

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka302-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address (EA) calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and the registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register, which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed, but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow the users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users

can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space (NDS). Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is addressable indirectly. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing (MDA) with a 16-bit address field. For PIC24FV32KA304 family devices, the entire implemented data memory lies in Near Data Space.

4.2.4 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by the module. Much of the SFR space contains unused addresses; these are read as '0'. The SFR space, where the SFRs are actually implemented, is provided in Table 4-2. Each implemented area indicates a 32-byte region, where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is provided in Table 4-3 through Table 4-25.

	SFR Space Address												
	xx00	xx20	xx40	xx60	xx80	xxA0	xxC0	xxE0					
000h		Cor	e	ICN	In	_							
100h	Timers Capture			—	Compare	_	—						
200h	l ² C™	UART	SPI			_	I/	0					
300h			A/D/CMTU		_	_	—	_					
400h	_	_	—	—	_	_	—	_					
500h	_	—	—	—		—	—	_					
600h	_	RTC/Comp	CRC										
700h		—	System/DS/HLVD	NVM/PMD	_	_	—	_					

TABLE 4-2: IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block.

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS		—	—	_	_	_	_	—			MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	0082	ALTIVT	DISI	_	—	_	_	_	_		_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	NVMIF	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	—	OC3IF	_	_	_		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	_	—	_	—	—	_	_	_	_	IC3IF	_	_	_	SPI2IF	SPF2IF	0000
IFS3	008A	—	RTCIF	—	—	—	_	_	_	_	_	_	—	_	MI2C2IF	SI2C2IF	—	0000
IFS4	008C	—	_	CTMUIF	—	—	_	_	HLVDIF	_	_	_	—	CRCIF	U2ERIF	U1ERIF	—	0000
IFS5	008E	_	_	_	—	_	_	_	_		_	_	_	_	_	_	ULPWUIF	0000
IEC0	0094	NVMIE	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	—	OC3IE	—	_	_		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	—		—	—	_	—	_	—	_	_	IC3IE	_		_	SPI2IE	SPF2IE	0000
IEC3	009A	—	RTCIE	—	—	_	—	_	—	_	_		_		MI2C2IE	SI2C2IE		0000
IEC4	009C	—		CTMUIE	—	_	—	_	HLVDIE	_	_		_	CRCIE	U2ERIE	U1ERIE		0000
IEC5	009E	—		—	—	_	—	_	—	_	_		_		_	—	ULPWUIE	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0		_	—		4444
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	NVMIP2	NVMIP1	NVMIP0	_	_	_	—	_	AD1IP2	AD1IP1	AD1IP0		U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	—	CMIP2	CMIP1	CMIP0	—	MI2C1P2	MI2C1P1	MI2C1P0	—	SI2C1P2	SI2C1P1	SI2C1P0	4444
IPC5	00AE	_		_	—	_	_	_	—	_	_		—		INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	—	T4IP2	T4IP1	T4IP0	_	—	_	—	_	OC3IP2	OC3IP1	OC3IP0		_	—		4040
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0		T5IP2	T5IP1	T5IP0	4440
IPC8	00B4	—		—	—	_	—	_	—	_	SPI2IP2	SPI2IP1	SPI2IP0		SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6	—		—	—	_	—	_	—	_	IC3IP2	IC3IP1	IC3IP0		_	—		0040
IPC12	00BC	—		—	—	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0		_	—		0440
IPC15	00C2	—	_	—	—	—	RTCIP2	RTCIP1	RTCIP0	—	—		—	—	—	—	—	0400
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0		_	—		4440
IPC18	00C8	—		—	—	_	—	_	—	_	_		_		HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	00CA	—	—	—	_	—	—	—	—	—	CTMUIP2	CTMUIP1	CTMUIP0	_	—	—	_	0040
IPC20	00CC	—	—	—	_	—	—	—	—	—	—	—	—	_	ULPWUIP2	ULPWUIP1	ULPWUIP0	0000
INTTREG	00E0	CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
OC1CON1	0190	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0192	FLTMD	TMD FLTOUT FLTTRIEN OCINV — DCB1 DCB0 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 0										000C					
OC1RS	0194									OC1RS								0000
OC1R	0196									OC1R								0000
OC1TMR	0198									OC1TMR								XXXX
OC2CON1	019A	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	019C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	019E									OC2RS								0000
OC2R	01A0									OC2R								0000
OC2TMR	01A2									OC2TMR								XXXX
OC3CON1	01A4	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	01A6	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	01A8									OC3RS								0000
OC3R	01AA		OC3R 00										0000					
OC3TMR	01AC									OC3TMR								xxxx

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY ⁽⁴⁾		—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	ERASE	NVMOP5 ⁽¹⁾	NVMOP4 ⁽¹⁾	NVMOP3 ⁽¹⁾	NVMOP2 ⁽¹⁾	NVMOP1 ⁽¹⁾	NVMOP0 ⁽¹⁾
bit 7							bit 0

Legend:	SO = Settable Only bit	HC = Hardware Clearable b	it
-n = Value at POR	'1' = Bit is set	R = Readable bit	W = Writable bit
'0' = Bit is cleared	x = Bit is unknown	U = Unimplemented bit, rea	d as '0'

bit 15	WR: Write Control bit
	 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once the operation is complete. 0 = Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit
	 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit
	 1 = An improper program or erase sequence attempt, or termination, has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally.
hit 12	PGMONI Y: Program Only Enable bit ⁽⁴⁾
bit 11-7	Unimplemented: Read as '0'
bit 6	ERASE: Erase/Program Enable bit
	 1 = Performs the erase operation specified by NVMOP<5:0> on the next WR command 0 = Performs the program operation specified by NVMOP<5:0> on the next WR command
bit 5-0	NVMOP<5:0>: Programming Operation Command Byte bits ⁽¹⁾
	Erase Operations (when ERASE bit is '1'):
	1010xx = Erases entire boot block (including code-protected boot block) ⁽²⁾ 1001xx = Erases entire memory (including boot block, configuration block, general block) ⁽²⁾ 11010 = Erases 4 rows of Elash memory ⁽³⁾
	011001 = Erases 2 rows of Flash memory ⁽³⁾
	011000 = Erases 1 row of Flash memory ⁽³⁾
	0101xx = Erases entire configuration block (except code protection bits)
	0100xx = Erases entire data EEPROM ^(*)
	0001xx = Writes 1 row of Flash memory (when ERASE bit is '0') ⁽³⁾
Note 1:	All other combinations of NVMOP<5:0> are no operation.
2:	These values are available in ICSP [™] mode only. Refer to the device programming specification.

- 3: The address in the Table Pointer decides which rows will be erased.
- 4: This bit is used only while accessing data EEPROM.

7.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Resets, refer to the "PIC24F Family Reference Manual", Section 40. "Reset with Programmable Brown-out Reset" (DS39728).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- Low-Power BOR/Deep Sleep BOR
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on Power-on Reset (POR) and unchanged by all other Resets.

Note: Refer to the specific peripheral or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A Power-on Reset will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer (WDT) and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 5	SWDTEN: Software Enable/Disable of WDT bit ⁽²⁾
	1 = WDT is enabled0 = WDT is disabled
bit 4	WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred
bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred (the BOR is also set after a POR) 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit 1 = A Power-up Reset has occurred 0 = A Power-up Reset has not occurred

- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTENx Configuration bit is '1' (unprogrammed), the WDT is always enabled regardless of the SWDTEN bit setting.
 - 3: This is implemented on PIC24FV32KA3XX parts only; not used on PIC24F32KA3XX devices.

TABLE 7-1:RESET FLAG BIT OPERATION

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—
DPSLP (RCON<10>)	PWRSAV #SLEEP Instruction with DSEN (DSCON<15>) Set	POR

Note: All Reset flag bits may be set or cleared by the user software.

	00. 104.		I LAO OIAI					
U-0	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS	
	_	CTMUIF	_				HLVDIF	
bit 15	·						bit 8	
U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	
	—	—	_	CRCIF	U2ERIF	U1ERIF	—	
bit 7							bit 0	
Legend:		HS = Hardwa	re Settable bit					
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-14	Unimplemen	ted: Read as ')'					
bit 13	CTMUIF: CTI	MU Interrupt Fla	ag Status bit					
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred					
bit 12-9	Unimplemen	ted: Read as ')'					
bit 8	HLVDIF: High	n/Low-Voltage [Detect Interrup	t Flag Status bi	t			
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred					
bit 7-4	Unimplemen	ted: Read as ')'					
bit 3	CRCIF: CRC	Generator Inte	rrupt Flag Stat	us bit				
	1 = Interrupt ı 0 = Interrupt ı	request has occ request has not	curred occurred					
bit 2	U2ERIF: UAF	RT2 Error Interr	upt Flag Status	s bit				
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred					
bit 1	U1ERIF: UAF	RT1 Error Interr	upt Flag Status	s bit				
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred					
bit 0	Unimplemen	ted: Read as ')'					
	•							

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	NVMIP2	NVMIP1	NVMIP0	—	—	—	
bit 15	·						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit		mented bit, read		
-n = Value a	t POR	'1' = Bit is set		"O" = Bit is cle	eared	x = Bit is unkr	nown
hit 1E	Unimplanan	ted: Dood oo (o '				
			U Driarity bita				
DIT 14-12	111 = Interru	pt is Priority 7 (highest priority	v interrupt)			
	•		g. eet p. e.	,			
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11-7	Unimplemen	ted: Read as	0,				
bit 6-4	AD1IP<2:0>:	A/D Conversio	n Complete Ir	terrupt Priority	bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	• 001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	U1TXIP<2:0>	: UART1 Trans	smitter Interru	pt Priority bits			
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	• 001 - Internu	nt in Driarity 1					
	001 = Interru	puis Phonity 1 pt source is dis	abled				

REGISTER 8-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

10.2.4.5 Deep Sleep WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (FDS<7>). The device Watchdog Timer (WDT) need not be enabled for the DSWDT to function. Entry into Deep Sleep mode automatically resets the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (FDS<4>). The postscaler options are programmed by the DSWDTPS<3:0> Configuration bits (FDS<3:0>). The minimum time-out period that can be achieved is 2.1 ms and the maximum is 25.7 days. For more details on the FDS Configuration register and DSWDT configuration options, refer to **Section 26.0 "Special Features"**.

10.2.4.6 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCOSC Configuration bit (FDS<5>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention; however, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

10.2.4.7 Checking and Clearing the Status of Deep Sleep

Upon entry into Deep Sleep mode, the status bit, DPSLP (RCON<10>), becomes set and must be cleared by the software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set; this is a normal POR.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

10.2.4.8 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep functionally looks like a POR, the technique described in **Section 10.2.4.7** "**Checking and Clearing the Status of Deep Sleep**" should be used to distinguish between Deep Sleep and a true POR event.

When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers: RTCC, DSWDT, etc.) is reset.

10.2.4.9 Summary of Deep Sleep Sequence

To review, these are the necessary steps involved in invoking and exiting Deep Sleep mode:

- 1. The device exits Reset and begins to execute its application code.
- 2. If DSWDT functionality is required, program the appropriate Configuration bit.
- 3. Select the appropriate clock(s) for the DSWDT and RTCC (optional).
- 4. Enable and configure the DSWDT (optional).
- 5. Enable and configure the RTCC (optional).
- 6. Write context data to the DSGPRx registers (optional).
- 7. Enable the INT0 interrupt (optional).
- 8. Set the DSEN bit in the DSCON register.
- 9. Enter Deep Sleep by issuing a PWRSV #SLEEP_MODE command.
- 10. The device exits Deep Sleep when a wake-up event occurs.
- 11. The DSEN bit is automatically cleared.
- 12. Read and clear the DPSLP status bit in RCON, and the DSWAKE status bits.
- 13. Read the DSGPRx registers (optional).
- 14. Once all state related configurations are complete, clear the RELEASE bit.
- 15. The application resumes normal operation.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾

- 111 = Center-Aligned PWM mode on OCx
 - 110 = Edge-Aligned PWM mode on OCx
 - 101 = Double Compare Continuous Pulse mode: Initialize OCx pin low; toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize OCx pin low; toggle OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- **Note 1:** The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	
bit 7							bit 0	
E egenu. $P = P_{0}$ adala bit $W = W$ ritable bit $U = U$ simplemented bit read as '0'								
		vv = vvritable	UIL	$0^{\circ} = 0$	nenteu bit, reau	as u		
bit 15-13	Unimplemer	ted: Read as ')'					
bit 12	DISSCK: Dis	able SCKx pin I	, pit (SPIx Maste	er modes only)				
	1 = Internal S	SPIx clock is dis	abled, pin fund	tions as an I/O				
	0 = Internal S	SPIx clock is ena	abled					
bit 11	DISSDO: Dis	ables SDOx pir	ı bit					
	1 = SDOx pi	n is not used by	the module; p	in functions as	an I/O			
	0 = SDOx pi	n is controlled b	y the module					
bit 10	MODE16: W	ord/Byte Comm	unication Sele	ct bit				
	1 = Communication	nication is word-	wide (16 bits)					
bit 9	SMP: SPIX D	ata Input Samp	le Phase bit					
Sit 0	Master mode	:						
	1 = Input dat	ta is sampled at	the end of dat	a output time				
	0 = Input dat	ta is sampled at	the middle of	data output time	e			
	Slave mode:							
hit Q		e cleared when a	SPIX IS USED IN 1)	i Slave mode.				
DILO		Euge Select bit	, los on transitio	n from activo o	lock state to Idl	o clock stato (r	soo hit 6)	
	0 = Serial ou	itput data chang	les on transitio	n from Idle cloc	ck state to activ	e clock state (s	see bit 6)	
bit 7	SSEN: Slave	Select Enable	bit (Slave mod	e)			· · · · · · /	
	$1 = \overline{SSx} pin$	is used for Slav	e mode					
	0 = SSx pin	is not used by tl	ne module; pin	is controlled by	y port function			
bit 6	CKP: Clock I	Polarity Select b	it					
	1 = Idle state	e for clock is a h	igh level; activ	e state is a low	level			
hit 5		e for clock is a lo	ow level; active	e state is a high	level			
DIL D	1 = Master n							
	0 = Slave m	ode						
bit 4-2	SPRE<2:0>:	Secondary Pre	scale bits (Mas	ster mode)				
	111 = Secon	dary prescale 1	:1					
	110 = Secon	dary prescale 2	:1					
	•							
	•							
	000 = Secon	dary prescale 8	:1					
Note 1:	The CKE bit is no	ot used in the Fr	amed SPI mod	des. The user s	hould program	this bit to '0' fo	or the Framed	

REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1

SPI modes (FRMEN = 1).

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)

- 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
FRMEN	SPIFSD	SPIFPOL		_	_	_	_			
bit 15	·			·			bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
_	—	—	—	—	_	SPIFE	SPIBEN			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable b	it	U = Unimplem	nented bit, rea	ad as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				
bit 15	FRMEN: Fra	med SPIx Suppo	ort bit							
	1 = Framed S	SPIx support is enabled								
		SPIX support is a	ISADIED	a () 						
bit 14	SPIFSD: SPI	x Frame Sync P	ulse Directio	n Control on SS	x Pin bit					
	1 = Frame Sy = 0 = Frame Sy = 1	ync puise input (s ync puise output	(master)							
bit 13	SPIFPOL: SI	Plx Frame Svnc	Pulse Polarit	v bit (Frame mo	de only)					
	1 = Frame Sv	vnc pulse is activ	e-high	,						
	0 = Frame S	ync pulse is activ	e-low							
bit 12-2	Unimplemer	nted: Read as '0	3							
bit 1	SPIFE: SPIx	Frame Sync Pul	se Edge Sele	ect bit						
	1 = Frame Sy	ync pulse coincio	les with the f	irst bit clock						
	0 = Frame Sy	ync pulse preced	les the first b	it clock						
bit 0	SPIBEN: SP	Ix Enhanced Buf	fer Enable bi	t						
	1 = Enhance	d buffer is enable	ed od (Logocy n	nodo)						
			eu (Legacy n	noue)						

REGISTER 24-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	_		_		—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	
bit 7							bit 0	
								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	x = Bit is unkn	iown		
bit 15-8	Unimplemen	ted: Read as ')'					
bit 7	CVREN: Com	parator Voltage	e Reference E	nable bit				
	1 = CVREF ci	rcuit is powere	d on					
	0 = CVREF CI	rcuit is powere	d down					
bit 6	CVROE: Com	parator VREF (Dutput Enable	bit				
	1 = CVREF VC	oltage level is o	utput on the C	VREF pin	oin			
hit 5			Source Selectic	on hit	JIII			
DIL 5		tor reference s						
	0 = Compara	tor reference s	ource, CVRSRC	c = AVDD - AV	KEF- /SS			
bit 4-0	CVR<4:0>: C	omparator VRE	F Value Select	ion $0 \le CVR < 4$:0> ≤ 31 bits			
	When CVRSS	<u>S = 1:</u>						
	CVREF = (VREF-) + (CVR<4:0>/32) • (VREF+ – VREF-)							
	When CVRSS = 0:							
	CVREF = (AVSS) + (CVR<4:0>/32) • (AVDD – AVSS)							

REGISTER 26-7: FICD: IN-CIRCUIT DEBUGGER CONFIGURATION REGISTER									
R/P-1	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1		
DEBUG	—	_	—	—	_	FICD1	FICD0		
bit 7							bit 0		
Legend:									
R = Readabl	R = Readable bit $P = Programmable bit$ $U = Unimplemented bit, read as '0'$								
-n = Value at	t POR	'1' = Bit is set	'0' = Bit is cleared		x = Bit is unknown				
bit 7 bit 6-2 bit 1-0	DEBUG: Background Debugger Enable bit 1 = Background debugger is disabled 0 = Background debugger functions are enabled Unimplemented: Read as '0' FICD<1:0:>: ICD Pin Select bits 11 = PGEC1/PGED1 are used for programming and debugging the device 10 = PGEC2/PGED2 are used for programming and debugging the device 01 = PGEC3/PGED3 are used for programming and debugging the device								

29.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FV32KA304 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24FV32KA304 family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +135°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss (PIC24FVXXKA30X)	0.3V to +6.5V
Voltage on VDD with respect to Vss (PIC24FXXKA30X)	0.3V to +4.5V
Voltage on any combined analog and digital pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on MCLR/VPP pin with respect to Vss	0.3V to +9.0V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽¹⁾	250 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽¹⁾	200 mA

Note 1: Maximum allowable current is a function of the device maximum power dissipation (see Table 29-1).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 29-23: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Conditi					
DO31	TIOR	Port Output Rise Time	_	10	25	ns		
DO32	TIOF	Port Output Fall Time	—	10	25	ns		
DI35	TINP	INTx Pin High or Low Time (output)	20	—	_	ns		
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү		

Note 1: Data in "Typ" column is at 3.3V, +25°C (PIC24F32KA3XX); 5.0V, +25°C (PIC24FV32KA3XX), unless otherwise stated.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		1.27 BSC			
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E		10.30 BSC			
Molded Package Width	E1	7.50 BSC				
Overall Length	/erall Length D			17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC		
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A