

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka301t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

			F					FV					
			Pin Number					Pin Number					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
CN23	11	16	13	43	47	11	16	13	43	47	I	ST	Interrupt-on-Change Inputs
CN24		15	12	42	46	-	15	12	42	46	1	ST	
CN25		_	_	37	40	-			37	40	1	ST	
CN26		_	_	38	41				38	41	I	ST	
CN27		14	11	41	45		14	11	41	45	I	ST	
CN28		_	_	36	39				36	39	I	ST	
CN29	8	10	7	31	34	8	10	7	31	34	I	ST	
CN30	7	9	6	30	33	7	9	6	30	33	I	ST	
CN31		_	_	26	28	—	_	—	26	28	I	ST	
CN32		_	—	25	27	—	—	—	25	27	1	ST	
CN33		_	—	32	35	—	—	—	32	35	1	ST	
CN34		_	—	35	38	—	—	—	35	38	I	ST	
CN35		_	_	12	13	—	_	—	12	13	I	ST	
CN36		_	_	13	14	—	_	—	13	14	I	ST	
CVREF	17	25	22	14	15	17	25	22	14	15	I	ANA	Comparator Voltage Reference Output
CVREF+	2	2	27	19	21	2	2	27	19	21	I	ANA	Comparator Reference Positive Input Voltage
CVREF-	3	3	28	20	22	3	3	28	20	22	I	ANA	Comparator Reference Negative Input Voltage
CTCMP	4	4	1	21	23	4	4	1	21	23	I	ANA	CTMU Comparator Input
CTED1	14	20	17	7	7	11	2	27	19	21	I	ST	CTMU Trigger Edge Inputs
CTED2	15	23	20	10	11	15	23	20	10	11	I	ST	
CTED3	_	19	16	6	6	_	19	16	6	6	I	ST	
CTED4	13	18	15	1	1	13	18	15	1	1	1	ST	
CTED5	17	25	22	14	15	17	25	22	14	15	I	ST	
CTED6	18	26	23	15	16	18	26	23	15	16	I	ST	
CTED7	_	_	_	5	5	_	—	_	5	5	I	ST	
CTED8	_	_	—	13	14	—	—	—	13	14	I	ST	
CTED9	_	22	19	9	10	—	22	19	9	10	I	ST	
CTED10	12	17	14	44	48	12	17	14	44	48	I	ST]
CTED11	_	21	18	8	9	—	21	18	8	9	I	ST]
CTED12	5	5	2	22	24	5	5	2	22	24	I	ST]
CTED13	6	6	3	23	25	6	6	3	23	25	1	ST	1

TABLE 4-9: I2Cx REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	_	_	_	_	_	—	_				I2CF	RCV				0000
I2C1TRN	0202	_	_	_	—	_	_	_	_				I2CT	RN				OOFF
I2C1BRG	0204	_	_	_	—	_	_	_	_				I2CE	BRG				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	—	_	_					I2CA	DD					0000
I2C1MSK	020C	—	_	_	—	—	_	AMSK9	AMSK8	AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0	0000
I2C2RCV	0210	_	_	_	_	_	_	_	_				I2CF	RCV				0000
I2C2TRN	0212	_	_	_	_	_	_	_	_				I2CT	RN				OOFF
I2C2BRG	0214	_	_	_	_	_	_	_	_				I2CE	BRG				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	021A	_		_	_		_				•	I2CA	DD	•	•	•	•	0000
I2C2MSK	021C	_		_	_	_	_	AMSK9	AMSK8	AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: UARTx REGISTER MAP

		0/11/1/																
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	—		—		_		_				U1T	XREG					XXXX
U1RXREG	0226	—		—		_		_				U1F	RXREG					0000
U1BRG	0228								I	BRG								0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	—	_	_	_				U2T	XREG					XXXX
U2RXREG	0236	—		—		_		_				U2F	RXREG					0000
U2BRG	0238	BRG							0000									

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPIx REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN		SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SR1MPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	-	_	_	_	_		_	_	_	_	_	SPIFE	SPIBEN	0000
SPI1BUF	0248								SPI1	BUF								0000
SPI2STAT	0260	SPIEN	_	SPISIDL	-	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL	-	_	_	_	_		_	_	_	_	_	SPIFE	SPIBEN	0000
SPI2BUF	0268								SPI2	BUF								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: PORTA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ^(2,3)	Bit 10 ^(2,3)	Bit 9 ^(2,3)	Bit 8 ^(2,3)	Bit 7 ⁽²⁾	Bit 6 ⁽⁴⁾	Bit 5 ⁽¹⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0		_	_	_	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	TRISA6		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	OODF
PORTA	02C2	_		—		RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4		_	_	_	LATA11	LATA10	LATA9	LATA8	LATA7	LATA6	_	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	_		_	_	ODA11	ODA10	ODA9	ODA8	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is available only when MCLRE = 1.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

4: These bits are not implemented in FV devices.

TABLE 4-13: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ⁽¹⁾	Bit 10 ⁽¹⁾	Bit 9	Bit 8	Bit 7	Bit 6 ⁽¹⁾	Bit 5 ⁽¹⁾	Bit 4	Bit 3 ⁽¹⁾	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not implemented in 20-pin devices.

5.0 FLASH PROGRAM MEMORY

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information on Flash pro-
	gramming, refer to the "PIC24F Family
	Reference Manual", Section 4. "Program
	Memory" (DS39715).

The PIC24FV32KA304 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 1.8V.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FV32KA304 device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear/Program mode Entry voltage (MCLR/VPP). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or custom firmware to be programmed. Run-Time Self Programming (RTSP) is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 32 instructions (96 bytes) at a time, and erase program memory in blocks of 32, 64 and 128 instructions (96,192 and 384 bytes) at a time.

The NVMOP<1:0> (NVMCON<1:0>) bits decide the erase block size.

5.1 Table Instructions and Flash Programming

Regardless of the method used, Flash memory programming is done with the table read and write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as depicted in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

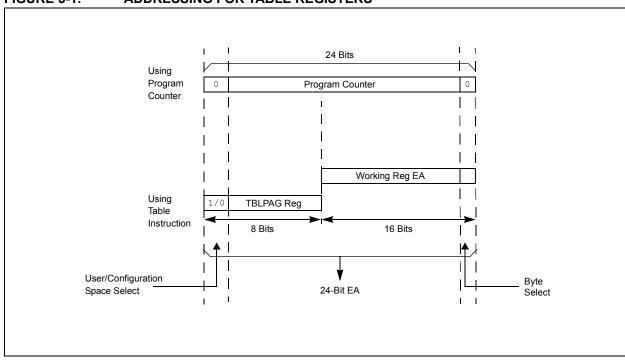


FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

6.0 DATA EEPROM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Data EEPROM, refer to the *"PIC24F Family Reference Manual"*, Section 5. "Data EEPROM" (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFE00h to 7FFFFFh. The size of the data EEPROM is 256 words in the PIC24FV32KA304 family devices.

The data EEPROM is organized as 16-bit wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle, and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

//Disable Interr	upts For 5 instruc	ctions
asm volatile ("disi #5");	
//Issue Unlock S	equence	
asm volatile ("mov #0x55, W0	\n"
"	mov W0, NVMKEY	\n"
"	mov #0xAA, W1	\n"
"	mov W1, NVMKEY	\n");
// Perform Write	/Erase operations	
asm volatile ("bset NVMCON, #WR	\n"
"	nop	\n"
"	nop	\n");

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

TABLE 8-1:TRAP VECTOR DETAILS

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS

la farmar f O anna a			AIVT	In	terrupt Bit Loca	ations
Interrupt Source	Vector Number	IVT Address	Address	Flag	Enable	Priority
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>
СТМИ	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>
HLVD (High/Low-Voltage Detect)	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC17<2:0>
NVM – NVM Write Complete	15	000032h	000132h	IFS0<15>	IEC0<15>	IPC3<14:12>
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<2>	IPC8<2:0>
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
Timer5	28	00004Ch	00015Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>
Ultra Low-Power Wake-up	80	0000B4h	0001B4h	IFS5<0>	IEC5<0>	IPC20<2:0>

REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	_	—
bit 15			•		•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS
_	_	—	—	—	—	_	ULPWUIF
bit 7							bit 0
l edenq.		HS = Hardwa	re Settable bit				

Legend:	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIF: Ultra Low-Power Wake-up Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 8-19: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0
bit 7		1				1	bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown
bit 15	Unimplemen	ted: Read as ')'				
bit 14-12	-	: UART1 Rece		riority bits			
		pt is Priority 7 (=	-			
	•		0 . ,	• /			
	•						
	001 = Interru						
	-	ot source is dis					
bit 11	-	ted: Read as '					
bit 10-8		SPI1 Event Int	, ,				
	111 = Interru	ot is Priority 7 (highest priority	interrupt)			
	•						
	• 001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as ')'				
bit 6-4	SPF1IP<2:0>	: SPI1 Fault Inf	errupt Priority I	oits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1	abled				
	-	ted: Read as '					
hit 3		imer3 Interrupt					
			•	interrunt)			
	111 = Interru	nt is Priority 7 (
	111 = Interruj •	pt is Priority 7 (nignest priority	interrupt)			
bit 3 bit 2-0	111 = Interruj •	pt is Priority 7 (nignest priority	interrupt)			
	• • 001 = Interru			interrupt)			

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
T4IP2	T4IP1	T4IP0	—	_	—	_
						bit 8
D 444 4	D 444.0	D 444 0				
	-	-	0-0	U-0	U-0	U-0
OC3IP2	OC3IP1	OC3IP0	—	—	—	_
						bit 0
hit.	VV - VVritabla	 ;+		antad hit rac	d aa '0'	
		DIL				
POR	"1" = Bit is set		$0^{\circ} = Bit is clea$	ired	x = Bit is unkn	own
Unimplemen	ted: Read as ')'				
T4IP<2:0>: ⊺	imer4 Interrupt	Priority bits				
111 = Interru	pt is Priority 7 (highest priority	interrupt)			
•						
•	at ia Driarity (
		abled				
•			Interrupt Priority	hito		
	Output Compa		menupi Phoniy	DIIS		
		a the large state of a set of the	· · · · · · · · · · · · · · · · · · ·			
	pt is Priority 7 (highest priority	interrupt)			
		highest priority	interrupt)			
111 = Interru	pt is Priority 7 (highest priority	v interrupt)			
111 = Interru	pt is Priority 7 (r interrupt)			
	R/W-1 OC3IP2 bit POR Unimplemen T4IP<2:0>: T 111 = Interru 001 = Interru 000 = Interru	R/W-1 R/W-0 OC3IP2 OC3IP1 e bit W = Writable I POR '1' = Bit is set Unimplemented: Read as '0 T4IP<2:0>: Timer4 Interrupt 111 = Interrupt is Priority 7 (I . 001 = Interrupt is Priority 1 000 = Interrupt source is disa	R/W-1 R/W-0 R/W-0 OC3IP2 OC3IP1 OC3IP0 e bit W = Writable bit POR '1' = Bit is set Unimplemented: Read as '0' T4IP<2:0>: Timer4 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority	R/W-1 R/W-0 R/W-0 U-0 OC3IP2 OC3IP1 OC3IP0 — e bit W = Writable bit U = Unimplemented POR '1' = Bit is set '0' = Bit is clear Unimplemented: Read as '0' T4IP<2:0>: Timer4 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) . 001 = Interrupt is Priority 1 000 = Interrupt source is disabled	R/W-1 R/W-0 R/W-0 U-0 OC3IP2 OC3IP1 OC3IP0 — e bit W = Writable bit U = Unimplemented bit, rea POR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' T4IP<2:0>: Timer4 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) . 001 = Interrupt is Priority 1 000 = Interrupt source is disabled	R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 OC3IP2 OC3IP1 OC3IP0 e bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn Unimplemented: Read as '0' T4IP<2:0>: Timer4 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) .

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
—			—		MI2C2IP2	MI2C2IP1	MI2C2IP0			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
	SI2C2IP2	SI2C2IP1	SI2C2IP0				<u> </u>			
bit 7							bit 0			
Legend:										
R = Readable		W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-11	Unimplemen	ted: Read as ')'							
bit 10-8	MI2C2IP <2:0	>: Master I2C2	Event Interru	pt Priority bits						
	• • 001 = Interrup	ot is Priority 7 (l ot is Priority 1 ot source is disa		r interrupt)						
	000 = Interru		Unimplemented: Read as '0'							
bit 7	•	ted: Read as ')'							
bit 7 bit 6-4	Unimplemen	ted: Read as 'd >: Slave I2C2 E		Priority bits						
	Unimplement SI2C2IP<2:0> 111 = Interrup 001 = Interrup	•: Slave I2C2 E ot is Priority 7 (I	vent Interrupt nighest priority							

11.2.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC24FV32KA304 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 23 external signals (CN0 through CN22) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the ICN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately, using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately, using the CNPD1 and CNPD2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to Vss by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0; MOV W0, TRISB;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs $\$
NOP;	//Delay 1 cycle
BTSS PORTB, #13;	//Next Instruction
Equivalent ` C' Code	
TRISB = 0xFF00;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP();	//Delay 1 cycle
if(PORTBbits.RB13 == 1)	// execute following code if PORTB pin 13 is set.
{	
}	

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—				
it 15							bit				
U-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0				
	ICI1	ICIO	ICOV	ICBNE	ICM2	ICM1	ICM0				
oit 7		1010	1001	IODINE	TOWE	101011	bit				
.egend:		HSC = Hardv	vare Settable/C								
R = Readat		W = Writable		-	nented bit, read	as '0'					
n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkn	own				
			o.1								
bit 15-14	-	nted: Read as '									
bit 13	•	It Capture x Mo	•								
		oture module ha			e mode						
oit 12-10	 Input capture module continues to operate in CPU Idle mode ICTSEL<2:0>: Input Capture x Timer Select bits 										
	111 = System clock (Fosc/2)										
	110 = Reserved										
	101 = Rese										
	100 = Timer 011 = Timer										
	010 = Timer										
	001 = Timer4										
	000 = Timer	3									
oit 9-7	Unimplemer	nted: Read as '	0'								
oit 6-5	ICI<1:0>: Se	lect Number of	Captures per li	nterrupt bits							
	11 = Interrupt on every fourth capture event										
	10 = Interrupt on every third capture event										
	 01 = Interrupt on every second capture event 00 = Interrupt on every capture event 										
oit 4	•	ICOV: Input Capture x Overflow Status Flag bit (read-only)									
	1 = Input capture v overflow occurred										
	0 = No input capture overflow occurred										
oit 3	ICBNE: Input Capture x Buffer Empty Status bit (read-only)										
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty 										
oit 2-0		nput Capture M									
	111 = Interr	upt mode: Inpu	t capture functi		rupt pin only wi bits are not app		is in Sleep				
		ed (module disa			ons are not app						
	101 = Presc	aler Capture m	ode: Capture o								
		aler Capture m			0 0						
	011 = Simpl	le Capture mod	e: Capture on e	every rising edd	le						

- 010 = Simple Capture mode: Capture on every falling edge
- 001 = Edge Detect Capture mode: Capture on every edge (rising and falling); ICI<1:0 bits do not control interrupt generation for this mode
- 000 = Input capture module is turned off

19.3 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value, loaded into the lower half of RCFGCAL, is multiplied by four and will be either added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- 3. a) If the oscillator is faster than ideal (negative result from Step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from Step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

EQUATION 19-1:

(Ideal Frequencly-Measured Frequency) *							
60 = Clocks per Minute							
† Ideal Frequency = 32,768 Hz							

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse, except when SECONDS = 00, 15, 30 or 45. This is due to the auto-adjust of the RTCC at 15 second intervals.

Note: It is up to the user to include, in the error value, the initial error of the crystal: drift due to temperature and drift due to crystal aging.

19.4 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options are available

19.4.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 19-2, the interval selection of the alarm is configured through the AMASKx bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPTx bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled, and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

19.4.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

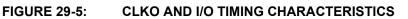
Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

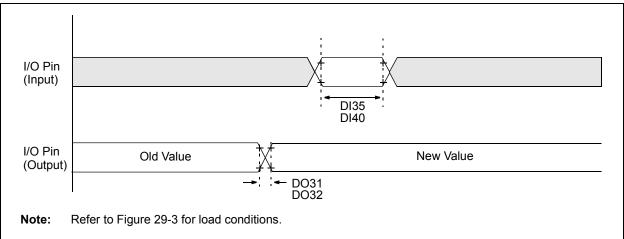
Assembly Mnemonic					# of Cycles	Status Flags Affected
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARACTERISTICS				rd Opera ng tempe	•	-40°C ≤	1.8V to 3.6V PIC24F32KA3XX2.0V to 5.5V PIC24FV32KA3XXTA \leq +85°C for IndustrialTA \leq +125°C for Extended		
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Со	nditions	
	Vol	Output Low Voltage							
DO10		All I/O Pins	—	—	0.4	V	IOL = 8.0 mA	VDD = 4.5V	
			—	—	0.4	V	IOL = 4.0 mA	VDD = 3.6V	
			—	—	0.4	V	IOL = 3.5 mA	VDD = 2.0V	
DO16		OSC2/CLKO	_	_	0.4	V	IOL = 2.0 mA	VDD = 4.5V	
			—	—	0.4	V	IOL = 1.2 mA	VDD = 3.6V	
			—	—	0.4	V	IOL = 0.4 mA	VDD = 2.0V	
	Vон	Output High Voltage							
DO20		All I/O Pins	3.8	—	—	V	IOH = -3.5 mA	VDD = 4.5V	
			3	—	—	V	IOH = -3.0 mA	VDD = 3.6V	
			1.6	_	—	V	IOH = -1.0 mA	VDD = 2.0V	
DO26		OSC2/CLKO	3.8	_	—	V	Іон = -2.0 mA	VDD = 4.5V	
			3	_	—	V	IOH = -1.0 mA	VDD = 3.6V	
			1.6	_	_	V	Іон = -0.5 mA	VDD = 2.0V	

TABLE 29-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

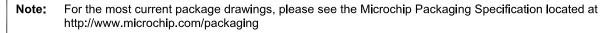

Note 1: Data in "Typ" column is at +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

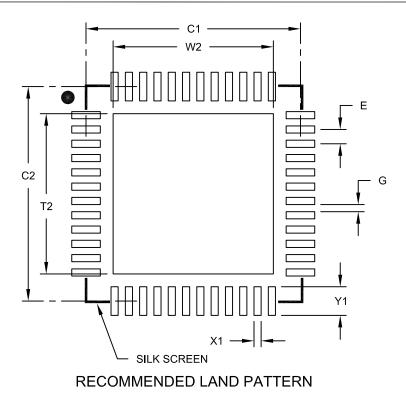

TABLE 29-11: DC CHARACTERISTICS: PROGRAM MEMORY

DC СН4	ARACTI	ERISTICS	$ \begin{array}{ll} \mbox{Standard Operating Conditions:} & 1.8V \ to \ 3.6V \ PIC24F32KA3XX \\ & 2.0V \ to \ 5.5V \ PIC24FV32KA3XX \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \ for \ Extended \\ \end{array} $						
Param No. Sym Characteristic		Min	Typ ⁽¹⁾	Мах	Units	Conditions			
		Program Flash Memory							
D130	Eр	Cell Endurance	10,000 ⁽²⁾	—	—	E/W			
D131	Vpr	VDD for Read	VMIN	_	3.6	V	VMIN = Minimum operating voltage		
D133A	Tiw	Self-Timed Write Cycle Time	_	2	—	ms			
D134	TRETD	Characteristic Retention	40	_	—	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current During Programming		10	—	mA			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Self-write and block erase.




TABLE 29-23: CLKO AND I/O TIMING REQUIREMENTS

АС СНА	ARACTI	ERISTICS	Standard C		-40°C ≤ T	2.0V to 5 .9 A ≤ +85°C f	6V PIC24F32KA3XX 5V PIC24FV32KA3XX or Industrial for Extended
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TIOR	Port Output Rise Time	—	10	25	ns	
DO32	TIOF	Port Output Fall Time	_	10	25	ns	
DI35	TINP	INTx Pin High or Low Time (output)	20	_	_	ns	
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү	

Note 1: Data in "Typ" column is at 3.3V, +25°C (PIC24F32KA3XX); 5.0V, +25°C (PIC24FV32KA3XX), unless otherwise stated.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A