

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka302-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: DEVICE FEATURES FOR THE PIC24F32KA304 FAMILY

Features	PIC24F16KA301	PIC24F32KA301	PIC24F16KA302	PIC24F32KA302	PIC16F16KA304	PIC24F32KA304
Operating Frequency			DC – 32 I	MHz		
Program Memory (bytes)	16K	32K	16K	32K	16K	32K
Program Memory (instructions)	5632	11264	5632	11264	5632	11264
Data Memory (bytes)			2048			
Data EEPROM Memory (bytes)			512			
Interrupt Sources (soft vectors/ NMI traps)			30 (26/	4)		
I/O Ports	PORTA<6:0>, PORTB<15:12, 9:7, 4, 2:0>		PORTA<7:0>, PORTB<15:0>		PORTA<11:0>, PORTB<15:0>, PORTC<9:0>	
Total I/O Pins	18	3	24		39	
Timers: Total Number (16-bit)			5			
32-Bit (from paired 16-bit timers)			2			
Input Capture Channels			3			
Output Compare/PWM Channels			3			
Input Change Notification Interrupt	17	7	2	3	38	
Serial Communications: UART SPI (3-wire/4-wire)			2			
I ² C™			2			
12-Bit Analog-to-Digital Module (input channels)	12		13		16	
Analog Comparators			3			
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)				le, match	
Instruction Set	76 E	ase Instructio	ns, Multiple A	ddressing M	ode Variation	S
Packages	20-F PDIP/SSC	Pin DP/SOIC	28- SPDIP/SSOF	Pin P/SOIC/QFN	44-Pin Ql 48-Pin	FN/TQFP UQFN

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address, as shown in Figure 4-2.

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables, located from 000004h to 0000FFh and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the Interrupt Vector Tables (IVT) is provided in Section 8.1 "Interrupt Vector Table (IVT)".

4.1.3 DATA EEPROM

In the PIC24FV32KA304 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit wide memory and 256 words deep. This memory is accessed using table read and write operations similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24FV32KA304 family. Their location in the memory map is shown in Figure 4-1.

For more information on device Configuration Words, see **Section 26.0 "Special Features"**.

TABLE 4-1:DEVICE CONFIGURATION
WORDS FOR PIC24FV32KA304
FAMILY DEVICES

Configuration Words	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E
FDS	F80010

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

msw Address	most significant wor	rd lea	ast significant word	PC Address (Isw Address)
	23	16	8	0
000001h	0000000			000000h
000003h	0000000			000002h
000005h	0000000			000004h
000007h	0000000			000006h
		~		
	Program Memory 'Phantom' Byte (read as '0')	Instructio	on Width	

TABLE 4-27 :	PROGRAM SPACE ADDRESS CONSTRUCTION
---------------------	------------------------------------

	Access	Program Space Address					
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	User	0		PC<22:1>	0		
(Code Execution)		0xx xxxx xxxx xxxx xxxx xx					
TBLRD/TBLWT (Byte/Word Read/Write)	User	TB	LPAG<7:0>	Data EA<15:0>			
		0xxx xxxx		****			
	Configuration	TBLPAG<7:0>		Data EA<15:0>			
				XXXX XXXX XXXX XXXX			
Program Space Visibility	User	0	PSVPAG<7:	0> ⁽²⁾	Data EA<14:	0>(1)	
(Block Remap/Read)		0	0 xxxx xxx				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) in the PIC24FV32KA304 family.

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIE	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
	<u> </u>	<u> </u>	<u> </u>		MI2C2IE	SI2C2IE	<u> </u>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set	1' = Bit is set		ared	x = Bit is unknown	
bit 15	Unimplemen	ted: Read as ')'				
bit 14	RTCIE: Real-	Time Clock and	d Calendar Inte	errupt Enable bi	it		
	1 = Interrupt r 0 = Interrupt r	equest is enab equest is not e	led nabled				
bit 13-3	Unimplemented: Read as '0'						
bit 2	MI2C2IE: Mas	ster I2C2 Even	t Interrupt Enal	ble bit			
	1 = Interrupt request is enabled						
bit 1	SI2C2IE: Slave I2C2 Event Interrunt Enable bit						
	1 = Interrupt request is enabled 0 = Interrupt request is not enabled						

REGISTER 8-14: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

bit 0 Unimplemented: Read as '0'

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0
bit 15						•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	IC2IP2	IC2IP1	IC2IP0	—	—	_	<u> </u>
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	T2IP<2:0>: ⊺	imer2 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	• 001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	OC2IP<2:0>:	Output Compa	are Channel 2	Interrupt Priority	y bits		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	• 001 = Interru	nt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	IC2IP<2:0>:	Input Capture (Channel 2 Inter	rupt Priority bit	S		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1 nt source is die	ahled				
bit 3-0	Unimplemen	ited: Read as '	0'				
	Sumbiculen		0				

REGISTER 8-18: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enabled bit	
	If FSCM is enabled (FCKSM1 = <u>1):</u>	
	1 = Clock and PLL selections are locked	
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit	
	If FSCM is disabled (FCKSM1 = 0):	
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.	
bit 6	Unimplemented: Read as '0'	
bit 5	LOCK: PLL Lock Status bit ⁽²⁾	
	1 = PLL module is in lock or PLL module start-up timer is satisfied	
	0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled	
bit 4	Unimplemented: Read as '0'	
bit 3	CF: Clock Fail Detect bit	
	1 = FSCM has detected a clock failure	
	0 = No clock failure has been detected	
bit 2	SOSCDRV: Secondary Oscillator Drive Strength bit ⁽³⁾	
	1 = High-power SOSC circuit is selected	
	0 = Low/high-power select is done via the SOSCSRC Configuration bit	
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit	
	1 = Enables the secondary oscillator	
	0 = Disables the secondary oscillator	
bit 0	OSWEN: Oscillator Switch Enable bit	
	1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits	
	0 = Oscillator switch is complete	
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.	

- 2: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
 - **3:** When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features of					
	this group of PIC24F devices. It is not					
	intended to be a comprehensive reference					
	source. For more information on the Univer-					
	sal Asynchronous Receiver Transmitter,					
	refer to the "PIC24F Family Reference					
	Manual", Section 21. "UART" (DS39708).					

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in this PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. This module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS pins
- Fully Integrated Baud Rate Generator (IBRG) with 16-Bit Prescaler

- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- · Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx is shown in Figure 18-1. The UARTx module consists of these important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver
- Note: Throughout this section, references to register and bit names that may be associated with a specific USART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTA" might refer to the USART Status register for either USART1 or USART2.

FIGURE 18-1: UARTX SIMPLIFIED BLOCK DIAGRAM

19.2.5 RTCVAL REGISTER MAPPINGS

REGISTER 19-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

| U-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| — | — | — | — | — | — | — | — |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-x |
| YRTEN3 | YRTEN2 | YRTEN2 | YRTEN1 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:

Ecgenia.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 19-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15			•			•	bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month	Day	Hours	Minutes	Seconds
0000 - Every half second 0001 - Every second					•	•
0010 - Every 10 seconds					:	s
0011 - Every minute						s s
0100 - Every 10 minutes					m	ss
0101 - Every hour					mm	ss
0110 - Every day				hh	mm	ss
0111 - Every week	d			hh	mm	ss
1000 - Every month			d d	hh	mm	ss
1001 - Every year ⁽¹⁾		m m /	d d	hh	mm	ss
Note 1: Annually, except whe	n configured fo	r February 29				

19.5 POWER CONTROL

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake from the current low-power mode (Sleep, Deep Sleep, etc.).

To enable this feature, the RTCC must be enabled (RTCEN = 1), the PWCEN register bit must be set and the RTCC pin must be driving the PWC control signal (RTCOE = 1 and RTCOUT<1:0> = 11).

The polarity of the PWC control signal may be chosen using the PWCPOL register bit. Active-low or active-high may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin. This setting is able to drive the GND pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

20.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction of the data that is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

20.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions. If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt.

20.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- 2. Configure the module for the desired operation:
 - a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.
 - b) Configure the data width and shift direction using the DWIDTHx and LENDIAN bits.
 - c) Select the desired interrupt mode using the CRCISEL bit.
- 3. Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.
- 4. Clear old results by writing 00h to CRCWDATL and CRCWDATH. CRCWDAT can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write the remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

20.2 Registers

There are eight registers associated with the module:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 20-1 and Register 20-2) control the operation of the module, and configure the various settings. The CRCXOR registers (Register 20-3 and Register 20-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word, input data and CRC processed output, respectively.

22.2 A/D Sampling Requirements

The analog input model of the 12-bit A/D Converter is shown in Figure 22-2. The total sampling time for the A/D is a function of the holding capacitor charge time.

For the A/D Converter to meet its specified accuracy, the Charge Holding Capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The Source (Rs) impedance, the Interconnect (Ric) impedance and the internal Sampling Switch (Rss) impedance combine to directly affect the time required to charge CHOLD. The combined impedance of the analog sources must, therefore, be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the A/D Converter, the maximum recommended Source impedance, Rs, is $2.5 \text{ k}\Omega$. After the analog input channel is selected (changed), this

sampling function must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.

At least 1 TAD time period should be allowed between conversions for the sample time. For more details, see **Section 29.0 "Electrical Characteristics"**.

EQUATION 22-1: A/D CONVERSION CLOCK PERIOD

$$T_{AD} = T_{CY}(ADCS + 1)$$
$$ADCS = \frac{T_{AD}}{T_{CY}} - 1$$
Note: Based on T_CY = 2/F_OSC; Doze mode and PLL are disabled.

FIGURE 22-2: 12-BIT A/D CONVERTER ANALOG INPUT MODEL

22.4 Buffer Data Formats

The A/D conversions are fully differential 12-bit values when MODE12 = 1 (AD1CON1<10>) and 10-bit values when MODE12 = 0. When absolute fractional or absolute integer formats are used, the results are 12 or 10 bits wide, respectively. When signed decimal formatting is used, the conversion also includes a sign bit, making 12-bit conversions 13 bits wide, and 10-bit conversions 11 bits wide. The signed decimal format yields 12-bit and 10-bit values, respectively. The sign bit (bit 12 or bit 10) is sign-extended to fill the buffer. The FORM<1:0> bits (AD1CON1<9:8>) select the format. Figure 22-4 and Figure 22-5 show the data output formats that can be selected. Table 22-1 through Table 22-4 show the numerical equivalents for the various conversion result codes.

FIGURE 22-4: A/D OUTPUT DATA FORMATS (12-BIT)

RAM Contents:					d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Read to Bus:																
Integer	0	0	0	0	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Signed Integer	s0	s0	s0	s0	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Fractional (1.15)	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0
Signed Fractional (1.15)	s0	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0

TABLE 22-1:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
12-BIT INTEGER FORMATS

VIN/VREF	12-Bit Differential Output Code (13-bit result)	16-Bit Integer Format/ Equivalent Decimal Value		16-Bit Signed Integer Forn Equivalent Decimal Valu	nat/ Ie
+4095/4096	0 1111 1111 1111	0000 1111 1111 1111	+4095	0000 1111 1111 1111	+4095
+4094/4096	0 1111 1111 1110	0000 1111 1111 1110	+4094	0000 1111 1111 1110	+4094
		•••			
+1/4096	0 1000 0000 0001	0000 0000 0000 0001	+1	0000 0000 0000 0001	+1
0/4096	0 0000 0000 0000	0000 0000 0000 0000	0	0000 0000 0000 0000	0
-1/4096	1 0111 1111 1111	0000 0000 0000 0000	0	1111 1111 1111 1111	-1
		•••			
-4095/4096	1 0000 0000 0001	0000 0000 0000 0000	0	1111 0000 0000 0001	-4095
-4096/4096	1 0000 0000 0000	0000 0000 0000 0000	0	1111 0000 0000 0000	-4096

FIGURE 25-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

25.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 25-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.

FIGURE 25-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

REGISTER 26-10: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—		—	—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—		—		—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R	R	R	R
_		—		REV3	REV2	REV1	REV0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Minor Revision Identifier bits

DC CHARACTERISTICS		Standard O	perating C	conditions: -40°C -40°C	1.8V to 2.0V to ≤ TA ≤ +85 ≤ TA ≤ +12	1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XX ≤ TA ≤ +85°C for Industrial ≤ TA ≤ +125°C for Extended				
Parameter No.	Device	Typical ⁽¹⁾	Max	Units		Conditions				
Module Diffe	erential Current (AlPD) ⁽³⁾								
DC71	PIC24FV32KA3XX	0.50		μA	-40°C	2.0V				
		0.70	1.5	μA	+85°C	5.0V				
			1.5	μA	+125°C	5.0V	Watchdog Timer			
	PIC24F32KA3XX	0.50	—	μA	-40°C	1.8V	ΔΙWDT ⁽⁴⁾			
		0.70	1.5	μA	+85°C	3.3V				
		—	1.5	μA	+125°C	3.3V				
DC72	PIC24FV32KA3XX	0.80	—	μA	-40°C	2.0V				
		1.50	2.0	μA	+85°C	5.0V	32 kHz Crystal with RTCC			
		—	2.0	μA	+125°C	5.0V	DSWDT or Timer1:			
	PIC24F32KA3XX	0.70	—	μA	-40°C	1.8V	∆lsosc			
		1.0	1.5	μA	+85°C	3.3V	$(SOSCSEL = 0)^{(3)}$			
		—	1.5	μA	+125°C	3.3V				
DC75	PIC24FV32KA3XX	5.4	—	μA	-40°C	2.0V				
		8.1	14.0	μA	+85°C	5.0V				
		_	14.0	μA	+125°C	5.0V	ALULAD (4)			
	PIC24F32KA3XX	4.9	_	μA	-40°C	1.8V				
		7.5	14.0	μA	+85°C	3.3V				
		—	14.0	μA	+125°C	3.3V				
DC76	PIC24FV32KA3XX	5.6	—	μA	-40°C	2.0V				
		6.5	11.2	μA	-40°C	5.0V				
		_	11.2	μA	+125°C	5.0V				
	PIC24F32KA3XX	5.6		μA	-40°C	1.8V	AIBOR' '			
		6.0	11.2	μA	+85°C	3.3V				
		—	11.2	μA	+125°C	3.3V				

TABLE 29-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Legend: Unshaded rows represent PIC24F32KA3XX devices and shaded rows represent PIC24FV32KA3XX devices.

Note 1: Data in the Typical column is at 3.3V, +25°C (PIC24F32KA3XX) or 5.0V, +25°C (PIC24FV32KA3XX) unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low, PMSLP is set to '0' and WDT, etc., are all switched off.

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: This current applies to Sleep only.

5: This current applies to Sleep and Deep Sleep.

6: This current applies to Deep Sleep only.

FIGURE 30-36: HLVD TRIP POINT VOLTAGE vs. TEMPERATURE (HLVDL<3:0> = 0000, PIC24F32KA304 FAMILY DEVICES ONLY

FIGURE 30-37: TEMPERATURE SENSOR DIODE VOLTAGE vs. TEMPERATURE (2.0V \leq VDD \leq 5.5V)

FIGURE 30-53: VIL/VIH vs. VDD (OSCO, TEMPERATURES AS NOTED)

FIGURE 30-54: VIL/VIH vs. VDD (MCLR, TEMPERATURES AS NOTED)

20-Lead SOIC (7.50 mm)

Example

Example

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S			
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		1.27 BSC			
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E		10.30 BSC			
Molded Package Width	E1	7.50 BSC				
Overall Length	D		17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF			
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
Fror	n. Namo	
1101		
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Арр	lication (optional):	
Wou	Ild you like a reply? Y N	
Dev	ice: PIC24FV32KA304 Family	Literature Number: DS39995D
Que	stions:	
1.	What are the best features of this document?	
2.	How does this document meet your hardware and s	software development needs?
3.	Do you find the organization of this document easy	to follow? If not, why?
4.	What additions to the document do you think would	enhance the structure and subject?
5.	What deletions from the document could be made v	without affecting the overall usefulness?
6.	Is there any incorrect or misleading information (wh	at and where)?
7.	How would you improve this document?	