E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka302-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC24FV16KA301	PIC24FV32KA301	PIC24FV16KA302	PIC24FV32KA302	PIC24FV16KA304	PIC24FV32KA304	
Operating Frequency			DC – 32 I	MHz			
Program Memory (bytes)	16K	32K	16K	32K	16K	32K	
Program Memory (instructions)	5632	11264	5632	11264	5632	11264	
Data Memory (bytes)			2048				
Data EEPROM Memory (bytes)			512				
Interrupt Sources (soft vectors/ NMI traps)			30 (26/	4)			
I/O Ports	PORTA PORTB<15:1	<5:0> 2,9:7,4,2:0>	PORTA PORTB	<7,5:0> <15:0>	PORTA<11:7,5:0> PORTB<15:0> PORTC<9:0>		
Total I/O Pins	17	7	2	3	3	8	
Timers: Total Number (16-bit)			5				
32-Bit (from paired 16-bit timers)			2				
Input Capture Channels			3				
Output Compare/PWM Channels			3				
Input Change Notification Interrupt	16	6	2	2	3	7	
Serial Communications: UART SPI (3-wire/4-wire)			2				
I ² C™			2				
12-Bit Analog-to-Digital Module (input channels)	12	2	1	3	1	6	
Analog Comparators			3				
Resets (and delays)	POR, REPEAT	BOR, RESET Instruction, Ha	Instruction, Mardware Traps PWRT, OST, F	ICLR, WDT, s, Configuratio PLL Lock)	Illegal Opcoc on Word Mis	le, match	
Instruction Set	76 E	ase Instructio	ns, Multiple A	ddressing Mo	ode Variation	S	
Packages	20-F PDIP/SSC	Pin DP/SOIC	28- SPDIP/SSOF	Pin P/SOIC/OFN	44-Pin Qi 48-Pin	FN/TQFP UQFN	

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FV32KA304 FAMILY

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

							•		,				
			F					FV					
			Pin Number	•				Pin Number	r				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	1/0	Buffer	Description
RA0	2	2	27	19	21	2	2	27	19	21	I/O	ST	PORTA Pins
RA1	3	3	28	20	22	3	3	28	20	22	I/O	ST	
RA2	7	9	6	30	33	7	9	6	30	33	I/O	ST	
RA3	8	10	7	31	34	8	10	7	31	34	I/O	ST	
RA4	10	12	9	34	37	10	12	9	34	37	I/O	ST	
RA5	1	1	26	18	19	1	1	26	18	19	I/O	ST	
RA6	14	20	17	7	7	_	_	_	_	_	I/O	ST	
RA7	_	19	16	6	6	_	19	16	6	6	I/O	ST	
RA8	_	_	_	32	35	_	_	_	32	35	I/O	ST	
RA9	—	_	_	35	38	_	—	—	35	38	I/O	ST	
RA10	—	—	_	12	13	_	—	—	12	13	I/O	ST	
RA11	—	_	_	13	14	_	—	—	13	14	I/O	ST	
RB0	4	4	1	21	23	4	4	1	21	23	I/O	ST	PORTB Pins
RB1	5	5	2	22	24	5	5	2	22	24	I/O	ST	
RB2	6	6	3	23	25	6	6	3	23	25	I/O	ST	
RB3	—	7	4	24	26	_	7	4	24	26	I/O	ST	
RB4	9	11	8	33	36	9	11	8	33	36	I/O	ST	
RB5	—	14	11	41	45	_	14	11	41	45	I/O	ST	
RB6	—	15	12	42	46	—	15	12	42	46	I/O	ST	
RB7	11	16	13	43	47	11	16	13	43	47	I/O	ST	
RB8	12	17	14	44	48	12	17	14	44	48	I/O	ST	
RB9	13	18	15	1	1	13	18	15	1	1	I/O	ST	
RB10	—	21	18	8	9	—	21	18	8	9	I/O	ST	
RB11	_	22	19	9	10	_	22	19	9	10	I/O	ST	
RB12	15	23	20	10	11	15	23	20	10	11	I/O	ST	
RB13	16	24	21	11	12	16	24	21	11	12	I/O	ST	
RB14	17	25	22	14	15	17	25	22	14	15	I/O	ST	
RB15	18	26	23	15	16	18	26	23	15	16	I/O	ST	

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100		TMR1												0000			
PR1	0102								Р	R1								FFFF
T1CON	0104	TON	—	TSIDL	—	—	—	T1ECS1	T1ECS0	—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	_	0000
TMR2	0106								TN	IR2								0000
TMR3HLD	0108								TMR	3HLD								0000
TMR3	010A								ΤN	/IR3								0000
PR2	010C								Р	R2								0000
PR3	010E								Р	R3								FFFF
T2CON	0110	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS		FFFF
T3CON	0112	TON	_	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	—	—	TCS	_	0000
TMR4	0114								TN	/IR4								0000
TMR5HLD	0116								TMR	5HLD								0000
TMR5	0118								ΤN	1R5								0000
PR4	011A								Р	R4								FFFF
PR5	011C		PR5 FF								FFFF							
T4CON	011E	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	T45	_	TCS	_	0000
T5CON	0120	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	—	_	TCS	_	0000
Lananda				Desetual		the last and a	la sins al											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

	1					1	1			1	1		1		1	1	1	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	—	—	—	_	—	—		IC32	ICTRIG	TRIGSTAT	I	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144		IC1BUF 0000									0000						
IC1TMR	0146									IC1TM	R							XXXX
IC2CON1	0148	—	_	ICSIDL	IC2TSEL2	IC2TSEL1	IC2TSEL0		_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	—	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	014C									IC2BU	F							0000
IC2TMR	014E									IC2TM	R							XXXX
IC3CON1	0150	—	_	ICSIDL	IC3TSEL2	IC3TSEL1	IC3TSEL0		_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	—	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154									IC3BU	F							0000
IC3TMR	0156		IC3TMR xxxx								XXXX							

PIC24FV32KA304 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27 :	PROGRAM SPACE ADDRESS CONSTRUCTION
---------------------	------------------------------------

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User 0 PC<22:1>								
(Code Execution)			0xx xxxx x:	XXX XXXX	xxxx xxx0				
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>				
(Byte/Word Read/Write)		02	XXX XXXX	XXX		XXX			
	Configuration	TB	LPAG<7:0>	Data EA<15:0>					
		1:	XXX XXXX	XXX		XXX			
Program Space Visibility	User	0	PSVPAG<7:	:0> ⁽²⁾ Data EA<14:0> ⁽¹⁾					
(Block Remap/Read)		0	XXXX XXX	x xxx xxxx xxxx xxx					

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) in the PIC24FV32KA304 family.

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	U-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	—	OC3IF	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0	R/W-0
—	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:		HS = Hardwar	e Settable hit]
R = Readable	bit	W = Writable I	nit	U = Unimplem	nented bit read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	U2TXIF: UAR	T2 Transmitter	Interrupt Flag	Status bit			
	1 = Interrupt n	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 14	U2RXIF: UAR	RT2 Receiver In	terrupt Flag St	atus bit			
	1 = Interrupt n	equest has occ	occurred				
bit 13	INT2IF: Extern	nal Interrupt 2 P	Flag Status bit				
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit				
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 11	T4IF: Timer4	Interrupt Flag S	Status bit				
	1 = Interrupt n	equest has occ	surred				
bit 10		equest has not	occurred				
bit 9		it Compare Ch) annel 3 Interru	nt Elan Status k	sit		
bit 9	1 = Interrupt r	equest has occ	urred	pri lag Status r	Л		
	0 = Interrupt r	equest has not	occurred				
bit 8-5	Unimplement	ted: Read as '0)'				
bit 4	INT1IF: Exter	nal Interrupt 1 I	-lag Status bit				
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 3	CNIF: Input C	hange Notificat	tion Interrupt F	lag Status bit			
	1 = Interrupt n	equest has occ	curred				
hit 2	CMIE: Compa	equest has not arator Interrunt	Elan Status hit				
Dit 2	1 = Interrupt n	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 1	MI2C1IF: Mas	ster I2C1 Event	Interrupt Flag	Status bit			
	1 = Interrupt r	equest has occ	urred				
1	0 = Interrupt r	equest has not	occurred				
Dit U	SI2C1IF: Slav	e I2C1 Event li	nterrupt Flag S	itatus bit			
	1 = interrupt r 0 = Interrupt r	equest has occ equest has not	occurred				

REGISTER 8-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled

bit 0 INTOIE: External Interrupt 0 Enable bit

- 1 = Interrupt request is enabled
- 0 = Interrupt request is not enabled

REGISTER	9-2: CLK	DIV: CLOCK [GISTER			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
bit 15	4	I	•				bit 8
r							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	
Dit 7							DITU
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
<u> </u>							
bit 15	ROI: Recove	r on Interrupt bi	t				
	1 = Interrupt	s clear the DOZ	EN bit, and re	eset the CPU an	d peripheral clo	ock ratio to 1:1	
	0 = Interrupts	s have no effec	t on the DOZE	N bit			
bit 14-12	DOZE<2:0>:	CPU and Perip	heral Clock R	atio Select bits			
	111 = 1:128						
	110 = 1:64						
	101 = 1.32 100 = 1.16						
	011 = 1 :8						
	010 = 1:4						
	001 = 1:2						
1.11.44	000 = 1.1						
DIT 11		e Enable bit	the CDU and		, notio		
	1 = DOZE<2 0 = CPU and	peripheral clo	ck ratio are se	peripheral clock t to 1:1	k ratio		
bit 10-8	RCDIV<2:0>	: FRC Postscal	er Select bits				
	When COSC	<2:0> (OSCCO	N<14:12>) = :	<u>111:</u>			
	111 = 31.25	kHz (divide-by-	256)				
	110 = 125 kF	1z (divide-by-64	·)				
	101 = 230 kF	12 (divide-by-32	.) i)				
	011 = 1 MHz	(divide-by-8))				
	010 = 2 MHz	(divide-by-4)					
	001 = 4 MHz	(divide-by-2) (d	default)				
	000 = 8 MHz		NZ14:105) - 1	110.			
	111 = 1.95 k	< <u><2.0> (05000</u> Hz (divide-by-2)	<u>1N< 14. 122) = .</u> 56)	<u>110.</u>			
	110 = 7.81 k	Hz (divide-by-6	4)				
	101 = 15.62	kHz (divide-by-	32)				
	100 = 31.25	kHz (divide-by-	16)				
	011 = 62.5 kl	HZ (divide-by-8))				
	001 = 250 kF	Iz (divide-by-4)	(default)				
	000 = 500 k ⊦	Iz (divide-by-1)	(
h:+ 7 0		And. Deed as i	~,				

bit 7-0 Unimplemented: Read as '0'

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

10.2.4.5 Deep Sleep WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (FDS<7>). The device Watchdog Timer (WDT) need not be enabled for the DSWDT to function. Entry into Deep Sleep mode automatically resets the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (FDS<4>). The postscaler options are programmed by the DSWDTPS<3:0> Configuration bits (FDS<3:0>). The minimum time-out period that can be achieved is 2.1 ms and the maximum is 25.7 days. For more details on the FDS Configuration register and DSWDT configuration options, refer to **Section 26.0 "Special Features"**.

10.2.4.6 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCOSC Configuration bit (FDS<5>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention; however, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

10.2.4.7 Checking and Clearing the Status of Deep Sleep

Upon entry into Deep Sleep mode, the status bit, DPSLP (RCON<10>), becomes set and must be cleared by the software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set; this is a normal POR.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

10.2.4.8 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep functionally looks like a POR, the technique described in **Section 10.2.4.7** "**Checking and Clearing the Status of Deep Sleep**" should be used to distinguish between Deep Sleep and a true POR event.

When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers: RTCC, DSWDT, etc.) is reset.

10.2.4.9 Summary of Deep Sleep Sequence

To review, these are the necessary steps involved in invoking and exiting Deep Sleep mode:

- 1. The device exits Reset and begins to execute its application code.
- 2. If DSWDT functionality is required, program the appropriate Configuration bit.
- 3. Select the appropriate clock(s) for the DSWDT and RTCC (optional).
- 4. Enable and configure the DSWDT (optional).
- 5. Enable and configure the RTCC (optional).
- 6. Write context data to the DSGPRx registers (optional).
- 7. Enable the INT0 interrupt (optional).
- 8. Set the DSEN bit in the DSCON register.
- 9. Enter Deep Sleep by issuing a PWRSV #SLEEP_MODE command.
- 10. The device exits Deep Sleep when a wake-up event occurs.
- 11. The DSEN bit is automatically cleared.
- 12. Read and clear the DPSLP status bit in RCON, and the DSWAKE status bits.
- 13. Read the DSGPRx registers (optional).
- 14. Once all state related configurations are complete, clear the RELEASE bit.
- 15. The application resumes normal operation.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON	—	TSIDL	_	—	—	T1ECS1 ⁽¹⁾	T1ECS0 ⁽¹⁾
bit 15							bit 8
							
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0		TSYNC	TCS	_
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	<u> </u>						-
bit 15	TON: Timer1	On bit					
	1 = Starts 16	-bit Timer1					
	0 = Stops 16	-bit limer1					
DIT 14		ted: Read as ')' Aada hit				
DIE 13	1 = Discontinu	ues module on	noue bil aration when c	levice enters ld	lle mode		
	0 = Continues	s module opera	tion in Idle mo	ide	ne mode		
bit 12-10	Unimplemen	ted: Read as ')'				
bit 9-8	T1ECS<1:0>	: Timer1 Extend	led Clock Sele	ect bits ⁽¹⁾			
	11 = Reserve	ed; do not use					
	10 = Timer1	uses the LPRC	as the clock s				
	00 = Timer1 u	uses the Secon	dary Oscillato	r (SOSC) as the	e clock source		
bit 7	Unimplemen	ted: Read as 'd)'	、 ,			
bit 6	TGATE: Time	er1 Gated Time	Accumulation	Enable bit			
	When TCS =	<u>1:</u>					
	This bit is ign	ored.					
	$\frac{When ICS =}{1 = Gated tin}$	<u>0:</u> ne accumulatio	n is enabled				
	0 = Gated tin	ne accumulation	n is disabled				
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescale	e Select bits			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3	Unimplemen	ted: Read as 'd)'				
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	hronization Sel	lect bit		
	When TCS =	<u>1:</u>					
	1 = Synchro	nizes external o t synchronize e	clock input Internal clock i	nput			
	When TCS =			nput			
	This bit is igno	ored.					
bit 1	TCS: Timer1	Clock Source S	Select bit				
	1 = Timer1 cl	lock source is s	elected by T1	ECS<1:0>			
L:1 C	0 = Internal c	clock (Fosc/2)	.,				
U JIQ	Unimplemen	ted: Read as ')				
Note 1: ⊤	he T1ECSx bits	are valid only w	vhen TCS = 1				

REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0		
bit 7			L		L		bit 0		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
	FUK	I – DILISSEL			areu		IOWIT		
bit 15	ALRMEN: Ala	arm Enable bit							
	1 = Alarm is	enabled (clear	ed automatica	lly after an ala	rm event whe	never ARPT<7	:0> = 00h and		
	CHIME =	= 0)							
	0 = Alarm is	disabled							
DIT 14		e Enable bit			aver fram 00h				
	1 = Chime is 0 = Chime is	disabled: ARP	T < 7:0 > bits are	once they rea	over from oon ach 00h	10 FFN			
bit 13-10	AMASK<3:0>	>: Alarm Mask	Configuration b	pits					
	0000 = Ever	ry half second	0						
	0001 = Ever	ry second							
	0010 = Ever	ry 10 seconds							
	0100 = Ever	ry 10 minutes							
	0101 = Ever	ry hour							
	0110 = Onc	e a day _.							
	0111 = Oncolumn	e a week							
	1001 = Onc	e a year (excep	t when configu	ired for Februa	ry 29 th , once e	every 4 years)			
	101x = Rese	erved – do not	use		•				
	11xx = Rese	erved – do not	use						
bit 9-8	ALRMPTR<1	:0>: Alarm Valu	ue Register Wi	ndow Pointer b	Its				
	Points to the corresponding Alarm Value registers when reading the ALRMVALH and ALRMVALL registers. The ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00'								
	ALRMVAL<1	<u>5:8>:</u>		5					
	00 = ALRMM	IN							
	01 = ALRMW	/D NTH							
	11 = Unimple	mented							
	ALRMVAL<7:	:0>:							
	00 = ALRMSI	EC							
	01 = ALRMH	R AV							
	11 = Unimple	mented							
bit 7-0	ARPT<7:0>:	Alarm Repeat	Counter Value	bits					
	11111111 =	Alarm will rep	eat 255 more ti	imes					
	00000000 =	Alarm will not	repeat			_			
		decrements on	any alarm eve	nt; it is prevent	ed from rolling	over from 00h	to FFh unless		
	$\Box \Box \Box \Box \Box \Box = \bot$.								

20.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 41. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS39729).

The programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- · Configurable interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 20-1. A simple version of the CRC shift engine is shown in Figure 20-2.

FIGURE 20-2: CRC SHIFT ENGINE DETAIL

23.0 COMPARATOR MODULE

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	Comparator module, refer to the "PIC24F
	Family Reference Manual", Section 46.
	"Scalable Comparator Module"
	(DS39734).

The comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is shown in Figure 23-1. Diagrams of the possible individual comparator configurations are shown in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

FIGURE 23-1: COMPARATOR x MODULE BLOCK DIAGRAM

27.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

27.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

27.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

27.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

27.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

DC CHARACTERISTICS		Standard O	perating C	conditions: -40°C -40°C	1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XX ≤ TA ≤ +85°C for Industrial ≤ TA ≤ +125°C for Extended				
Parameter Device		Typical ⁽¹⁾	Max	Units		Conditions			
Module Differential Current (ΔIPD) ⁽³⁾									
DC71	PIC24FV32KA3XX	0.50		μA	-40°C	2.0V			
		0.70	1.5	μA	+85°C	5.0V			
		—	1.5	μA	+125°C	5.0V	Watchdog Timer		
	PIC24F32KA3XX	0.50	—	μA	-40°C	1.8V	ΔIWDT ⁽⁴⁾		
		0.70	1.5	μA	+85°C	3.3V			
		—	1.5	μA	+125°C	3.3V			
DC72	PIC24FV32KA3XX	0.80	—	μA	-40°C	2.0V			
		1.50	2.0	μA	+85°C	5.0V	32 kHz Crystal with RTCC		
		—	2.0	μA	+125°C	5.0V	DSWDT or Timer1:		
	PIC24F32KA3XX	0.70	—	μA	-40°C	1.8V	∆lsosc		
		1.0	1.5	μA	+85°C	3.3V	$(SOSCSEL = 0)^{(3)}$		
		—	1.5	μA	+125°C	3.3V			
DC75	PIC24FV32KA3XX	5.4	—	μA	-40°C	2.0V			
		8.1	14.0	μA	+85°C	5.0V			
		—	14.0	μA	+125°C	5.0V	ALULAD (4)		
	PIC24F32KA3XX	4.9	_	μA	-40°C	1.8V			
		7.5	14.0	μA	+85°C	3.3V			
		—	14.0	μA	+125°C	3.3V			
DC76	PIC24FV32KA3XX	5.6	—	μA	-40°C	2.0V			
		6.5	11.2	μA	-40°C	5.0V			
		—	11.2	μA	+125°C	5.0V			
	PIC24F32KA3XX	5.6		μA	-40°C	1.8V	AIBOR' '		
		6.0	11.2	μA	+85°C	3.3V			
		—	11.2	μA	+125°C	3.3V			

TABLE 29-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Legend: Unshaded rows represent PIC24F32KA3XX devices and shaded rows represent PIC24FV32KA3XX devices.

Note 1: Data in the Typical column is at 3.3V, +25°C (PIC24F32KA3XX) or 5.0V, +25°C (PIC24FV32KA3XX) unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low, PMSLP is set to '0' and WDT, etc., are all switched off.

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: This current applies to Sleep only.

5: This current applies to Sleep and Deep Sleep.

6: This current applies to Deep Sleep only.

TABLE 29-32: I²C[™] BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μS			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS			
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be		
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	100	ns			
IM21 TR:SCL	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be		
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	300	ns			
IM25 TSU:DAT		Data Input	100 kHz mode	250		ns			
		Setup Time	400 kHz mode	100	_	ns			
			1 MHz mode ⁽²⁾	100	_	ns			
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	ns			
			400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽²⁾	0	_	ns			
IM40 TAA:SCL	TAA:SCL	Output Valid from Clock	100 kHz mode	—	3500	ns			
			400 kHz mode	—	1000	ns			
			1 MHz mode ⁽²⁾	—		ns			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be		
			400 kHz mode	1.3		μS	free before a new		
			1 MHz mode ⁽²⁾	0.5		μs	transmission can start		
IM50	Св	Bus Capacitive Loading		—	400	pF			

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to **Section 17.3 "Setting Baud Rate When Operating as a Bus Master**" for details.

2: Maximum pin capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

FIGURE 29-21: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 29-39: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 1)

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	_		ns	
SP71	TscH	SCKx Input High Time	30	—	_	ns	
SP72	TscF	SCKx Input Fall Time ⁽²⁾	—	10	25	ns	
SP73	TscR	SCKx Input Rise Time ⁽²⁾	—	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	—	10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾	—	10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	—	—	ns	
SP51	TssH2doZ	$\overline{\text{SSx}}$ \uparrow to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: This assumes a 50 pF load on all SPIx pins.

FIGURE 30-44: TYPICAL AND MAXIMUM IPD vs. VDD (DEEP SLEEP MODE)

FIGURE 30-45: TYPICAL AND MAXIMUM IPD vs. TEMPERATURE (DEEP SLEEP MODE)

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E		1.27 BSC			
Contact Pad Spacing	С		9.40			
Contact Pad Width (X20)	X			0.60		
Contact Pad Length (X20)	Y			1.95		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	7.45				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A