

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka301-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the "PIC24F Family Reference Manual", Section 2. "CPU" (DS39703).

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K word boundary of either program memory or data EEPROM memory, defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (i.e., A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is illustrated in Figure 3-1.

3.1 Programmer's Model

Figure 3-2 displays the programmer's model for the PIC24F. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions.

Table 3-1 provides a description of each register. All registers associated with the programmer's model are memory mapped.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								TN	/IR1								0000
PR1	0102								Р	R1								FFFF
T1CON	0104	TON	—	TSIDL	—	—	—	T1ECS1	T1ECS0	—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	_	0000
TMR2	0106								TN	IR2								0000
TMR3HLD	0108		TMR3HLD									0000						
TMR3	010A		TMR3									0000						
PR2	010C	PR2									0000							
PR3	010E	PR3									FFFF							
T2CON	0110	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS		FFFF
T3CON	0112	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	—	—	TCS	_	0000
TMR4	0114								TN	/IR4								0000
TMR5HLD	0116								TMR	5HLD								0000
TMR5	0118								ΤN	1R5								0000
PR4	011A								Р	R4								FFFF
PR5	011C		PR5								FFFF							
T4CON	011E	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	T45	_	TCS	_	0000
T5CON	0120	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	—	_	TCS	_	0000
Lananda				Desetual		the last and a	la sins al											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

	1					1	1			1	1		1		1	1	1	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	—	—	—	_	—	—		IC32	ICTRIG	TRIGSTAT		SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144	44 IC1BUF c									0000							
IC1TMR	0146	IC1TMR xx									XXXX							
IC2CON1	0148	—	_	ICSIDL	IC2TSEL2	IC2TSEL1	IC2TSEL0		_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	—	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	014C									IC2BU	F							0000
IC2TMR	014E									IC2TM	R							XXXX
IC3CON1	0150	—	_	ICSIDL	IC3TSEL2	IC3TSEL1	IC3TSEL0		_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	—	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154									IC3BU	F							0000
IC3TMR	0156									IC3TM	R							XXXX

PIC24FV32KA304 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 8-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4										
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
_	—	CTMUIE	_	—	_	—	HLVDIE			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0			
_	<u> </u>	—	_	CRCIE	U2ERIE	U1ERIE				
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				
bit 15-14 Unimplemented: Read as '0'										
bit 13	CTMUIE: CTMU Interrupt Enable bit									
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 									
bit 12-9	Unimplemented: Read as '0'									
bit 8	HLVDIE: High	h/Low-Voltage D	etect Interrup	t Enable bit						
	1 = Interrupt	request is enable request is not er	ed nabled							
bit 7-4	Unimplemen	ted: Read as '0	3							
bit 3	CRCIE: CRC	Generator Inter	rupt Enable b	it						
	1 = Interrupt	request is enable	ed							
	0 = Interrupt i	request is not er	abled							
bit 2	U2ERIE: UAR	RT2 Error Interru	pt Enable bit							
	1 = Interrupt request is enabled									
hit 1		2T1 Error Interri	iauieu int Enable bit							
Dit 1		request is enable	≏d							
	0 = Interrupt	request is not er	abled							
bit 0	Unimplemen	ted: Read as '0	,							

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0				
bit 15						•	bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
	IC2IP2	IC2IP1	IC2IP0	—	—	_	<u> </u>				
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	T2IP<2:0>: ⊺	imer2 Interrupt	Priority bits								
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)							
	•										
	• $0.01 = \text{Interrupt is Priority 1}$										
	000 = Interru	pt source is dis	abled								
bit 11	Unimplemen	ted: Read as '	0'								
bit 10-8	OC2IP<2:0>:	Output Compa	are Channel 2	Interrupt Priority	y bits						
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)							
	•										
	• 001 = Interru	nt is Priority 1									
	000 = Interru	pt source is dis	abled								
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-4	IC2IP<2:0>:	Input Capture (Channel 2 Inter	rupt Priority bit	S						
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)							
	•										
	•										
	001 = Interru	pt is Priority 1 nt source is die	ahled								
bit 3-0	Unimplemen	ited: Read as '	0'								
	Sumbiculen		0								

REGISTER 8-18: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

	REGISTER 8-23:	IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6
--	----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
_	T4IP2	T4IP1	T4IP0	_	_	—	_				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
_	OC3IP2	OC3IP1	OC3IP0	_	—	—	—				
bit 7							bit 0				
Legend:											
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'											
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	iown							
bit 15	Unimplemented: Read as '0'										
bit 14-12	T4IP<2:0>: ⊺	ïmer4 Interrupt	Priority bits								
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)							
	•										
	• 001 - Internu	nt in Driarity 1									
	001 = Interru	pl is Phonly 1 nt source is dis	abled								
bit 11-7	Unimplemen	ited: Read as '	נגיים ז'								
bit 6-4			re Channel 3	Interrunt Priority	/ hits						
bit 0 4	111 = Interru	nt is Priority 7 (highest priority	v interrunt)	010						
	•	prist honry / (nightest phone	y interrupt)							
	•										
	001 = Interru	pt is Priority 1									
	000 = Interru	pt source is dis	abled								
bit 3-0	Unimplemen	ted: Read as ')'								

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for single-shot or continuous pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse, based on the desired pulse width and the time to the rising edge of the pulse.
- 2. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure the trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no Sync/trigger source).
- 5. Select the time base source with the OCTSEL<2:0> bits. If the desired clock source is running, set the OCTSEL<2:0> bits before the output compare module is enabled for proper synchronization with the desired clock source. If necessary, set the TON bit for the selected timer which enables the compare time base to count. Synchronous mode operation starts as soon as the synchronization source is enabled; Trigger mode operation starts after a trigger source event occurs.
- 6. Set the OCM<2:0> bits for the appropriate compare operation ('0xx').

For 32-bit cascaded operation, these steps are also necessary:

- Set the OC32 bits for both registers (OCyCON2<8> and (OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGSTAT (OCxCON2<6>) and SYNCSELx (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0				
bit 7							bit 0				
Legend:											
R = Reada	ible bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'					
-n = Value	at POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkn	iown				
L:1 4 5 4 9		ted. Deed ee W	.,								
DIL 15-13		ited: Read as									
DIL 12		Bly clock in dia	obled pip func								
	1 = Internal S 0 = Internal S	SPIX clock is en	abled, pill fullo abled								
bit 11	DISSDO: Dis	ables SDOx pir	n bit								
	1 = SDOx pi	n is not used by	the module; p	in functions as	an I/O						
	0 = SDOx pin is controlled by the module										
bit 10	it 10 MODE16: Word/Byte Communication Select bit										
	1 = Communication is word-wide (16 bits)										
	0 = Communication is byte-wide (8 bits)										
bit 9	SMP: SPIx Data Input Sample Phase bit										
	Master mode:										
	0 = Input dat	ta is sampled at	the middle of	data output time	е						
	Slave mode:										
	SMP must be	e cleared when	SPIx is used ir	n Slave mode.							
bit 8	CKE: Clock E	Edge Select bit ⁽	1)								
	1 = Serial ou	itput data chang	es on transitio	on from active c	lock state to IdI	e clock state (s	see bit 6)				
	0 = Serial ou	itput data chang	jes on transitio	n from Idle cloc	ck state to activ	e clock state (s	see bit 6)				
bit /	SSEN: Slave	Select Enable	bit (Slave mod	e)							
	$1 = \frac{SSX}{SSX} pin$	is used for Slav	e module: nin	is controlled by	v port function						
bit 6	CKP: Clock F	Polarity Select b	it		, port fariotion						
	1 = Idle state	e for clock is a h	igh level; activ	e state is a low	level						
	0 = Idle state	e for clock is a lo	ow level; active	e state is a high	level						
bit 5	MSTEN: Mas	ster Mode Enab	le bit								
	1 = Master n	node									
	0 = Slave me	ode									
bit 4-2	SPRE<2:0>:	Secondary Pre	scale bits (Mas	ster mode)							
	111 = Secon	dary prescale 1	:1								
		uary prescale 2	. I								
	•										
	000 = Secon	dary prescale 8	:1								
Note 1:	The CKE bit is no	ot used in the Fi	amed SPI mo	des. The user s	hould program	this bit to '0' fo	or the Framed				

REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1

SPI modes (FRMEN = 1).

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last
	Hardware is set or cleared when a Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 Read – indicates data transfer is output from the slave
	0 = Write – indicates data transfer is input to the slave
	Hardware is set or clear after the reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte; hardware is clear when the software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty

Hardware is set when the software writes to I2CxTRN; hardware is clear at the completion of data transmission.

REGISTER 22-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—	—	—	—	CHH17	CHH16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'.

bit 1-0 CHH<17:16>: A/D Compare Hit bits

If CM<1:0> = 11:

- 1 = A/D Result Buffer x has been written with data or a match has occurred
- 0 = A/D Result Buffer x has not been written with data
- For All Other Values of CM<1:0>:
- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

REGISTER 22-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH7	CHH6	CHH5	CHH4	CHH3	CHH2	CHH1	CHH0
bit 7		•	•				bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CHH<15:0>: A/D Compare Hit bits

If CM<1:0> = 11:

- 1 = A/D Result Buffer x has been written with data or a match has occurred
- 0 = A/D Result Buffer x has not been written with data
- For all other values of CM<1:0>:
- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

REGISTER 24-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_	_		_		—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0		
bit 7							bit 0		
									
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	x = Bit is unkn	iown			
bit 15-8	Unimplemen	ted: Read as ')'						
bit 7	CVREN: Com	parator Voltage	e Reference E	nable bit					
	1 = CVREF ci	rcuit is powere	don						
	0 = CVREF CI	rcuit is powere	d down						
bit 6	CVROE: Com	parator VREF (Dutput Enable	bit					
	1 = CVREF VC	oltage level is o	utput on the C	VREF pin	oin				
hit 5			Source Selectic	on hit	JIII				
DIL 5		tor reference s							
	0 = Compara	tor reference s	ource, CVRSRC	c = AVDD - AV	KEF- /SS				
bit 4-0	CVR<4:0>: Comparator VREF Value Selection $0 \le CVR<4:0> \le 31$ bits								
	When CVRSS = 1:								
	CVREF = (VREF-) + (CVR<4:0>/32) • (VREF+ – VREF-)								
	When CVRSS	<u>S = 0:</u>							
	$CVREF = (AVSS) + (CVR < 4:0 > /32) \cdot (AVDD - AVSS)$								

TABLE 29-4: HIGH/LOW–VOLTAGE DETECT CHARACTERISTICS

Standard Operating Conditions: 1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XX										
$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Param No.	Symbol	Characteristic			Тур	Max	Units	Conditions		
DC18	Vhlvd	HLVD Voltage on	HLVDL<3:0> = 0000 ⁽²⁾		—	1.90	V			
		VDD Transition	HLVDL<3:0> = 0001	1.86	-	2.13	V			
			HLVDL<3:0> = 0010	2.08	-	2.35	V			
			HLVDL<3:0> = 0011	2.22	_	2.53	V			
		HLVDL<3:0> = 0100	2.30	-	2.62	V				
		HLVDL<3:0> = 0101	2.49	-	2.84	V				
			HLVDL<3:0> = 0110	2.73	—	3.10	V			
			HLVDL<3:0> = 0111	2.86		3.25	V			
			HLVDL<3:0> = 1000	3.00	-	3.41	V			
			HLVDL<3:0> = 1001	3.16	—	3.59	V			
			HLVDL<3:0> = 1010 ⁽¹⁾	3.33		3.79	V			
			HLVDL<3:0> = 1011 ⁽¹⁾	3.53		4.01	V			
			HLVDL<3:0> = 1100 ⁽¹⁾	3.74	—	4.26	V			
			HLVDL<3:0> = 1101 ⁽¹⁾	4.00		4.55	V			
			HLVDL<3:0> = 1110 ⁽¹⁾	4.28	—	4.87	V			

Note 1: These trip points should not be used on PIC24FXXKA30X devices.

2: This trip point should not be used on PIC24FVXXKA30X devices.

TABLE 29-5: BOR TRIP POINTS

Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No. Sym Characteristic					Тур	Max	Units	Conditions
DC15		BOR Hysteresis			5		mV	
DC19	BOR Voltage on VDD Transition		BORV<1:0> = 00	-	_		—	Valid for LPBOR and DSBOR (Note 1)
			BORV<1:0> = 01	2.90	3	3.38	V	
			BORV<1:0> = 10	2.53	2.7	3.07	V	
			BORV<1:0> = 11	1.75	1.85	2.05	V	(Note 2)
			BORV<1:0> = 11	1.95	2.05	2.16	V	(Note 3)

Note 1: LPBOR re-arms the POR circuit but does not cause a BOR.

2: This is valid for PIC24F (3.3V) devices.

3: This is valid for PIC24FV (5V) devices.

29.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FV32KA304 family AC characteristics and timing parameters.

TABLE 29-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions:	1.8V to 3.6V PIC24F32KA3XX			
		2.0V to 5.5V PIC24FV32KA3XX			
AC CHARACTERISTICS	Operating temperature:	-40°C \leq TA \leq +85°C for Industrial			
	-	-40°C ≤ TA ≤ +125°C for Extended			
	Operating voltage VDD range as described in Section 29.1 "DC Characteristics".				

FIGURE 29-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 29-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_	_	15	pF	In XT and HS modes when the external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—		400	pF	In I ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 29-22: A/D CONVERSION TIMING

2: This is a minimal RC delay (typically 100 ns) which also disconnects the holding capacitor from the analog input.

AC CHARACTERISTICS		Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
		(Clock Pa	rameter	s			
AD50	Tad	A/D Clock Period	600	—	—	ns	Tcy = 75 ns, AD1CON3 in default state	
AD51	TRC	A/D Internal RC Oscillator Period	-	1.67	—	μs		
			Convers	ion Rate)			
AD55	TCONV	Conversion Time	_	12 14	_	Tad Tad	10-bit results 12-bit results	
AD56	FCNV	Throughput Rate			100	ksps		
AD57	TSAMP	Sample Time	_	1	_	Tad		
AD58	TACQ	Acquisition Time	750	—	—	ns	(Note 2)	
AD59	Tswc	Switching Time from Convert to Sample	-	-	(Note 3)			
AD60	TDIS	Discharge Time	12	_	—	TAD		
		(Clock Pa	rameter	s			
AD61	TPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	—	3	Tad		

TABLE 29-41: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).

3: On the following cycle of the device clock.

FIGURE 30-29: VIL/VIH vs. VDD (I²C[™], TEMPERATURES AS NOTED)

31.0 PACKAGING INFORMATION

31.1 Package Marking Information

20-Lead PDIP (300 mil)

28-Lead SPDIP (.300")

Example

20-Lead SSOP (5.30 mm)

28-Lead SSOP (5.30 mm)

Example

Example

Legend:	XXX Y YY WW NNN (e3)	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the e will be charac	event the full Microchip part number cannot be marked on one line, it carried over to the next line, thus limiting the number of available ters for customer-specific information.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

l	Units			S		
Dimension Lim	nits	MIN	NOM	MAX		
Number of Pins	N		20			
Pitch	е		1.27 BSC			
Overall Height	Α	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	Е	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	12.80 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12