

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka302-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

				Pin Feat	ures
		48-Pin UQFN ^(1,2,3)	Pin	PIC24FVXXKA304	PIC24FXXKA304
			1	SDA1/T1CK/U1RTS/CTED4/CN21/RB9	SDA1/T1CK/U1RTS/CTED4/CN21 RB9
			2	U1RX/CN18/RC6	U1RX/CN18/RC6
			3	U1TX/CN17/RC7	U1TX/CN17/RC7
		RBS V V V V V V V V V V V V V V V V V V V	4	OC2/CN20/RC8	OC2/CN20/RC8
		<u> </u>	5	IC2/CTED7/CN19/RC9	IC2/CTED7/CN19/RC9
	RB9	JU 1604	6	IC1/CTED3/CN9/RA7	IC1/CTED3/CN9/RA7
	RC6 RC7	_2 35 □ RA8	7	VCAP	C20UT/OC1/CTED1/INT2CN8/R
	RC8		8	N/C	N/C
	RC9	5 32 N/C	9	PGED2/SDI1/CTED11/CN16/RB10	PGED2/SDI1/CTED11/CN16/RB1
A6 or \	RA7 √CAP		10	PGEC2/SCK1/CTED9/CN15/RB11	PGEC2/SCK1/CTED9/CN15/RB1
	N/C	3 FIC24FAARA304 29 R C2	11	AN12/HLVDIN/CTED2/INT2/CN14/RB12	AN12/HLVDIN/CTED2/CN14/RB1
	RB10 RB11		12	AN11/SDO1/CTPLS/CN13/RB13	AN11/SDO1/CTPLS/CN13/RB13
R	RB12	11 26 RB3	13	OC3/CN35/RA10	OC3/CN35/RA10
R	RB13	12 ♀≠♀♀♀♀♀≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈	14	IC3/CTED8/CN36/RA11	IC3/CTED8/CN36/RA11
			15	CVREF/AN10/C3INB/RTCC/ C1OUT/OCFA/CTED5/INT1/CN12/RB14	CVREF/AN10/C3INB/RTCC/C10UT OCFA/CTED5/INT1/CN12/RB14
		Ra10 Ra11 RB14 VSS/AVSS VDD/AVD5 NUCLR/RA5 RA0 RB0 RB0 RB1 RB1	16	AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15	AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15
		Z ≥	17	Vss/AVss	Vss/AVss
			18	Vdd/AVdd	Vdd/AVdd
			19	MCLR/RA5	MCLR/RA5
			20	N/C	N/C
			21	VREF+/CVREF+/AN0/C3INC/ CTED1/CN2/RA0	VREF+/CVREF+/AN0/C3INC/CN2/ RA0
			22	CVREF-/VREF-/AN1/CN3/RA1	CVREF-/VREF-/AN1/CN3/RA1
			23	PGED1/AN2/ULPWU/CTCMP/C1IND/ C2INB/C3IND/U2TX/CN4/RB0	PGED1/AN2/ULPWU/CTCMP/C1II C2INB/C3IND/U2TX/CN4/RB0
			24	PGEC1/AN3/C1INC/C2INA/U2RX/ CTED12/CN5/RB1	PGEC1/AN3/C1INC/C2INA/U2R> CTED12/CN5/RB1
			25	AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2	AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2
			26	AN5/C1INA/C2INC/SCL2/CN7/RB3	AN5/C1INA/C2INC/SCL2/CN7/RE
			27	AN6/CN32/RC0	AN6/CN32/RC0
			28	AN7/CN31/RC1	AN7/CN31/RC1
			29	AN8/CN10/RC2	AN8/CN10/RC2
			30	VDD	VDD
			31	Vss	Vss
			32		
			33	OSCI/AN13/CLKI/CN30/RA2	OSCI/AN13/CLKI/CN30/RA2
			34	OSCO/AN14/CLKO/CN29/RA3 OCFB/CN33/RA8	OSCO/AN14/CLKO/CN29/RA3
			35	SOSCI/AN15/U2RTS/CN1/RB4	
			36		SOSCI/AN15/U2RTS/CN1/RB4
			37	SOSCO/SCLKI/U2CTS/CN0/RA4	SOSCO/SCLKI/U2CTS/CN0/RA4
egen	nd:	Pin numbers in bold indicate pin func-	38	SS2/CN34/RA9	SS2/CN34/RA9
		tion differences between PIC24FV and	39	SDI2/CN28/RC3	SDI2/CN28/RC3
		PIC24F devices.	40	SDO2/CN25/RC4	SDO2/CN25/RC4
lote	1:	Exposed pad on underside of device is	41 42	SCK2/CN26/RC5 Vss	SCK2/CN26/RC5 Vss
	~	connected to Vss.	42	VDD	VDD
	2:	Alternative multiplexing for SDA1	43	N/C	N/C
		(ASDA1) and SCL1 (ASCL1) when the I2CSEL Configuration bit is set.	44 45	PGED3/ASDA1 ⁽²⁾ /CN27/RB5	PGED3/ASDA1 ⁽²⁾ /CN27/RB5
	3:	PIC24F32KA3XX device pins have a	46	PGEC3/ASCL1 ⁽²⁾ /CN24/RB6	PGEC3/ASCL1 ⁽²⁾ /CN24/RB6
	•.	maximum voltage of 3.6V and are not	47	C2OUT/OC1/INT0/CN23/RB7	INT0/CN23/RB7
		5V tolerant.	48	SCL1/U1CTS/C3OUT/CTED10/ CN22/RB8	SCL1/U1CTS/C3OUT/CTED10/ CN22/RB8

TABLE 4-3: CPU CORE REGISTERS MAP

IADEE -	т-∪.		OOKE															
File Name	Start Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								WF	REG0								0000
WREG1	0002								WF	REG1								0000
WREG2	0004								WF	REG2								0000
WREG3	0006								WF	REG3								0000
WREG4	0008								WF	REG4								0000
WREG5	000A								WF	REG5								0000
WREG6	000C								WF	REG6								0000
WREG7	000E								WF	REG7								0000
WREG8	0010			WREG8									0000					
WREG9	0012			WREG9									0000					
WREG10	0014			WREG10									0000					
WREG11	0016								WR	EG11								0000
WREG12	0018								WR	EG12								0000
WREG13	001A								WR	EG13								0000
WREG14	001C								WR	EG14								0000
WREG15	001E								WR	EG15								0000
SPLIM	0020								SF	PLIM								XXXX
PCL	002E								F	PCL								0000
PCH	0030	_	_	_	_	_	_	_	_	_				PCH				0000
TBLPAG	0032		_		—	—		—	—				TBI	_PAG				0000
PSVPAG	0034			- <u> </u>								0000						
RCOUNT	0036								RC	DUNT								XXXXX
SR	0042	_	_		-	-		_	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044		_	-	_	_		_	—	—	_	_	-	IPL3	PSV	—	_	0000
DISICNT	0052		– – DISICNT 2									XXXX						

DS39995D-page 39

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-21: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	—	0000
CRCCON2	0642	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	_	_	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXORL	0644	X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	X4	X3	X2	X1	_	0000
CRCXORH	0646	X31	X30	X29	X28	X27	X26	X25	X24	X23	X22	X21	X20	X19	X18	X17	X16	0000
CRCDATL	0648								CRCDA	TL								XXXX
CRCDATH	064A		CRCDATH								XXXX							
CRCWDATL	064C		CRCWDATL xxx								XXXX							
CRCWDATH	064E		CRCWDATH									XXXX						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: CLOCK CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN	RETEN	—	DPSLP	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	_	CF	SOSCDRV	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3140
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
HLVDCON	0756	HLVDEN	_	HLSIDL	_	_	_	_	-	VDIR	BGVST	IRVST	—	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration Fuses and by type of Reset.

TABLE 4-23: DEEP SLEEP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DSCON	0758	DSEN	_	—	—	_	_	_	RTCCWDIS	_	—	—		—	ULPWDIS	DSBOR	RELEASE	0000
DSWAKE	075A	_	_	_	_	-	-	_	DSINT0	DSFLT	_	_	DSWDT	DSRTCC	DSMCLR	_	DSPOR	0000
DSGPR0 ⁽¹⁾	075C		DSGPR0									0000						
DSGPR1 ⁽¹⁾	075E		DSGPR1									0000						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Deep Sleep registers, DSGPR0 and DSGPR1, are only reset on a VDD POR event.

FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLE Reset - GOTO Instruction 000000h Reset - GOTO Address 000002h Reserved 000004h Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Reserved Interrupt Vector 0 000014h Interrupt Vector 1 _ Interrupt Vector 52 00007Ch Interrupt Vector Table (IVT)⁽¹⁾ Decreasing Natural Order Priority Interrupt Vector 53 00007Eh Interrupt Vector 54 000080h _ Interrupt Vector 116 0000FCh Interrupt Vector 117 0000FEh Reserved 000100h Reserved 000102h Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Reserved Interrupt Vector 0 000114h Interrupt Vector 1 Alternate Interrupt Vector Table (AIVT)⁽¹⁾ 00017Ch Interrupt Vector 52 00017Eh Interrupt Vector 53 Interrupt Vector 54 000180h _____ Interrupt Vector 116 Interrupt Vector 117 0001FEh Start of Code 000200h

Note 1: See Table 8-2 for the interrupt vector list.

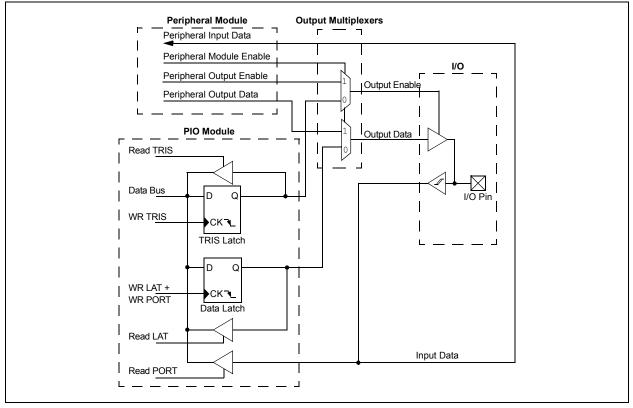
11.0 I/O PORTS

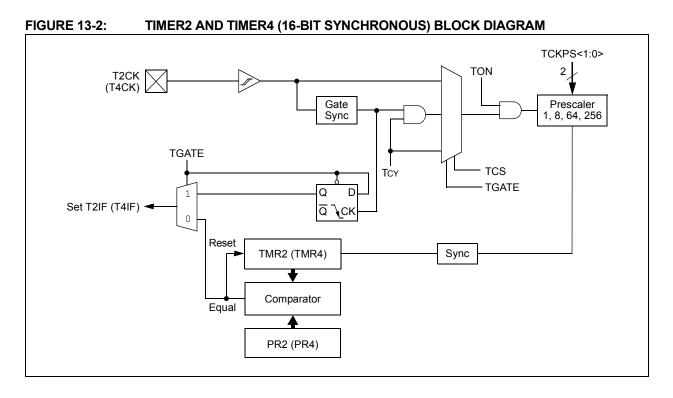
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the I/O Ports, refer to the "PIC24F Family Reference Manual", Section 12. "I/O Ports with Peripheral Pin Select (PPS)" (DS39711). Note that the PIC24FV32KA304 family devices do not support Peripheral Pin Select features.

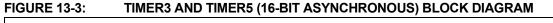
All of the device pins (except VDD and VSS) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

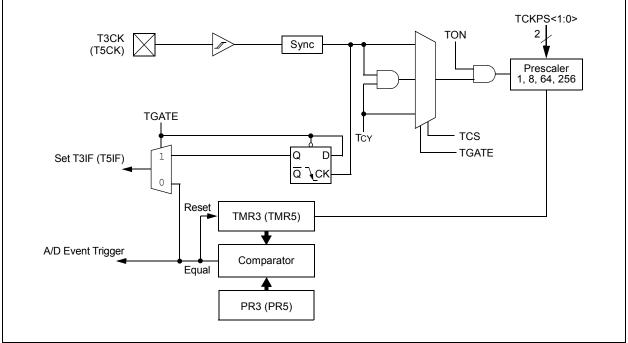
11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.


All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Data Latch register (LAT), read the latch. Writes to the latch, write the latch. Reads from the port (PORT), read the port pins; writes to the port pins, write the latch.


Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.


When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.


Note: The I/O pins retain their state during Deep Sleep. They will retain this state at wake-up until the software restore bit (RELEASE) is cleared.

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: This feature is is only available for the 16x BRG mode (BRGH = 0).
 - 2: The bit availability depends on the pin availability.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
HS = Hardware Settable bit	C = Clearable bit	HSC = Hardware Settable/Cle	earable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit

bit 14	UTXINV: IrDA [®] Encoder Transmit Polarity Inversion bit
	<u>If IREN = 0:</u>
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	<u>If IREN = 1:</u>
	1 = UxTX Idle '1'
	0 = UxTX Idle 0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit
	 1 = Transmit is enabled; UxTX pin is controlled by UARTx 0 = Transmit is disabled; any pending transmission is aborted and the buffer is reset. UxTX pin is controlled by the PORT register.
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty; a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on a RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on a RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters.

19.2.5 RTCVAL REGISTER MAPPINGS

REGISTER 19-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

| U-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| — | — | — | — | — | — | — | — |
| bit 15 | | | • | • | | | bit 8 |
| | | | | | | | |
| R/W-x |
| YRTEN3 | YRTEN2 | YRTEN2 | YRTEN1 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

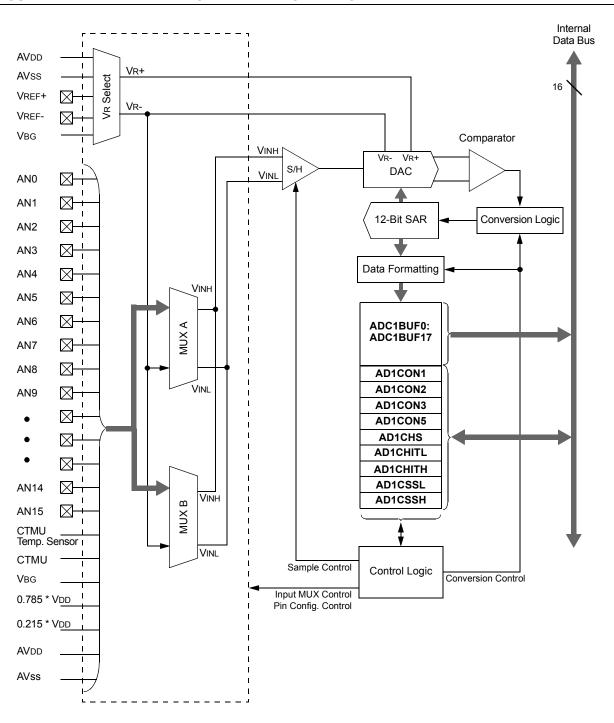
bit 15-8 Unimplemented: Read as '0'

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 19-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8


U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

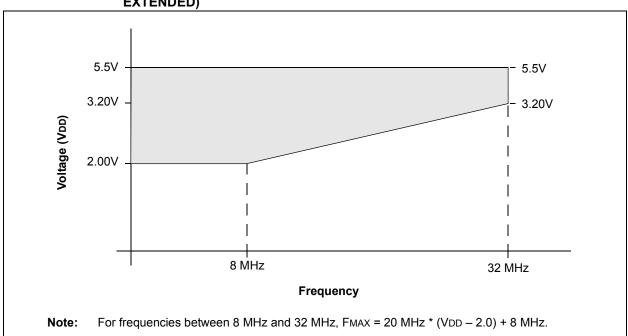
bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

NOTES:

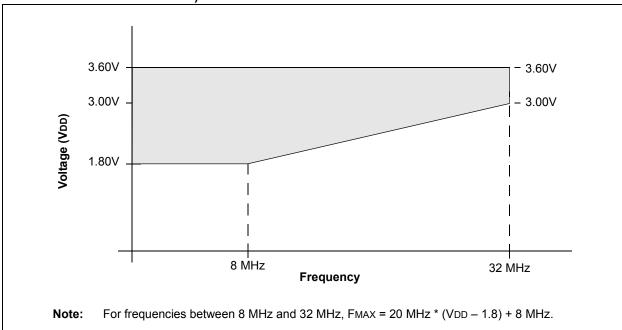
FIGURE 22-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM

CMxCON: COMPARATOR x CONTROL REGISTERS REGISTER 23-1: R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R-0 CON COE CPOL CLPWR CEVT COUT bit 15 bit 8 R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 EVPOL1 **EVPOL0** CREF CCH1 CCH0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator x Enable bit 1 = Comparator is enabled 0 = Comparator is disabled bit 14 COE: Comparator x Output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator x Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12 CLPWR: Comparator x Low-Power Mode Select bit 1 = Comparator operates in Low-Power mode 0 = Comparator does not operate in Low-Power mode bit 11-10 Unimplemented: Read as '0' bit 9 **CEVT:** Comparator x Event bit 1 = Comparator event defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator x Output bit When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN -When CPOL = 1: 1 = VIN + < VIN -0 = VIN + > VIN bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt is generated on the transition of the comparator output: If CPOL = 0 (non-inverted polarity): High-to-low transition only. If CPOL = 1 (inverted polarity): Low-to-high transition only. 01 = Trigger/event/interrupt is generated on the transition of the comparator output If CPOL = <u>0</u> (non-inverted polarity): Low-to-high transition only. If CPOL = $\underline{1}$ (inverted polarity): High-to-low transition only. 00 = Trigger/event/interrupt generation is disabled


bit 5 Unimplemented: Read as '0'

R/W-0							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
	000000 = No	minal current o	utput specified	nominal current by IRNG<1:0> nominal current			
	•						
	• • 100010 100001 = Ma	iximum negativo	e change from	nominal currer	ıt		
bit 9-8	100001 = Ma IRNG<1:0>: (11 = 100 × Ba 10 = 10 × Ba	Current Source ase Current se Current urrent Level (0.5	Range Select		ıt		

REGISTER 25-3: CTMUICON: CTMU CURRENT CONTROL REGISTER


NOTES:

29.1 DC Characteristics

FIGURE 29-1: PIC24FV32KA304 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL AND EXTENDED)

FIGURE 29-2: PIC24F32KA304 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL AND EXTENDED)

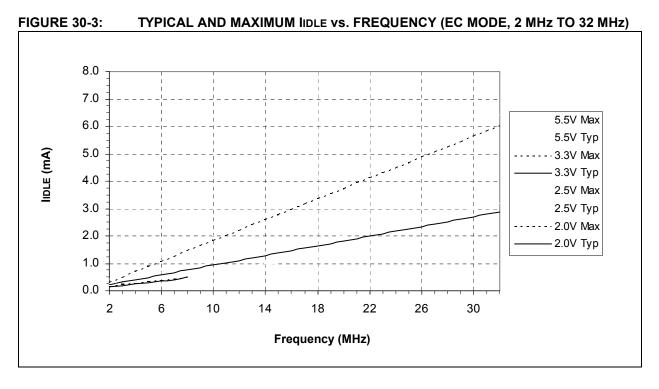
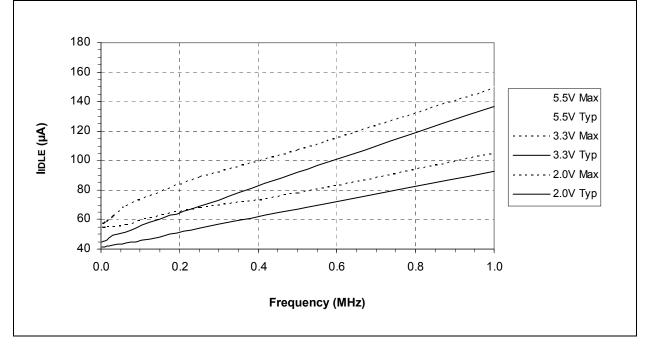
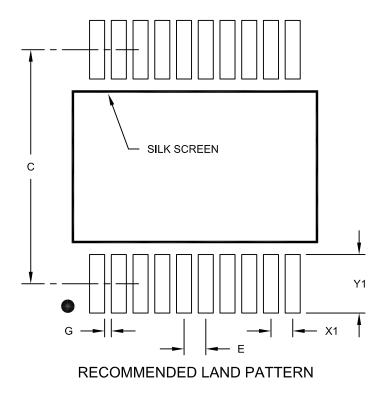




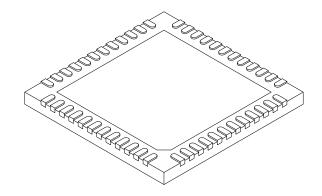
FIGURE 30-4: TYPICAL AND MAXIMUM lidle vs. FREQUENCY (EC MODE, 1.95 kHz TO 1 MHz)

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		48		
Pitch	е		0.40 BSC		
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.127 REF		
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	4.45	4.60	4.75	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	4.45	4.60	4.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel Fl		 Examples: a) PIC24FV32KA304-I/ML: Wide voltage range, General Purpose, 32-Kbyte program memory, 44-pin, Industrial temp., QFN package b) PIC24F16KA302-I/SS: Standard voltage range, General Purpose, 16-Kbyte program memory, 28-pin, Industrial temp., SSOP package
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	F = Standard voltage range Flash program memoryFV = Wide voltage range Flash program memory	
Product Group	KA3 = General purpose microcontrollers	
Pin Count	01 = 20-pin 02 = 28-pin 04 = 44-pin	
Temperature Range	$I = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (Industrial)}$ $E = -40^{\circ}C \text{ to } +125^{\circ}C \text{ (Industrial)}$	
Package	SP = SPDIP SO = SOIC SS = SSOP ML = QFN P = PDIP PT = TQFP MV = UQFN	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	