

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-><F

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka302-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
   int attribute ((space(auto psv))) progAddr = 0x1234; // Global variable located in Pgm Memory
   unsigned int offset;
//Set up pointer to the first memory location to be written
   TBLPAG = __builtin_tblpage(&progAddr);
                                                         // Initialize PM Page Boundary SFR
   offset = __builtin_tbloffset(&progAddr);
                                                         // Initialize lower word of address
   builtin tblwtl(offset, 0x0000);
                                                          // Set base address of erase block
                                                          // with dummy latch write
   NVMCON = 0 \times 4058;
                                                          // Initialize NVMCON
   asm("DISI #5");
                                                           // Block all interrupts for next 5
                                                           // instructions
    builtin write NVM();
                                                          // C30 function to perform unlock
                                                           // sequence and set WR
```

EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

;	Set up NVMCO	N for row programming operation	ns	
	MOV	#0x4004, W0	;	
	MOV	W0, NVMCON	; In	itialize NVMCON
;	Set up a poi	nter to the first program memo:	ry lo	cation to be written
;	program memo	ry selected, and writes enabled	d	
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	; In	itialize PM Page Boundary SFR
	MOV	#0x6000, W0	; An	example program memory address
;	Perform the	TBLWT instructions to write the	e lat	ches
;	Oth_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	#HIGH_BYTE_0, W3	;	
	TBLWTL	W2, [W0]	; Wr	ite PM low word into program latch
	TBLWTH	W3, [W0++]	; Wr	ite PM high byte into program latch
;	1st_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	; Wr	ite PM low word into program latch
	TBLWTH	W3, [W0++]	; Wr	ite PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BITE_2, W3	;	the DM last and the second states
	TBTMLT	W2, [W0]	; Wr	ite PM low word into program latch
	TBLWIH	W3, [W0++]	; Wr	ite PM nign byte into program latch
	32nd program	word		
<i>'</i>	MOV	 #LOW WORD 31 W2		
	MOV	#HIGH BYTE 31. W3	<i>.</i>	
	TRIWTT.	W2. [W0]	. Wr	ite PM low word into program latch
	ТВІ.МТН	W3. [W0]	: Wr	ite PM high byte into program latch
	1DDW111		, 111	ree in high byce inco program ideen

	REGISTER 8-23:	IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6
--	----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
_	T4IP2	T4IP1	T4IP0	_	_	—	_			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
_	OC3IP2	OC3IP1	OC3IP0	_	—	—	—			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15	Unimplemented: Read as '0'									
bit 14-12	T4IP<2:0>: ⊺	ïmer4 Interrupt	Priority bits							
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)						
	•									
	• 001 - Internu	nt in Driarity 1								
	001 = Interru	pl is Phonly 1 nt source is dis	abled							
bit 11-7	Unimplemen	ited: Read as '	נגיים ז'							
bit 6-4			re Channel 3	Interrunt Priority	/ hits					
bit 0 4	111 = Interru	nt is Priority 7 (highest priority	v interrunt)	010					
	•	prist honry / (nightest phone	y interrupt)						
	•									
	001 = Interru	pt is Priority 1								
	000 = Interru	pt source is dis	abled							
bit 3-0	Unimplemen	ted: Read as ')'							

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	_	_	_
bit 15		•	•				bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-6 bit 5-0	Unimplemen TUN<5:0>: Fi 011111 = Ma 011110	ted: Read as ' RC Oscillator T ximum frequer nter frequency,	o [,] iuning bits ⁽¹⁾ ncy deviation oscillator is ru	unning at factory	y calibrated free	quency	

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 illustrates a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON ⁽¹⁾	_	TSIDL ⁽¹⁾		_	_	—	—					
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0					
	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾		—	TCS ⁽¹⁾						
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15	TON: Timery On bit ⁽¹⁾											
	1 = Starts 16-bit Timery											
	0 = Stops 16-bit limery											
bit 14	Unimplemented: Read as "0"											
bit 13	TSIDL: Timery Stop in Idle Mode bit ⁽¹⁾											
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 											
bit 12-7	Unimplemen	ted: Read as ')'									
bit 6	TGATE: Time	ry Gated Time	Accumulation	Enable bit ⁽¹⁾								
	<u>When TCS =</u> This bit is iand	<u>1:</u> pred.										
	When TCS =	<u>0</u> :										
	1 = Gated tim	ne accumulation	n is enabled									
	0 = Gated tim	ne accumulation	n is disabled									
bit 5-4	TCKPS<1:0>	: Timery Input (Clock Prescale	Select bits ⁽¹⁾								
	11 = 1:256											
	10 = 1:64 01 = 1:8											
	00 = 1:1											
bit 3-2	Unimplemen	ted: Read as ')'									
bit 1	TCS: Timery	Clock Source S	elect bit ⁽¹⁾									
	1 = External	clock is from th	e T3CK pin (oi	n the rising edg	e)							
	0 = Internal c	lock (Fosc/2)		0								
bit 0	Unimplemen	ted: Read as ')'									

REGISTER 13-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER

Note 1: When 32-bit operation is enabled (TxCON<3> = 1), these bits have no effect on Timery operation. All timer functions are set through the TxCON register.

REGISTER	14-1: ICxC	ON1: INPUT	CAPTURE x	CONTROL R	EGISTER 1					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R-0 HSC	R-0 HSC	R/W-0	R/W-0	R/W-0			
	ICI1	ICIO	ICOV	ICBNE	ICM2	ICM1	ICM0			
bit 7							bit 0			
Legend:		HSC = Hardv	vare Settable/C	learable bit						
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 15-14	Unimplemer	nted: Read as '	0'							
bit 13	ICSIDL: Inpu	t Capture x Mo	dule Stop in Idl	e Control bit						
	1 = Input cap	ture module ha	Its in CPU Idle	mode						
		ture module co	ntinues to oper		emode					
bit 12-10	ICISEL<2:0	>: Input Captur	e x Timer Selec	t bits						
	111 = Syste	M CIOCK (FOSC/	2)							
	101 = Reser	ved								
	100 = Timer	1								
	011 = Timer	5								
	010 = Timer	4 2								
	000 = Timer	3								
bit 9-7	Unimplemer	ted: Read as '	0'							
bit 6-5	ICI<1:0>: Se	lect Number of	Captures per li	nterrupt bits						
	11 = Interrup	t on every four	h capture even	t						
	10 = Interrupt on every third capture event									
	01 = Interrupt on every second capture event									
hit 4		Canture x Over	flow Status Flag	n hit (read-only))					
	1 = Input cap	ture overflow o	ccurred		/					
	0 = No input	0 = No input capture overflow occurred								
bit 3	ICBNE: Input	t Capture x Buf	fer Empty Statu	is bit (read-only	/)					
	1 = Input cap	ture buffer is no	ot empty, at lea	st one more ca	pture value can	be read				
	0 = Input cap	ture buffer is e	mpty							
bit 2-0	ICM<2:0>: In	put Capture M	ode Select bits				ia ia Olasa an			
	III = Interru Idle m	upt mode: Inpu 10de (risina eda	t capture function in the second s	ons as an inter all other control	bits are not apr	nen the device plicable)	is in Sleep or			
	110 = Unuse	ed (module disa	abled)							
	101 = Presc	aler Capture m	ode: Capture o	n every 16th ris	sing edge					
	100 = Presc	aler Capture m	ode: Capture o	n every 4th risi	ng edge					
	orr – Simbl		e. Capture on e	every namy edg						

- 010 = Simple Capture mode: Capture on every falling edge
- 001 = Edge Detect Capture mode: Capture on every edge (rising and falling); ICI<1:0 bits do not control interrupt generation for this mode
- 000 = Input capture module is turned off

15.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for edge-aligned PWM operation:

- 1. Calculate the desired ON time and load it into the OCxR register.
- 2. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to SYNCSEL<4:0> (OCxCON2<4:0>) and '0' to OCTRIG (OCxCON2<7>).

- 4. Select a clock source by writing the OCTSEL2<2:0> (OCxCON<12:10>) bits.
- 5. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 6. Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits.
- 7. If a timer is selected as a clock source, set the TMRy prescale value and enable the time base by setting the TON (TxCON<15>) bit.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Serial Peripheral Interface, refer to the *"PIC24F Family Reference Manual"*, Section 23. *"Serial Peripheral Interface (SPI)"* (DS39699).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial data EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer.

Note: Do not perform read-modify-write operations (such as bit-oriented instructions) on the SPI1BUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The SPI serial interface consists of four pins:

- SDI1: Serial Data Input
- SDO1: Serial Data Output
- · SCK1: Shift Clock Input or Output
- SS1: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, $\overline{SS1}$ is not used. In the 2-pin mode, both SDO1 and $\overline{SS1}$ are not used.

Block diagrams of the module, in Standard and Enhanced Buffer modes, are shown in Figure 16-1 and Figure 16-2.

The devices of the PIC24FV32KA304 family offer two SPI modules on a device.

Note: In this section, the SPI modules are referred to as SPIx. Special Function Registers (SFRs) will follow a similar notation. For example, SPI1CON1 or SPI1CON2 refers to the control register for the SPI1 module. To set up the SPI1 module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPI1IF bit in the IFS0 register.
 - b) Set the SPI1IE bit in the IEC0 register.
 - c) Write the respective SPI1IPx bits in the IPC2 register to set the interrupt priority.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 1.
- 3. Clear the SPIROV bit (SPI1STAT<6>).
- 4. Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).
- 5. Write the data to be transmitted to the SPI1BUF register. Transmission (and reception) will start as soon as data is written to the SPI1BUF register.

To set up the SPI1 module for the Standard Slave mode of operation:

- 1. Clear the SPI1BUF register.
- 2. If using interrupts:
 - a) Clear the SPI1IF bit in the IFS0 register.
 - b) Set the SPI1IE bit in the IEC0 register.
 - c) Write the respective SPI1IPx bits in the IPC2 register to set the interrupt priority.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit (SPI1CON1<7>) must be set to enable the SS1 pin.
- 6. Clear the SPIROV bit (SPI1STAT<6>).
- 7. Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).

REGISTER 20-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
X15	X14	X13	X12	X11	X10	X9	X8	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
X7	X6	X5	X4	X3	X2	X1	—	
bit 7							bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

REGISTER 20-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
X31	X30	X29	X28	X27	X26	X25	X24		
bit 15		•					bit 8		
	5444.0			54446		D 444 A	B 844 A		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
X23	X22	X21	X20	X19	X18	X17	X16		
bit 7							bit 0		
Logond:									
Legenu.	1.11								
R = Readable bit W = Writable bit			DIT	U = Unimplemented bit, read as '0'					
-n = Value at POR '1'		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	_	—	MODE12	FORM1	FORM0
bit 15							bit 8
P/\//_0	P/\/_0	P/M/O	P/M_0	11-0		P/W/0 HSC	RIC-0 HSC
				0-0		SAMP	
hit 7	001(02	33101	00100		AGAIN	SAM	bit 0
							Dit 0
Legend:		C = Clearable	bit	U = Unimplem	nented bit, read	1 as '0'	
R = Readable	bit	W = Writable b	oit	HSC = Hardw	are Settable/C	learable bit	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	ADON: A/D O	perating Mode	bit				
	1 = A/D Conv 0 = A/D Conv	verter module is verter is off	operating				
bit 14		ted: Read as '0	,				
bit 13	ADSIDL: A/D	Stop in Idle Mo	de bit				
	1 = Discontinue 0 = Continues	ues module opera	eration when o	levice enters Id	lle mode		
bit 12-11	Unimplement	ted: Read as '0	,				
bit 10	MODE12: 12-	Bit Operation N	lode bit				
	1 = 12-bit A/E) operation					
	0 = 10-bit A/E	operation					
bit 9-8	FORM<1:0>:	Data Output Fo	rmat bits (see	the following for	ormats)		
	11 = Fractional	al result, signed	l, left-justified	off instified			
	01 = Decimal	result, signed,	right-justified	en-justineu			
	00 = Absolute	e decimal result	unsigned, rig	ht-justified			
bit 7-4	SSRC<3:0>: 3	Sample Clock S	Source Select	bits			
	1111 = Not av	vailable; do not	use				
	1000 = Not a	vailable; do not	use				
	0111 = Interna	al counter ends	sampling and	I starts convers	ion (auto-conv	ert)	
	0101 = Timer	1 event ends sa	ampling and st	arts conversior	n		
	0100 = CTML	J event ends sa	mpling and sta	arts conversion			
	0011 = Timer	5 event ends sa	ampling and st	arts conversion	1		
	0010 = 10000	event ends same	inpling and star	ts conversion	1		
	0000 = Cleari	ng the SAMP b	it in software e	ends sampling a	and begins cor	version	
bit 3	Unimplement	ted: Read as '0	,				
bit 2	ASAM: A/D S	ample Auto-Sta	rt bit				
	1 = Sampling 0 = Sampling	begins immedi begins when the	ately after the ne SAMP bit is	last conversior manually set	n; SAMP bit is a	auto-set	
bit 1	SAMP: A/D S	ample Enable b	oit				
	1 = A/D Sam 0 = A/D Sam	ple-and-Hold ar ple-and-Hold ar	nplifiers are sa nplifiers are ho	ampling olding			
bit 0	DONE: A/D C	onversion Statu	is bit				
	1 = A/D conve	ersion cycle ha	s completed				
	0 = A/D conve	ersion cycle has	s not started o	r is in progress			

REGISTER 22-1: AD1CON1: A/D CONTROL REGISTER 1

REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)

ALTS: Alternate Input Sample Mode Select bit

bit 0

- 1 = Uses channel input selects for Sample A on the first sample and Sample B on the next sample
- 0 = Always uses channel input selects for Sample A
- **Note 1:** This is only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.
 - 2: The voltage reference setting will not be within the specification with VDD below 4.5V.
 - 3: The voltage reference setting will not be within the specification with VDD below 2.3V.

REGISTER 22-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	R-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 | | | | | | | bit 0 |

Legend:	r = Reserved bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	ADRC: A/D Conversion Clock Source bit 1 = RC clock 0 = Clock is derived from the system clock
bit 14	EXTSAM: Extended Sampling Time bit 1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling
bit 13	Reserved: Maintain as '0'
bit 12-8	SAMC<4:0>: Auto-Sample Time Select bits 11111 = 31 TAD 00001 = 1 TAD 00000 = 0 TAD
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits 1111111-0100000 = Reserved 00111111 = 64 · TCY = TAD 00000001 = 2 · TCY = TAD 0000000 = TCY = TAD

REGISTER 22-10: AD1CTMUENH: A/D CTMU ENABLE REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—	—	—	—	CTMEN17	CTMEN16
bit 7							bit 0
Logondy							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'.

bit 1-0 CTMEN<17:16>: CTMU Enabled During Conversion bits

1 = CTMU is enabled and connected to the selected channel during conversion0 = CTMU is not connected to this channel

Note 1: Unimplemented channels are read as '0'.

REGISTER 22-11: AD1CTMUENL: A/D CTMU ENABLE REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMEN15	CTMEN14	CTMEN13	CTMEN12	CTMUEN11	CTMEN10	CTMEN9	CTMEN8
bit 15							bit 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CTMEN7 | CTMEN6 | CTMEN5 | CTMEN4 | CTMEN3 | CTMEN2 | CTMEN1 | CTMEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 CTMEN<15:0>: CTMU Enabled During Conversion bits

1 = CTMU is enabled and connected to the selected channel during conversion

0 = CTMU is not connected to this channel

Note 1: Unimplemented channels are read as '0'.

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C. DC. N. OV. Z
	SUBB	Wb.Ws.Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C DC N OV Z
	SUBB	Wb #lit5 Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C DC N OV Z
CUIDD	GUDD	f	f = WPEG - f	1	1	C, DC, N, OV, Z
SUBK	GUDD	f WDFC	WREG = WREG - f	1	1	C, DC, N, OV, Z
	GUDD	When we we	Wd = Ws - Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb #lit5 Wd	Wd = VtS = VtS	1	1	C DC N OV Z
QUIDDE	GIIDDD	f	$f = W/REG - f - (\overline{C})$	1	1	
SUBBR	SUBBR	1	$W_{\text{REG}} = W_{\text{REG}} = f_{\text{REG}} + f_{\text{REG}}$	1	1	C, DC, N, OV, Z
	SUBBR	I, WKEG		1		0, DC, N, UV, Z
	SUBBR	Wb,Ws,Wd	vva = vvs - vvb - (C)	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	Wd = lit5 - Wb - (C)	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

29.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FV32KA304 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24FV32KA304 family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +135°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss (PIC24FVXXKA30X)	0.3V to +6.5V
Voltage on VDD with respect to Vss (PIC24FXXKA30X)	0.3V to +4.5V
Voltage on any combined analog and digital pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on MCLR/VPP pin with respect to Vss	-0.3V to +9.0V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽¹⁾	250 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽¹⁾	200 mA

Note 1: Maximum allowable current is a function of the device maximum power dissipation (see Table 29-1).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS		Standard Operating Conditions:Operating temperature: $-40^{\circ}C \leq$ $-40^{\circ}C \leq$			1.8V to 3.6V PIC24F32KA3XX2.0V to 5.5V PIC24FV32KA3XX $TA \leq +85^{\circ}C$ for Industrial $TA \leq +125^{\circ}C$ for Extended		
Parameter No.	Device	Typical	Мах	Units		Conditions	
Idle Current (ID	LE)						
DC40	PIC24FV32KA3XX	120	200	μA	2.0V		
		160	430	μA	5.0V	0.5 MIPS,	
	PIC24F32KA3XX	50	100	μA	1.8V	Fosc = 1 MHz ⁽¹⁾	
		90	370	μA	3.3V		
DC42	PIC24FV32KA3XX	165	—	μA	2.0V		
		260		μA	5.0V	1 MIPS,	
	PIC24F32KA3XX	95	—	μA	1.8V	Fosc = 2 MHz ⁽¹⁾	
		180	—	μA	3.3V		
DC44	PIC24FV32KA3XX	3.1	6.5	mA	5.0V	16 MIPS,	
	PIC24F32KA3XX	2.9	6.0	mA	3.3V	Fosc = 32 MHz ⁽¹⁾	
DC46	PIC24FV32KA3XX	0.65	—	mA	2.0V		
		1.0		mA	5.0V	FRC (4 MIPS),	
	PIC24F32KA3XX	0.55	—	mA	1.8V	Fosc = 8 MHz	
		1.0	—	mA	3.3V		
DC50	PIC24FV32KA3XX	60	200	μA	2.0V		
		70	350	μA	5.0V	LPRC (15.5 KIPS),	
	PIC24F32KA3XX	2.2	18	μA	1.8V	Fosc = 31 kHz	
		4.0	60	μA	3.3V		

TABLE 29-7: DC CHARACTERISTICS: IDLE CURRENT (lidle)

Legend: Unshaded rows represent PIC24F32KA3XX devices and shaded rows represent PIC24FV32KA3XX devices.

Note 1: Oscillator is in External Clock mode (FOSCSEL<2:0> = 010, FOSC<1:0> = 00).

FIGURE 30-8: TYPICAL AND MAXIMUM lidle vs. Vdd (FRC MODE)

FIGURE 30-33: TYPICAL BAND GAP VOLTAGE vs. TEMPERATURE ($2.0V \le VDD \le 5.5V$)

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E		10.30 BSC	
Molded Package Width	E1		7.50 BSC	
Overall Length	D		17.90 BSC	
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX
Number of Leads	Ν	44		
Lead Pitch	е	0.80 BSC		
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	_	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	—	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B