

Welcome to E-XFL.COM

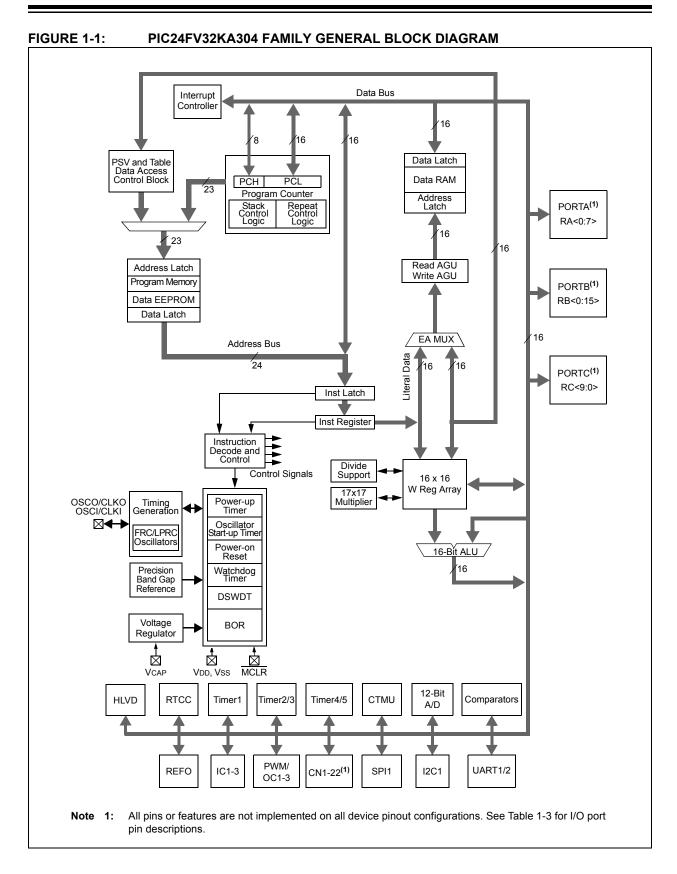
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХГ


Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka302-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	23
3.0	СРИ	
4.0	Memory Organization	35
5.0	Flash Program Memory	57
6.0	Data EEPROM Memory	63
7.0	Resets	69
8.0	Interrupt Controller	
9.0	Oscillator Configuration	115
10.0	Power-Saving Features	125
11.0	I/O Ports	135
12.0	Timer1	139
13.0	Timer2/3 and Timer4/5	141
14.0	Input Capture with Dedicated Timers	147
15.0	Output Compare with Dedicated Timers	151
16.0	Serial Peripheral Interface (SPI)	
17.0		
18.0	Universal Asynchronous Receiver Transmitter (UART)	177
19.0	Real-Time Clock and Calendar (RTCC)	
20.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	199
21.0	High/Low-Voltage Detect (HLVD)	205
22.0	12-Bit A/D Converter with Threshold Detect	
23.0	Comparator Module	225
24.0	Comparator Voltage Reference	229
25.0	Charge Time Measurement Unit (CTMU)	
26.0	Special Features	239
27.0	Development Support	251
	Instruction Set Summary	
	Electrical Characteristics	
30.0	DC and AC Characteristics Graphs and Tables	295
31.0	Packaging Information	325
Appe	endix A: Revision History	351
Index	κ	353
The I	Microchip Web Site	359
	omer Change Notification Service	
Cust	omer Support	359
Read	der Response	360
Prod	uct Identification System	

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

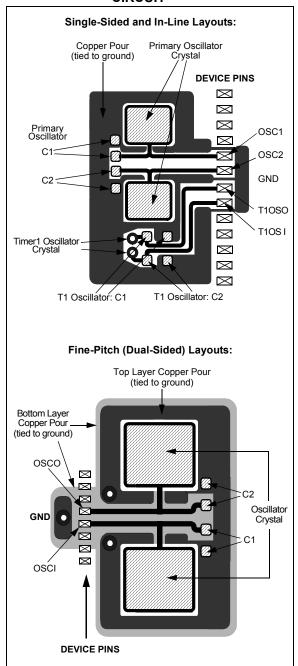
The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals, in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):


- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC™ and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 2-5: SUGGESTED PLACEMENT

OF THE OSCILLATOR CIRCUIT

NOTES:

R/W-0, HS	S R/W-0, HS	R/W-0	R/W-0	U-0	R/C-0, HS	R/W-0	R/W-0	
TRAPR	IOPUWR	SBOREN	RETEN ⁽³⁾	—	DPSLP	CM	PMSLP	
bit 15							bit 8	
R/W-0, H	S R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS	
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR	
bit 7							bit 0	
		<u> </u>			<u> </u>			
Legend:		C = Clearable			re Settable bit			
R = Reada		W = Writable b	bit	•	nented bit, read	as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown	
bit 15	TRAPR: Tran	Reset Flag bit						
	-	onflict Reset has	occurred					
		onflict Reset has						
bit 14	IOPUWR: Ille	gal Opcode or l	Jninitialized W	Access Reset	Flag bit			
	1 = An illegal Pointer c	l opcode detecti aused a Reset	on, an illegal a	ddress mode o	or Uninitialized V	V register used	as an Address	
	0 = An illegal	I opcode or Unir	nitialized W Re	set has not oc	curred			
bit 13	SBOREN: So	oftware Enable/E	Disable of BOF	R bit				
		irned on in softw irned off in softw						
bit 12	RETEN: Rete	ention Sleep Mo	de control bit ⁽³	6)				
		d voltage supply d voltage supply						
bit 11	Unimplemen	ted: Read as '0	3					
bit 10	DPSLP: Deep	p Sleep Mode F	lag bit					
	•	ep has occurred ep has not occu						
bit 9	CM: Configur	ation Word Misr	natch Reset F	lag bit				
	Ų	uration Word Mis uration Word Mis			ed			
bit 8	PMSLP: Proc	gram Memory Po	ower During S	leep bit				
		memory bias vo memory bias v mode				the Voltage Re	gulator enters	
bit 7	-		R) Pin bit					
Sit 7	1 = A Master	EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred						
bit 6		ire Reset (Instru						
	1 = A reset	instruction has I instruction has I	peen executed					
Note 1:	All of the Reset a cause a device		be set or clear	ed in software.	Setting one of the	nese bits in soft	ware does not	
2:	If the FWDTEN SWDTEN bit se	x Configuration I	bit is '1' (unpro	ogrammed), the	e WDT is always	enabled regar	dless of the	
3:	This is implement	-	V32KA3XX pa	arts only; not us	sed on PIC24F3	2KA3XX device	es.	

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾

REGISTER 8-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC		
—	—	—	—	—	—	—	DC ⁽¹⁾		
bit 15	bit 15 bit 8								

R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-9 Unimplemented: Read as '0'

bit 7 5	IPL<2:0>: CPU Interrupt Priority Level	Status hits (2,3)
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level	Status Dits

- 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
 - 110 = CPU Interrupt Priority Level is 6 (14)
 - 101 = CPU Interrupt Priority Level is 5 (13)
 - 100 = CPU Interrupt Priority Level is 4 (12)
 - 011 = CPU Interrupt Priority Level is 3 (11)
 - 010 = CPU Interrupt Priority Level is 2 (10)
 - 001 = CPU Interrupt Priority Level is 1 (9)
 - 000 = CPU Interrupt Priority Level is 0 (8)
- Note 1: See Register 3-1 for the description of these bits, which are not dedicated to interrupt control functions.
 - 2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - **3:** The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

Note: Bit 8 and bits 4 through 0 are described in Section 3.0 "CPU".

REGISTER 11-2: ANSB: ANALOG SELECTION (PORTB)

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0
ANSB15	ANSB14	ANSB13	ANSB12	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	ANSB4	ANSB3 ⁽¹⁾	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend:

bit 7

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 ANSB<15:12>: Analog Select Control bits

- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active
- bit 11-5 Unimplemented: Read as '0'
- bit 4-0 ANSB<4:0>: Analog Select Control bits⁽¹⁾
 - 1 = Digital input buffer is not active (use for analog input)
 - 0 = Digital input buffer is active
- Note 1: The ANSB3 bit is not available on 20-pin devices.

REGISTER 11-3: ANSC ANALOG SELECTION (PORTC)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—	—	—	—	—	ANSC2 ⁽¹⁾	ANSC1 ⁽¹⁾	ANSC0 ⁽¹⁾

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-3 Unimplemented: Read as '0'

bit 2-0 ANSC<2:0>: Analog Select Control bits⁽¹⁾

- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active

Note 1: These bits are not available on 20-pin or 28-pin devices.

bit 0

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON ⁽¹⁾	0-0	TSIDL ⁽¹⁾	0-0	0-0	0-0	0-0	0-0			
bit 15		TSIDL		_			 bit 8			
							bit c			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0			
_	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾		_	TCS ⁽¹⁾				
bit 7							bit 0			
Legend:										
R = Reada		W = Writable	bit	-	nented bit, rea					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	<u>ו</u>			
1.11.45		o								
bit 15	TON: Timery									
	1 = Starts 16 0 = Stops 16									
bit 14	-	ited: Read as '()'							
bit 13	-									
	TSIDL: Timery Stop in Idle Mode bit ⁽¹⁾ 1 = Discontinues module operation when device enters Idle mode									
		s module opera								
bit 12-7	Unimplemen	ted: Read as '0)'							
bit 6	TGATE: Time	ery Gated Time	Accumulation	Enable bit ⁽¹⁾						
	When TCS =									
	This bit is ignored.									
	$\frac{\text{When TCS} = 0}{2}$									
		 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled 								
bit 5-4		: Timery Input (Select hits(1)						
bit 0 4	11 = 1:256	. Thirdy input (
	10 = 1:64									
	01 = 1:8									
	00 = 1:1									
bit 3-2	•	ted: Read as '0								
bit 1		Clock Source S								
		clock is from th clock (Fosc/2)	e T3CK pin (o	n the rising edg	le)					
bit 0	Unimplemen	ted: Read as 'o)'							
Note 1:	When 22 hit ener	ation is anabled		- 1) those hite l	have no affact	on Timon (operation	- All timer			

REGISTER 13-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER

Note 1: When 32-bit operation is enabled (TxCON<3> = 1), these bits have no effect on Timery operation. All timer functions are set through the TxCON register.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾

- 111 = Center-Aligned PWM mode on OCx
 - 110 = Edge-Aligned PWM mode on OCx
 - 101 = Double Compare Continuous Pulse mode: Initialize OCx pin low; toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize OCx pin low; toggle OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- **Note 1:** The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

HS = Hardware Settable bit

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1 ⁽³⁾	DCB0 ⁽³⁾	OC32
bit 15							bit 8

R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legenu.			
R = Read	able bit W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	e at POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	FLTMD: Fault Mode Select bit		
	1 = Fault mode is maintained until the	Fault source is removed and	I the corresponding OCFLTx bit is
	cleared in software 0 = Fault mode is maintained until the	Fault source is removed and	a new PWM period starts
bit 14	FLTOUT: Fault Out bit		
	1 = PWM output is driven high on a Fa	ault	
	0 = PWM output is driven low on a Fai	ult	
bit 13	FLTTRIEN: Fault Output State Select b		
	 1 = Pin is forced to an output on a Fau 0 = Pin I/O condition is unaffected by a 		
bit 12	OCINV: Output Compare x Invert bit	a Fault	
	1 = OCx output is inverted		
	0 = OCx output is not inverted		
bit 11	Unimplemented: Read as '0'		
bit 10-9	DCB<1:0>: Output Compare x Pulse-V	Vidth Least Significant bits ⁽³⁾	
	11 = Delays OCx falling edge by $3/4$ of	•	
	10 = Delays OCx falling edge by 1/2 of 01 = Delays OCx falling edge by 1/4 of	-	
	00 = OCx falling edge occurs at the sta	2	
bit 8	OC32: Cascade Two Output Compare	Modules Enable bit (32-bit op	peration)
	1 = Cascade module operation is enal		
h:+ 7	0 = Cascade module operation is disa		
bit 7	OCTRIG: Output Compare x Sync/Trig 1 = Triggers OCx from source designa	-	
	0 = Synchronizes OCx with source designed		its
bit 6	TRIGSTAT: Timer Trigger Status bit		
	1 = Timer source has been triggered a		
	0 = Timer source has not been trigger	-	
bit 5	OCTRIS: Output Compare x Output Pi	n Direction Select bit	
	 1 = OCx pin is tri-stated 0 = Output Compare x peripheral is con 	anected to the OCx nin	
Note 1:	Do not use an output compare module as i equivalent SYNCSELx setting.	ts own trigger source, either t	by selecting this mode or another
2:	Use these inputs as trigger sources only ar	nd never as Sync sources.	
3:	These bits affect the rising edge when OCI	NV = 1. The bits have no effe	ct when the OCMx bits
	(OCxCON1<2:0>) = 001.		

Legend:

EQUATION 16-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED⁽¹⁾

FCY

FSCK = Primary Prescaler * Secondary Prescaler

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 16-1: SAMPLE SCKx FREQUENCIES^(1,2)

	Fcy = 16 MHz			Secondary Prescaler Settings					
		1:1	2:1	4:1	6:1	8:1			
Primary Prescaler Settings	1:1	Invalid	8000	4000	2667	2000			
	4:1	4000	2000	1000	667	500			
	16:1	1000	500	250	167	125			
	64:1	250	125	63	42	31			
Fcy = 5 MHz									
Primary Prescaler Settings	1:1	5000	2500	1250	833	625			
	4:1	1250	625	313	208	156			
	16:1	313	156	78	52	39			
	64:1	78	39	20	13	10			

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

2: SCKx frequencies are indicated in kHz.

REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—			—	_	AMSK9	AMSK8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSK<9:0>: Mask for Address Bit x Select bits

1 = Enables masking for bit x of an incoming message address; bit match is not required in this position
 0 = Disables masking for bit x; bit match is required in this position

REGISTER 17-4: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	—	SMBUSDEL2	SMBUSDEL1	_	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5	SMBUSDEL2: SMBus SDA2 Input Delay Select bit
	 1 = The I2C2 module is configured for a longer SMBus input delay (nominal 300 ns delay) 0 = The I2C2 module is configured for a legacy input delay (nominal 150 ns delay)
bit 4	SMBUSDEL1: SMBus SDA1 Input Delay Select bit
	 1 = The I2C1 module is configured for a longer SMBus input delay (nominal 300 ns delay) 0 = The I2C1 module is configured for a legacy input delay (nominal 150 ns delay)
bit 3-0	Unimplemented: Read as '0'

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC		
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT		
bit 15 bit 8									

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC		
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA		
bit 7 bit 0									

Legend:	HC = Hardware Clearable bit		
HS = Hardware Settable bit	C = Clearable bit	HSC = Hardware Settable/Cle	earable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit

bit 14	UTXINV: IrDA [®] Encoder Transmit Polarity Inversion bit
	<u>If IREN = 0:</u>
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	$\frac{\text{If IREN = 1:}}{\text{IREN = 1:}}$
	1 = UxTX Idle '1' 0 = UxTX Idle '0'
1.11.40	
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit
	1 = Transmit is enabled; UxTX pin is controlled by UARTx
	0 = Transmit is disabled; any pending transmission is aborted and the buffer is reset. UxTX pin is controlled by the PORT register.
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	 1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty; a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on a RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on a RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer;
	receive buffer has one or more characters.

CTMUCONO, CTMU CONTROL DECISTER 2

REGISTER 2		JCON2: CTM									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT				
bit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2			0-0	0-0				
	EDG2POL	EDG25EL3	EDG25EL2	EDG2SEL1	EDG2SEL0						
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15		Edge 1 Edge-So	ansitiva Salact	bit							
				DIL							
	1 = Input is edge-sensitive 0 = Input is level-sensitive										
bit 14	EDG1POL: Edge 1 Polarity Select bit										
	1 = Edge 1 is programmed for a positive edge response										
	0 = Edge 1 is programmed for a negative edge response										
bit 13-10	EDG1SEL<3:0>: Edge 1 Source Select bits										
	1111 = Edge 1 source is Comparator 3 output										
	1110 = Edge 1 source is Comparator 2 output										
	1101 = Edge 1 source is Comparator 1 output										
	1100 = Edge 1 source is IC3										
	1011 = Edge 1 source is IC2										
	1010 = Edge 1 source is IC1										
	1001 = Edge 1 source is CTED8										
	1000 = Edge 1 source is CTED7										
	0111 = Edge 1 source is CTED6										
	0110 = Edge 1 source is CTED5										
	0101 = Edge 1 source is CTED4 0100 = Edge 1 source is CTED3 ⁽²⁾										
	0011 = Edge 1 source is CTED1										
	0010 = Edge 1 source is CTED2										
	0001 = Edge 1 source is OC1										
	0000 = Edge 1 source is Timer1										
bit 9	EDG2STAT: Edge 2 Status bit										
	Indicates the status of Edge 2 and can be written to control the current source.										
	1 = Edge 2 has occurred										
	0 = Edge 2 has not occurred										
bit 8	EDG1STAT: Edge 1 Status bit										
	Indicates the status of Edge 1 and can be written to control the current source.										
	1 = Edge 1 has occurred										
	0 = Edge 1 has not occurred										
	EDG2MOD: Edge 2 Edge-Sensitive Select bit										
bit 7	EDG2MOD: E	Edge 2 Edge-Se		bit							
bit 7	EDG2MOD: E			bit							

- Note 1: Edge sources, CTED11 and CTED12, are not available on PIC24FV32KA302 devices.
 - 2: Edge sources, CTED3, CTED11, CTED12 and CTED13, are not available on PIC24FV32KA301 devices.

АС СНА	ARACTE	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No. Sym Characteristic ⁽¹⁾		Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
OS50	Fplli	PLL Input Frequency Range	4	—	8	MHz	ECPLL, HSPLL modes, $-40^{\circ}C \le TA \le +85^{\circ}C$
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz	$-40^{\circ}C \le TA \le +85^{\circ}C$
OS52	TLOCK	PLL Start-up Time (Lock Time)	_	1	2	ms	
OS53	S53 DCLK CLKO Stability (Jitter)		-2	1	2	%	Measured over a 100 ms period

TABLE 29-20: PLL CLOCK TIMING SPECIFICATIONS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 29-21: AC CHARACTERISTICS: INTERNAL RC ACCURACY

АС СНА	RACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No. Characteristic		Min	Тур	Max	Units	Conditions					
F20	Internal FRC Accuracy @ 8 MHz ⁽¹⁾										
	FRC	-2	_	+2	%	+25°C	$\begin{array}{l} 3.0V \leq V\text{DD} \leq 3.6\text{V}, \mbox{ F device} \\ 3.2V \leq V\text{DD} \leq 5.5\text{V}, \mbox{ FV device} \end{array}$				
		-5	—	+5	%	$-40^{\circ}C \le TA \le +85^{\circ}C$	$\begin{array}{l} 1.8V \leq V\text{DD} \leq 3.6\text{V}, \ \text{F} \ \text{device} \\ 2.0V \leq V\text{DD} \leq 5.5\text{V}, \ \text{FV} \ \text{device} \end{array}$				
	LPRC @ 31 kHz ⁽²⁾	•	•	•	•						
F21		-15	_	15	%						

Note 1: Frequency is calibrated at +25°C and 3.3V. The OSCTUN bits can be used to compensate for temperature drift.

2: The change of LPRC frequency as VDD changes.

TABLE 29-22: INTERNAL RC OSCILLATOR SPECIFICATIONS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions		
	TFRC	FRC Start-up Time	—	5	_	μS			
	TLPRC	LPRC Start-up Time	—	70	—	μS			

Note 1: These parameters are characterized but not tested in manufacturing.

31.0 PACKAGING INFORMATION


31.1 Package Marking Information

20-Lead PDIP (300 mil)

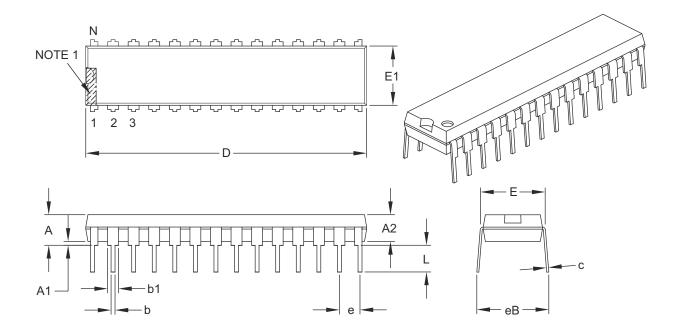
28-Lead SPDIP (.300")

Example

20-Lead SSOP (5.30 mm)

28-Lead SSOP (5.30 mm)

Example


Example

Legend:	XXX Y YY WW NNN @3	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator () can be found on the outer packaging for this package.				
Note:	te: In the event the full Microchip part number cannot be marked on or will be carried over to the next line, thus limiting the number of a characters for customer-specific information.					

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

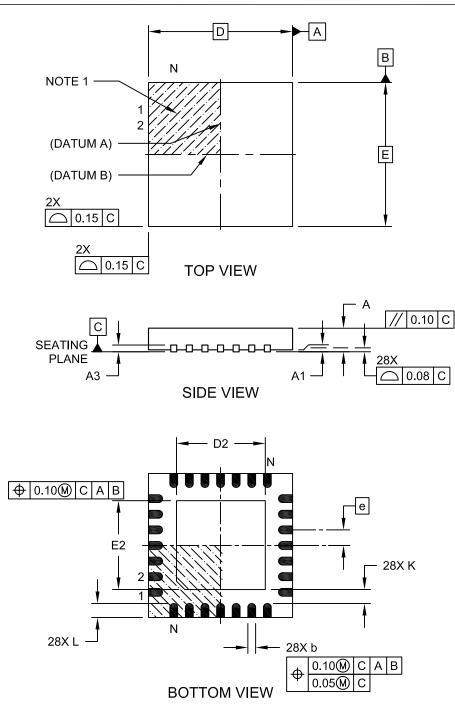
	Units			
Dimen	sion Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

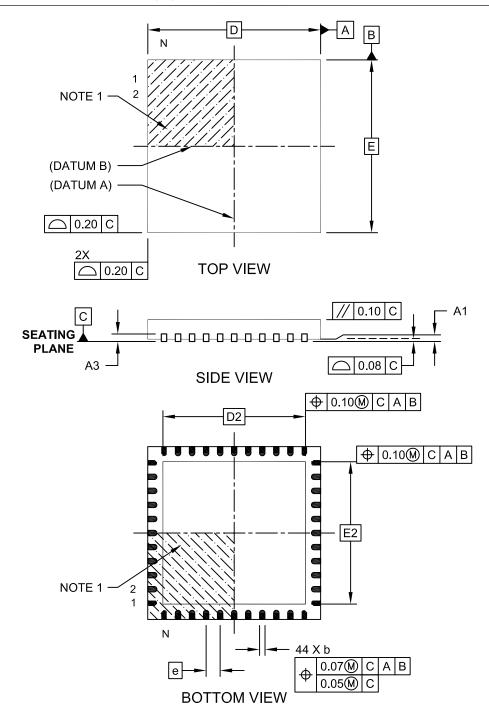
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-105C Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2

Revision D (March 2013)

Throughout the data sheet: corrected the name of RCON register bit 12 as RETEN, to maintain consistency with other PIC24F devices (was previously LVREN). In addition, changed the description of the bit in the RCON register (Register 7-1) to clarify its function in controlling the Retention Regulator.

Throughout the data sheet: corrected the name of FPOR Configuration register bit 2 as RETCFG, to maintain consistency with other PIC24F devices (was previously LVRCFG). In addition, changed the description of the bit in the FPOR Configuration register (Register 26-6) to clarify its function in enabling the Retention Regulator.

For Section 10.4 "Voltage Regulator-Based Power-Saving Features":

- Removed all references to Fast Wake-up Sleep mode, not implemented in this device
- Changed all references of the High-Voltage Regulator to On-Chip Voltage Regulator
- Removed all references to the Low-Voltage Regulator, which was replaced in most cases with Retention Regulator
- Clarified the Retention Regulator's operation in Section 10.4.3 "Retention Sleep Mode" (formerly "Low-Voltage Sleep Mode")
- Modified Table 10-1 for consistency with the above changes

Corrects Section 26.2 "On-Chip Voltage Regulator" to clarify the operation of the on-chip regulator in "F" and "FV" families, and include DC parameters and specifications.

For Section 29.0 "Electrical Characteristics":

- Updated captioning on all specification tables to include extended temperature data
- Amended Table 29-8 to include +125°C data for all existing specifications
- Added new Table 29-27 and Figure 29-8 to characterize external clock input specifications for general purpose timers (all subsequent tables and figures are renumbered accordingly)
- Added parameter numbers to several existing but previous unnumbered parameters in multiple tables

Updated Section 30.0 "DC and AC Characteristics Graphs and Tables":

- Added additional graphs for Extended temperature devices (Section 30.2 "Characteristics for Extended Temperature Devices (-40°C to +125°C)", Figure 30-40 through Figure 30-56)
- Replaced Figure 30-32 with an updated graph

Replaced some of the packaging diagrams in **Section 31.0** "**Packaging Information**" with the newly revised diagrams.

Updates Product Information System to include extended temperature devices in the information key.

Other minor typographic corrections throughout.