

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka302t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

			F					FV					
			Pin Number	•				Pin Number	•				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	1/0	Buffer	Description
C3INA	18	26	23	15	16	18	26	23	15	16	I	ANA	Comparator 3 Input A (+)
C3INB	17	25	22	14	15	17	25	22	14	15	Ι	ANA	Comparator 3 Input B (-)
C3INC	2	2	27	19	21	2	2	27	19	21	Ι	ANA	Comparator 3 Input C (+)
C3IND	4	4	1	21	23	4	4	1	21	23	Ι	ANA	Comparator 3 Input D (-)
C3OUT	12	17	14	44	48	12	17	14	44	48	0	—	Comparator 3 Output
CLK I	7	9	6	30	33	7	9	6	30	33	Ι	ANA	Main Clock Input
CLKO	8	10	7	31	34	8	10	7	31	34	0	—	System Clock Output
CN0	10	12	9	34	37	10	12	9	34	37	Т	ST	Interrupt-on-Change Inputs
CN1	9	11	8	33	36	9	11	8	33	36	Ι	ST	
CN2	2	2	27	19	21	2	2	27	19	21	Ι	ST	
CN3	3	3	28	20	22	3	3	28	20	22	Ι	ST	
CN4	4	4	1	21	23	4	4	1	21	23	Ι	ST	
CN5	5	5	2	22	24	5	5	2	22	24	Ι	ST	
CN6	6	6	3	23	25	6	6	3	23	25	Ι	ST	
CN7	_	7	4	24	26		7	4	24	26	Ι	ST	
CN8	14	20	17	7	7				_		Ι	ST	
CN9		19	16	6	6	-	19	16	6	6	Ι	ST	
CN10		_	_	27	29				27	29	Ι	ST	
CN11	18	26	23	15	16	18	26	23	15	16	Ι	ST	
CN12	17	25	22	14	15	17	25	22	14	15	Ι	ST	
CN13	16	24	21	11	12	16	24	21	11	12	Ι	ST	
CN14	15	23	20	10	11	15	23	20	10	11	Ι	ST	
CN15		22	19	9	10		22	19	9	10	Ι	ST	
CN16		21	18	8	9		21	18	8	9	I	ST	
CN17		_	_	3	3		_	_	3	3	Ι	ST	
CN18	_	_	_	2	2	_	_	_	2	2	Ι	ST	
CN19		_	_	5	5	_	_		5	5	Ι	ST	1
CN20		—	—	4	4	—			4	4	I	ST	1
CN21	13	18	15	1	1	13	18	15	1	1	I	ST	1
CN22	12	17	14	44	48	12	17	14	44	48	Ι	ST]

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

FIGURE 4-6: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

6.4.1 ERASE DATA EEPROM

The data EEPROM can be fully erased, or can be partially erased, at three different sizes: one word, four words or eight words. The bits, NVMOP<1:0> (NVMCON<1:0>), decide the number of words to be erased. To erase partially from the data EEPROM, the following sequence must be followed:

- 1. Configure NVMCON to erase the required number of words: one, four or eight.
- 2. Load TBLPAG and WREG with the EEPROM address to be erased.
- 3. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 4. Write the key sequence to NVMKEY.
- 5. Set the WR bit to begin the erase cycle.
- 6. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical erase sequence is provided in Example 6-2. This example shows how to do a one-word erase. Similarly, a four-word erase and an eight-word erase can be done. This example uses C library procedures to manage the Table Pointer (builtin_tblpage and builtin_tbloffset) and the Erase Page Pointer (builtin_tblwt1). The memory unlock sequence (builtin_write_NVM) also sets the WR bit to initiate the operation and returns control when complete.

EXAMPLE 6-2: SINGLE-WORD ERASE

```
int __attribute__ ((space(eedata))) eeData = 0x1234;
/*__
    _____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the erase
_ _ _
   _____
*/
   unsigned int offset;
   // Set up NVMCON to erase one word of data EEPROM
   NVMCON = 0 \times 4058;
   // Set up a pointer to the EEPROM location to be erased
                                       // Initialize EE Data page pointer
   TBLPAG = __builtin_tblpage(&eeData);
offset = __builtin_tbloffset(&eeData);
                                              // Initizlize lower word of address
   builtin tblwtl(offset, 0);
                                              // Write EEPROM data to write latch
   asm volatile ("disi #5");
                                              // Disable Interrupts For 5 Instructions
    builtin write NVM();
                                               // Issue Unlock Sequence & Start Write Cycle
   while (NVMCONbits.WR=1);
                                               // Optional: Poll WR bit to wait for
                                               // write sequence to complete
```

REGISTER 8-3: INTC	ON1: INTERRUPT	CONTROL REGISTER 1	
--------------------	----------------	--------------------	--

R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:		HS = Hardware Settable bit			
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 15	NSTDIS: Inte	rrupt Nesting Disable bit			
	1 = Interrupt r	nesting is disabled			
	0 = Interrupt r	nesting is enabled			
bit 14-5	Unimplemen	ted: Read as '0'			
bit 4	MATHERR: A	Arithmetic Error Trap Status bi	t		
	1 = Overflow	trap has occurred			
	0 = Overflow	trap has not occurred			
bit 3	ADDRERR: A	Address Error Trap Status bit			
	1 = Address e	error trap has occurred			
	0 = Address e	error trap has not occurred			
bit 2	STKERR: Sta	ack Error Trap Status bit			
1 = Stack error trap has occurred		or trap has occurred			
	0 = Stack erro	or trap has not occurred			
bit 1	OSCFAIL: Os	scillator Failure Trap Status bit	t		

1 = Oscillator failure trap has occurred

0 = Oscillator failure trap has not occurred

bit 0 Unimplemented: Read as '0'

10.2.2 IDLE MODE

Idle mode has these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- · A WDT time-out

On wake-up from Idle, the clock is re-applied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.4 DEEP SLEEP MODE

In PIC24FV32KA304 family devices, Deep Sleep mode is intended to provide the lowest levels of power consumption available without requiring the use of external switches to completely remove all power from the device. Entry into Deep Sleep mode is completely under software control. Exit from Deep Sleep mode can be triggered from any of the following events:

- · POR Event
- MCLR Event
- RTCC Alarm (if the RTCC is present)
- External Interrupt 0
- Deep Sleep Watchdog Timer (DSWDT) Time-out
- Ultra Low-Power Wake-up (ULPWU) Event

In Deep Sleep mode, it is possible to keep the device Real-Time Clock and Calendar (RTCC) running without the loss of clock cycles.

The device has a dedicated Deep Sleep Brown-out Reset (DSBOR) and a Deep Sleep Watchdog Timer Reset (DSWDT) for monitoring voltage and time-out events. The DSBOR and DSWDT are independent of the standard BOR and WDT used with other power-managed modes (Sleep, Idle and Doze).

10.2.4.1 Entering Deep Sleep Mode

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register and then executing a Sleep command (PWRSAV #SLEEP_MODE). An unlock sequence is required to set the DSEN bit. Once the DSEN bit has been set, there is no time limit before the SLEEP command can be executed. The DSEN bit is automatically cleared when exiting the Deep Sleep mode.

Note:	To re-enter Deep Sleep after a Deep Sleep
	wake-up, allow a delay of at least 3 Tcr
	after clearing the RELEASE bit.

The sequence to enter Deep Sleep mode is:

- If the application requires the Deep Sleep WDT, enable it and configure its clock source. For more information on Deep Sleep WDT, see Section 10.2.4.5 "Deep Sleep WDT".
- 2. If the application requires Deep Sleep BOR, enable it by programming the DSLPBOR Configuration bit (FDS<6>).
- 3. If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module For more information on RTCC, see Section 19.0 "Real-Time Clock and Calendar (RTCC)".
- If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).

Note: An unlock sequence is required to set the DSEN bit.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

To set the DSEN bit, the unlock sequence in Example 10-2 is required:

EXAMPLE 10-2: THE UNLOCK SEQUENCE

//Disa	able Interrupts For 5 instructions
asm	<pre>volatile("disi #5");</pre>
//Issi	le Unlock Sequence
asm	volatile
mov	#0x55, W0;
mov	W0, NVMKEY;
mov	#0xAA, W1;
mov	W1, NVMKEY;
bset	DSCON, #DSEN
1	

Enter Deep Sleep mode by issuing a PWRSAV #0 instruction.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
HS = Hardware Settable bit	C = Clearable bit	HSC = Hardware Settable/Cle	earable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit

DIT 14	UTXINV: IrDA [®] Encoder Transmit Polarity Inversion bit
	<u>If IREN = 0:</u>
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	<u>If IREN = 1:</u>
	1 = UxTX Idle '1'
	0 = UxTX Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit
	 1 = Transmit is enabled; UxTX pin is controlled by UARTx 0 = Transmit is disabled; any pending transmission is aborted and the buffer is reset. UxTX pin is controlled by the PORT register.
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty; a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on a RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on a RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the RSR to the empty state)
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data; at least one more characters can be read 0 = Receive buffer is empty

© 2011-2013 Microchip Technology Inc.

19.2.4 RTCC CONTROL REGISTERS

REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0	
RTCEN ⁽²⁾	_	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	
bit 7 bit								
Legend:		HSC = Hardw	are Settable/C	learable bit				
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 15	RTCEN: RTC	C Enable bit ⁽²⁾						
	1 = RTCC mo	odule is enable	d					
bit 11			:0 					
DIL 14			, aiotoro Mrito E					
DIL 13	1 = RTCVALE	H and RTCVAL	I registers car	hable bli	w the user			
	0 = RTCVAL	H and RTCVAL	L registers are	locked out from	n being written	to by the user		
bit 12	RTCSYNC: R	TCC Value Re	gisters Read S	ynchronization	bit	-		
	1 = RTCVAL	H, RTCVALL ar	d ALCFGRPT	registers can c	hange while re	ading due to a	rollover ripple	
	resulting	in an invalid da	ta read. If the r	register is read	twice and resu	Its in the same	data, the data	
		ssumed to be v	alid.	egisters can be	read without o	oncern over a	rollover ripple	
bit 11		alf Second Stat	ALCIGINI IN	egisters can be		oncent over a		
bit II	1 = Second h	alf period of a	second					
	0 = First half	period of a sec	ond					
bit 10	RTCOE: RTC	C Output Enab	le bit					
	1 = RTCC ou	tput is enabled						
	0 = RTCC ou	tput is disabled	l					
bit 9-8	RTCPTR<1:0	>: RTCC Value	Register Wind	dow Pointer bits	S			
	Points to the c	orresponding א כ1י0> value dec	CICC Value reg	gisters when rea	ading the RTCV	ALH and RTC	/ALL registers.	
	RTCVAI <15:8	3>:		cry read of white	C OF ICT O WALL		00.	
	00 = MINUTE	S						
	01 = WEEKDAY							
	10 = MONTH							
	RTCVAI <7:0>	a >:						
	00 = SECONI							
	01 = HOURS							
	10 = DAY 11 = YFAR							

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- **3:** This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - a) Configure the port pins as analog inputs and/or select band gap reference inputs (ANS<12:10>, ANS<5:0>).
 - b) Select voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select the interrupt rate (AD1CON2<6:2>).
 - g) Turn on the A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

To perform an A/D sample and conversion using Threshold Detect scanning:

- 1. Configure the A/D module:
 - a) Configure the port pins as analog inputs (ANS<12:10>, ANS<5,0>).
 - b) Select the voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4>, AD1CON3<12:8>).
 - e) Select how the conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select the interrupt rate (AD1CON2<6:2>).
- 2. Configure the threshold compare channels:
 - a) Enable auto-scan ASEN bit (AD1CON5<15>).
 - b) Select the Compare mode, "Greater Than, Less Than or Windowed" – CMx bits (AD1CON5<1:0>).
 - c) Select the threshold compare channels to be scanned (ADCSSH, ADCSSL).
 - d) If the CTMU is required as a current source for a threshold compare channel, enable the corresponding CTMU channel (ADCCTMUENH, ADCCTMUENL).
 - e) Write the threshold values into the corresponding ADC1BUFn registers.
 - f) Turn on the A/D module (AD1CON1<15>).

Note: If performing an A/D sample and conversion using Threshold Detect in Sleep Mode, the RC A/D clock source must be selected before entering into Sleep mode.

- 3. Configure the A/D interrupt (OPTIONAL):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

CMxCON: COMPARATOR x CONTROL REGISTERS REGISTER 23-1: R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R-0 CON COE CPOL CLPWR CEVT COUT bit 15 bit 8 R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 EVPOL1 **EVPOL0** CREF CCH1 CCH0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator x Enable bit 1 = Comparator is enabled 0 = Comparator is disabled bit 14 COE: Comparator x Output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator x Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12 CLPWR: Comparator x Low-Power Mode Select bit 1 = Comparator operates in Low-Power mode 0 = Comparator does not operate in Low-Power mode bit 11-10 Unimplemented: Read as '0' bit 9 **CEVT:** Comparator x Event bit 1 = Comparator event defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator x Output bit When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN -When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt is generated on the transition of the comparator output: If CPOL = 0 (non-inverted polarity): High-to-low transition only. If CPOL = 1 (inverted polarity): Low-to-high transition only. 01 = Trigger/event/interrupt is generated on the transition of the comparator output If CPOL = <u>0</u> (non-inverted polarity): Low-to-high transition only. If CPOL = $\underline{1}$ (inverted polarity): High-to-low transition only. 00 = Trigger/event/interrupt generation is disabled

bit 5 Unimplemented: Read as '0'

© 2011-2013 Microchip Technology Inc.

If the WDT is enabled in hardware (FWDTEN<1:0> = 11), it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3:2>) will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

26.3.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the Configuration bit, WINDIS (FWDT<6>), to '0'.

26.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits. When both the FWDTEN<1:0> Configuration bits are set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN<1:0> Configuration bits have been programmed to '10'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments, and disable the WDT during non-critical segments, for maximum power savings. When the FWTEN<1:0> bits are set to '01', the WDT is only enabled in Run and Idle modes, and is disabled in Sleep. Software control of the SWDTEN bit (RCON<5>) is disabled with this setting.

FIGURE 26-2: WDT BLOCK DIAGRAM

FIGURE 29-8: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT TIMING

TABLE 29-27: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
	TtH	TxCK High Pulse	Sync w/Prescaler	Tcy + 20		ns	Must also meet
		Time	Async w/Prescaler	10	_	ns	Parameter Ttp
			Async Counter	20	_	ns	
	TtL	TxCK Low Pulse Time	Sync w/Prescaler	Tcy + 20	_	ns	Must also meet
	Tim		Async w/Prescaler	10	_	ns	Parameter Ttp
			Async Counter	20	_	ns	
	TtP TxCK External Input		Sync w/Prescaler	2 * Tcy + 40	_	ns	N = Prescale Value
		Period	Async w/Prescaler	Greater of: 20 or <u>2 * Tcy + 40</u> N	—	ns	(1, 4, 8, 16)
			Async Counter	40	_	ns	
		Delay for Input Edge	Synchronous	1	2	TCY	
	to Timer Increment	Asynchronous	_	20	ns		

FIGURE 29-9: INPUT CAPTURE x TIMINGS

TABLE 29-28: INPUT CAPTURE x REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet
Sy	Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15	
IC11	ТссН	ICx Input Low Time – Synchronous Timer	No Prescaler	Tcy + 20	—	ns	Must also meet
			With Prescaler	20	—	ns	Parameter IC15
IC15	TccP	ICx Input Period – Synchronous Timer		<u>2 * Tcy + 40</u> N	—	ns	N = prescale value (1, 4, 16)

FIGURE 30-33: TYPICAL BAND GAP VOLTAGE vs. TEMPERATURE ($2.0V \le VDD \le 5.5V$)

 FIGURE 30-55:
 TYPICAL BAND GAP VOLTAGE vs. TEMPERATURE (2.0V ≤ VDD ≤ 5.5V)

 Image: state state

FIGURE 30-56: TYPICAL VOLTAGE REGULATOR OUTPUT vs. TEMPERATURE

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν	20		
Pitch	е		0.65 BSC	
Overall Height	А	—	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	6.90	7.20	7.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	с	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX
Number of Leads	Ν		44	
Lead Pitch	е		0.80 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	_	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11° 12° 13°		
Mold Draft Angle Bottom	β	11° 12° 13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.80 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

NOTES: