **CEVT:** Comparator x Event bit 1 = Comparator event defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator x Output bit When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN -When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt is generated on the transition of the comparator output: If CPOL = 0 (non-inverted polarity): High-to-low transition only. If CPOL = 1 (inverted polarity): Low-to-high transition only. 01 = Trigger/event/interrupt is generated on the transition of the comparator output If CPOL = <u>0</u> (non-inverted polarity): Low-to-high transition only. If CPOL = $\underline{1}$ (inverted polarity): High-to-low transition only. 00 = Trigger/event/interrupt generation is disabled

bit 5 Unimplemented: Read as '0'

© 2011-2013 Microchip Technology Inc.

DC CHARAC	TERISTICS	Standard C	perating C	Conditions	1.8V to 2.0V to C TA < +85	3.6V PIC24 5.5V PIC24 °C for Indus	4F32KA3XX 4FV32KA3XX strial		
			ended						
Parameter No.	Device	Typical ⁽¹⁾	Max	Units		Conditions			
Power-Dowr	n Current (IPD)								
DC60	PIC24FV32KA3XX		_		-40°C				
		6.0	8.0		+25°C				
		0.0	8.5	μA	+60°C	2.0V			
			9.0		+85°C				
			15		+125°C				
			_		-40°C				
		6.0	8.0		+25°C				
		0.0	9.0	μA	+60°C	5.0V	5.0V		
			10.0		+85°C				
		—	15		+125°C		Sleen Mode ⁽²⁾		
	PIC24F32KA3XX			μΑ	-40°C		Sleep Mode		
		0.025	0.80		+25°C				
		0.025	1.5		+60°C	1.8V			
			2.0		+85°C				
			7.5		+125°C				
			_		-40°C				
		0.040	1.0		+25°C				
		0.040	2.0	μA	+60°C	3.3V			
			3.0		+85°C				
		—	7.5		+125°C				
DC61	PIC24FV32KA3XX	0.25		μA	-40°C	2.0V			
		0.35	3.0	μA	+85°C	5.0V	Sleep Mode ⁽²⁾		
		—	7.5	μA	+125°C	5.0V			
DC70	PIC24FV32KA3XX	0.03	—	μA	-40°C	2.0V			
		0.10	2.0	μA	+85°C	5.0V			
		—	6.0	μA	+125°C	5.0V	Deen Sleen Mode		
	PIC24F32KA3XX	0.02	_	μA	-40°C	1.8V			
		0.08	1.2	μA	+85°C	3.3V			
		_	1.2	μA	+125°C	3.3V			

TABLE 29-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Legend: Unshaded rows represent PIC24F32KA3XX devices and shaded rows represent PIC24FV32KA3XX devices. Note 1: Data in the Typical column is at 3.3V, +25°C (PIC24F32KA3XX) or 5.0V, +25°C (PIC24FV32KA3XX) unless otherwise stated. Parameters are for design guidance only and are not tested.

 Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low, PMSLP is set to '0' and WDT, etc., are all switched off.

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

- 4: This current applies to Sleep only.
- 5: This current applies to Sleep and Deep Sleep.
- **6:** This current applies to Deep Sleep only.

TABLE 29-24: COMPARATOR TIMINGS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments
300	TRESP	Response Time ^{*(1)}		150	400	ns	
301	Тмс2о∨	Comparator Mode Change to Output Valid [*]		—	10	μS	

* Parameters are characterized but not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 29-25: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time ⁽¹⁾			10	μS	

Note 1: Settling time is measured while CVRSS = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

FIGURE 29-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 29-32: I²C[™] BUS DATA TIMING REQUIREMENTS (MASTER MODE)

АС СНА		STICS		Standard Operation	ng Condi e stated)	tions: 2.0	IV to 3.6V	
				$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Charac	Characteristic		Мах	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μS		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
	Fall Time	Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	IM21 TR:SCL SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns		
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	100	_	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	_	ns		
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns		
		from Clock	400 kHz mode	—	1000	ns		
			1 MHz mode ⁽²⁾	—		ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be	
			400 kHz mode	1.3		μS	free before a new	
			1 MHz mode ⁽²⁾	0.5		μs	transmission can start	
IM50	Св	Bus Capacitive L	oading	—	400	pF		

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to **Section 17.3 "Setting Baud Rate When Operating as a Bus Master**" for details.

2: Maximum pin capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

FIGURE 30-23: TYPICAL VBOR vs. TEMPERATURE (BOR TRIP POINT 3)

30.2 Characteristics for Extended Temperature Devices (-40°C to +125°C)

Note: Data for VDD levels greater than 3.3V are applicable to PIC24FV32KA304 family devices only.

FIGURE 30-40: TYPICAL AND MAXIMUM lidle vs. Vdd (FRC MODE)

libLE (mA)				
		VDD		

FIGURE 30-41: TYPICAL AND MAXIMUM lidle vs. TEMPERATURE (FRC MODE)

liple (mA)	
	Temperature (°C)

 FIGURE 30-55:
 TYPICAL BAND GAP VOLTAGE vs. TEMPERATURE (2.0V ≤ VDD ≤ 5.5V)

 Image: state state

FIGURE 30-56: TYPICAL VOLTAGE REGULATOR OUTPUT vs. TEMPERATURE

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A

Μ

Microchip Internet Web Site	358
MPLAB ASM30 Assembler, Linker, Librarian	252
MPLAB Integrated Development	
Environment Software	251
MPLAB PM3 Device Programmer	254
MPLAB REAL ICE In-Circuit Emulator System	253
MPLINK Object Linker/MPLIB Object Librarian	252
Ν	
Near Data Space	
0	
On-Chip Voltage Regulator	
Oscillator Configuration	
Clock Switching	121
Enabling	121
Sequence	121
Configuration Bit Values for Clock Selection	116
CPU Clocking Scheme	116
Initial Configuration on POR	116
Reference Clock Output	122
Output Compare	
Cascaded (32-Bit) Mode	151
Operations	153
Subcycle Resolution	156
Synchronous, Trigger Modes	151

Ρ

Packaging	
Details	328
Marking	325
PIC24F32KA304 Family Device Features (Summary)	14
PIC24FV32KA304 Family Device	
Features (Summary)	13
Pinout Descriptions	16
Power-Saving	134
Power-Saving Features	125
Clock Frequency, Clock Switching	125
Coincident Interrupts	126
Instruction-Based Modes	125
Deep Sleep	126
Idle	126
Sleep	125
Selective Peripheral Control	134
Ultra Low-Power Wake-up	131
Voltage, Regulator-Based	133
Deep Sleep Mode	133
Retention Sleep Mode	133
Run Mode	133
Sleep (Standby) Mode	133
Product Identification System	360
Program and Data Memory	
Access Using Table Instructions	53
Addressing Space	51
Interfacing Spaces	51
Program Space Visibility	55
Program Memory	
Address Space	35
Data EEPROM	36
Device Configuration Words	36
Hard Memory Vectors	36
Memory Map	35
Organization	36
Program Verification	250

Pulse-Width Modulation (PWM) Mode Pulse-Width Modulation. See PWM.	154
PWM	155
	155
R	
Reader Response	359
Register Maps	
A/D Converter	47
Analog Select	48
	49
CRC	33
СТМИ	48
Deep Sleep	49
I2Cx	44
ICN	40
Input Capture	42
Interrupt Controller	41
NVM	50
Output Compare	43
Pad Configuration	46
	50
	40
PORTC	46
Real-Time Clock and Calendar (RTCC)	48
SPlx	45
Timer	42
Triple Comparator	48
UARTx	44
Ultra Low-Power Wake-up	50
Registers	
AD1CHITH (A/D Scan Compare Hit, High Word).	216
ADICHIH (A/D Scan Compare Hit, Low Word)	210
AD1CON1 (A/D Control 1)	210
AD1CON2 (A/D Control 2)	211
AD1CON3 (A/D Control 3)	213
AD1CON5 (A/D Control 5)	214
AD1CSSH (A/D Input Scan Select, High Word)	217
AD1CSSL (A/D Input Scan Select, Low Word)	217
AD1CTMUENH (CTMU Enable, High Word)	218
AD1CTMUENL (CTMU Enable, Low Word)	218
ALCFGRPT (Alarm Configuration)	190
ALMINSEC (Alarm Minutes and Seconds Value) .	194
ALMTHDY (Alarm Month and Day Value)	193
ALWDHR (Alarm Weekday and Hours Value)	193
ANSA (Analog Selection, PORTA)	130
ANSE (Analog Selection, FORTE)	137
CI KDIV (Clock Divider)	119
CMSTAT (Comparator x Status)	228
CMxCON (Comparator x Control)	227
CORCON (CPU Control)	33
CORCON (CPU Core Control)	80
CRCCON1 (CRC Control 1)	202
CRCCON2 (CRC Control 2)	203
CRCXORH (CRC XOR Polynomial, High Byte)	204
CRCXORL (CRC XOR Polynomial, Low Byte)	204
CIMUCON (CTMU Control 1)	234
CTMUCON2 (CTMU Control 2)	235
	231
Reference Control)	
	00