

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka302t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

			Pin Features					
	48-Pin UQFN ^(1,2,3)	Pin	PIC24FVXXKA304	PIC24FXXKA304				
		1	SDA1/T1CK/U1RTS/CTED4/CN21/RB9	SDA1/T1CK/U1RTS/CTED4/CN21/ RB9				
		2	U1RX/CN18/RC6	U1RX/CN18/RC6				
	8 2 9 9 3 2 4 9 6 4	3	U1TX/CN17/RC7	U1TX/CN17/RC7				
	8888882>>88888 8888800988000884	4	OC2/CN20/RC8	OC2/CN20/RC8				
		5	IC2/CTED7/CN19/RC9	IC2/CTED7/CN19/RC9				
RB9	1 4 4 4 4 4 4 4 4 8 8 8 6 0 BB4	6	IC1/CTED3/CN9/RA7	IC1/CTED3/CN9/RA7				
RC6	2 35 RA8	7	VCAP	C20UT/OC1/CTED1/INT2CN8/RA6				
RC7	4 33 RA2	8	N/C	N/C				
RC9	5 32 N/C	9	PGED2/SDI1/CTED11/CN16/RB10	PGED2/SDI1/CTED11/CN16/RB10				
RA7 L		10	PGEC2/SCK1/CTED9/CN15/RB11	PGEC2/SCK1/CTED9/CN15/RB11				
N/C		11	AN12/HLVDIN/CTED2/INT2/CN14/RB12	AN12/HLVDIN/CTED2/CN14/RB12				
RB10 RB11	9 28 RC1	12	AN11/SDO1/CTPLS/CN13/RB13	AN11/SDO1/CTPLS/CN13/RB13				
RB12	11 27 1RC0 26 RB3	13	OC3/CN35/RA10	OC3/CN35/RA10				
RB13	12 25 RB2	14	IC3/CTED8/CN36/RA11	IC3/CTED8/CN36/RA11				
		15	CVREF/AN10/C3INB/RTCC/ C1OUT/OCFA/CTED5/INT1/CN12/RB14	CVREF/AN10/C3INB/RTCC/C1OUT/ OCFA/CTED5/INT1/CN12/RB14				
	RB RB X (201/201/201/201/201/201/201/201/201/201/	16	AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15	AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15				
	Σ Σ	17	Vss/AVss	Vss/AVss				
		18	Vdd/AVdd	Vdd/AVdd				
		19	MCLR/RA5	MCLR/RA5				
		20	N/C	N/C				
		21	VREF+/CVREF+/AN0/C3INC/ CTED1/CN2/RA0	VREF+/CVREF+/AN0/C3INC/CN2/ RA0				
		22	CVREF-/VREF-/AN1/CN3/RA1	CVREF-/VREF-/AN1/CN3/RA1				
		23	PGED1/AN2/ULPWU/CTCMP/C1IND/ C2INB/C3IND/U2TX/CN4/RB0	PGED1/AN2/ULPWU/CTCMP/C1IND/ C2INB/C3IND/U2TX/CN4/RB0				
		24	PGEC1/AN3/C1INC/C2INA/U2RX/ CTED12/CN5/RB1	PGEC1/AN3/C1INC/C2INA/U2RX/ CTED12/CN5/RB1				
		25	AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2	AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2				
		26	AN5/C1INA/C2INC/SCL2/CN7/RB3	AN5/C1INA/C2INC/SCL2/CN7/RB3				
		27	AN6/CN32/RC0	AN6/CN32/RC0				
		28	AN7/CN31/RC1	AN7/CN31/RC1				
		29	AN8/CN10/RC2	AN8/CN10/RC2				
		30	VDD	VDD				
		31	Vss	Vss				
		32		N/C				
		33	USCI/AN13/CLKI/CN30/RA2	OSCI/AN13/CLKI/CN30/RA2				
		34	OSCO/AN14/CLKO/CN29/RA3	OSCO/AN14/CLKO/CN29/RA3				
		35	OCFB/CN33/RA8	OCFB/CN33/RA8				
		36	SOSCI/AN15/U2RTS/CN1/RB4	SOSCI/AN15/U2RTS/CN1/RB4				
		37	SOSCO/SCLKI/U2CTS/CN0/RA4	SOSCO/SCLKI/U2CTS/CN0/RA4				
Legend:	Pin numbers in bold indicate pin func-	38	SS2/CN34/RA9	SS2/CN34/RA9				
9	tion differences between PIC24FV and	39	SDI2/CN28/RC3	SDI2/CN28/RC3				
	PIC24F devices.	40	SDO2/CN25/RC4	SDO2/CN25/RC4				
Note 1:	ote 1: Exposed pad on underside of device is		SCK2/CN26/RC5	SCK2/CN26/RC5				
	connected to Vss.	42	VSS	VSS				
2:	Alternative multiplexing for SDA1	43	VDD	VDD				
	(ASDA1) and SCL1 (ASCL1) when the	44						
a .		45						
3:	maximum voltage of 3 6V and are not	40						
	5V tolerant.	47						
		48	CN22/RB8	CN22/RB8				

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

	F						FV							
		Pin Number						Pin Number						
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description	
T1CK	13	18	15	1	1	13	18	15	1	1	I	ST	Timer1 Clock	
T2CK	18	26	23	15	16	18	26	23	15	16	I	ST	Timer2 Clock	
T3CK	18	26	23	15	16	18	26	23	15	16	1	ST	Timer3 Clock	
T4CK	6	6	3	23	25	6	6	3	23	25	Ι	ST	Timer4 Clock	
T5CK	6	6	3	23	25	6	6	3	23	25	Ι	ST	Timer5 Clock	
U1CTS	12	17	14	44	48	12	17	14	44	48	1	ST	UART1 Clear-to-Send Input	
U1RTS	13	18	15	1	1	13	18	15	1	1	0	—	UART1 Request-to-Send Output	
U1RX	6	6	3	2	2	6	6	3	2	2	1	ST	UART1 Receive	
U1TX	11	16	13	3	3	11	16	13	3	3	0	—	UART1 Transmit	
U2CTS	10	12	9	34	37	10	12	9	34	37	1	ST	UART2 Clear-to-Send Input	
U2RTS	9	11	8	33	36	9	11	8	33	36	0	_	UART2 Request-to-Send Output	
U2RX	5	5	2	22	24	5	5	2	22	24	1	ST	UART2 Receive	
U2TX	4	4	1	21	23	4	4	1	21	23	0	—	UART2 Transmit	
ULPWU	4	4	1	21	23	4	4	1	21	23	Ι	ANA	Ultra Low-Power Wake-up Input	
VCAP	—	—	—	_	—	14	20	17	7	7	Р	—	Core Power	
VDD	20	28,13	25,10	17,28,40	18,30,43	20	28,13	25,10	17,28,40	18,30,43	Р	—	Device Digital Supply Voltage	
VREF+	2	2	27	19	21	2	2	27	19	21	1	ANA	A/D Reference Voltage Input (+)	
VREF-	3	3	28	20	22	3	3	28	20	22	Ι	ANA	A/D Reference Voltage Input (-)	
Vss	19	27,8	24,5	16,29,39	17,31,42	19	27,8	24,5	16,29,39	17,31,42	Р	_	Device Digital Ground Return	

TABLE 4-3: CPU CORE REGISTERS MAP

File Name	Start Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000		WREGO										0000					
WREG1	0002			WREG1 0000										0000				
WREG2	0004			WREG2 00										0000				
WREG3	0006			WREG3 0										0000				
WREG4	8000		WREG4 0									0000						
WREG5	000A								WF	REG5								0000
WREG6	000C								WF	REG6								0000
WREG7	000E								WF	REG7								0000
WREG8	0010								WF	REG8								0000
WREG9	0012								WF	REG9								0000
WREG10	0014								WR	EG10								0000
WREG11	0016								WR	EG11								0000
WREG12	0018								WR	EG12								0000
WREG13	001A								WR	EG13								0000
WREG14	001C								WR	EG14								0000
WREG15	001E								WR	EG15								0000
SPLIM	0020								SI	PLIM								XXXX
PCL	002E								F	PCL								0000
PCH	0030	_	—	—	—	—	—	_	—	_				PCH				0000
TBLPAG	0032	_	—	_	—	_	—	_	_				TBI	LPAG				0000
PSVPAG	0034	_	—	_	—	_	—	_	_				PS	VPAG				0000
RCOUNT	0036								RC	OUNT								XXXXX
SR	0042	_	—		—		—	—	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	—	—	—	_	—	—	—	—	—	—	—	—	IPL3	PSV	—	—	0000
DISICNT	0052	_	—							DISIC	NT							XXXX

DS39995D-page 39

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.3 NVM Address Register

As with Flash program memory, the NVM Address registers, NVMADRU and NVMADR, form the 24-bit Effective Address (EA) of the selected row or word for data EEPROM operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. These registers are not mapped into the Special Function Register (SFR) space. Instead, they directly capture the EA<23:0> of the last table write instruction that has been executed and selects the data EEPROM row to erase. Figure 6-1 depicts the program memory EA that is formed for programming and erase operations.

Like program memory operations, the Least Significant bit (LSb) of NVMADR is restricted to even addresses. This is because any given address in the data EEPROM space consists of only the lower word of the program memory width; the upper word, including the uppermost "phantom byte", are unavailable. This means that the LSb of a data EEPROM address will always be '0'.

Similarly, the Most Significant bit (MSb) of NVMADRU is always '0', since all addresses lie in the user program space.

FIGURE 6-1: DATA EEPROM ADDRESSING WITH TBLPAG AND NVM ADDRESS REGISTERS

6.4 Data EEPROM Operations

The EEPROM block is accessed using table read and write operations similar to those used for program memory. The TBLWTH and TBLRDH instructions are not required for data EEPROM operations since the memory is only 16 bits wide (data on the lower address is valid only). The following programming operations can be performed on the data EEPROM:

- · Erase one, four or eight words
- Bulk erase the entire data EEPROM
- Write one word
- Read one word

Note 1: Unexpected results will be obtained if the user attempts to read the EEPROM while a programming or erase operation is underway.

2: The C30 C compiler includes library procedures to automatically perform the table read and table write operations, manage the Table Pointer and write buffers, and unlock and initiate memory write sequences. This eliminates the need to create assembler macros or time critical routines in C for each application.

The library procedures are used in the code examples detailed in the following sections. General descriptions of each process are provided for users who are not using the C30 compiler libraries.

REGISTER 8-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled

bit 0 INTOIE: External Interrupt 0 Enable bit

- 1 = Interrupt request is enabled
- 0 = Interrupt request is not enabled

10.2.4.5 Deep Sleep WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (FDS<7>). The device Watchdog Timer (WDT) need not be enabled for the DSWDT to function. Entry into Deep Sleep mode automatically resets the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (FDS<4>). The postscaler options are programmed by the DSWDTPS<3:0> Configuration bits (FDS<3:0>). The minimum time-out period that can be achieved is 2.1 ms and the maximum is 25.7 days. For more details on the FDS Configuration register and DSWDT configuration options, refer to **Section 26.0 "Special Features"**.

10.2.4.6 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCOSC Configuration bit (FDS<5>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention; however, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

10.2.4.7 Checking and Clearing the Status of Deep Sleep

Upon entry into Deep Sleep mode, the status bit, DPSLP (RCON<10>), becomes set and must be cleared by the software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set; this is a normal POR.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

10.2.4.8 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep functionally looks like a POR, the technique described in **Section 10.2.4.7** "**Checking and Clearing the Status of Deep Sleep**" should be used to distinguish between Deep Sleep and a true POR event.

When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers: RTCC, DSWDT, etc.) is reset.

10.2.4.9 Summary of Deep Sleep Sequence

To review, these are the necessary steps involved in invoking and exiting Deep Sleep mode:

- 1. The device exits Reset and begins to execute its application code.
- 2. If DSWDT functionality is required, program the appropriate Configuration bit.
- 3. Select the appropriate clock(s) for the DSWDT and RTCC (optional).
- 4. Enable and configure the DSWDT (optional).
- 5. Enable and configure the RTCC (optional).
- 6. Write context data to the DSGPRx registers (optional).
- 7. Enable the INT0 interrupt (optional).
- 8. Set the DSEN bit in the DSCON register.
- 9. Enter Deep Sleep by issuing a PWRSV #SLEEP_MODE command.
- 10. The device exits Deep Sleep when a wake-up event occurs.
- 11. The DSEN bit is automatically cleared.
- 12. Read and clear the DPSLP status bit in RCON, and the DSWAKE status bits.
- 13. Read the DSGPRx registers (optional).
- 14. Once all state related configurations are complete, clear the RELEASE bit.
- 15. The application resumes normal operation.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The maximum open-drain voltage allowed is the same as the maximum V_{IH} specification.

11.2 Configuring Analog Port Pins

The use of the ANS and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

11.2.1 ANALOG SELECTION REGISTERS

I/O pins with shared analog functionality, such as A/D inputs and comparator inputs, must have their digital inputs shut off when analog functionality is used. Note that analog functionality includes an analog voltage being applied to the pin externally.

To allow for analog control, the ANSx registers are provided. There is one ANS register for each port (ANSA, ANSB and ANSC). Within each ANSx register, there is a bit for each pin that shares analog functionality with the digital I/O functionality.

If a particular pin does not have an analog function, that bit is unimplemented. See Register 11-1 to Register 11-3 for implementation.

REGISTER 11-1: ANSA: ANALOG SELECTION (PORTA)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	_	—	—	—		
bit 15					•		bit 8		
U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1		
	—	—		ANSA3	ANSA2	ANSA1	ANSA0		
bit 7			•		•		bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	$(1)^2$ = Bit is set $(0)^2$ = Bit is cleared x = Bit is unknown							

bit 15-4 Unimplemented: Read as '0'

bit 3-0 ANSA<3:0>: Analog Select Control bits

1 = Digital input buffer is not active (use for analog input)

0 = Digital input buffer is active

11.2.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC24FV32KA304 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 23 external signals (CN0 through CN22) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the ICN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately, using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately, using the CNPD1 and CNPD2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to Vss by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0;	<pre>//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs</pre>
NOP;	//Delay 1 cycle
BTSS PORTB, #13;	//Next Instruction
Equivalent 'C' Code	
TRISB = 0xFF00;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP();	//Delay 1 cycle
if(PORTBbits.RB13 == 1)	// execute following code if PORTB pin 13 is set.
{	
3	

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 illustrates a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

REGISTER 19-11: RTCCSWT: CONTROL/SAMPLE WINDOW TIMER REGISTER⁽¹⁾

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 15 | | | | | | | bit 8 |

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSAMP7 | PWCSAMP6 | PWCSAMP5 | PWCSAMP4 | PWCSAMP3 | PWCSAMP2 | PWCSAMP1 | PWCSAMP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	PWCSTAB<7:0>: PWM Stability Window Timer bits							
	11111111 = Stability window is 255 TPWCCLK clock periods							
	•							
	00000000 = Stability window is 0 TPWCCLK clock periods The sample window starts when the alarm event triggers. The stability window timer starts counting from every alarm event when PWCEN = 1.							
bit 7-0	PWCSAMP<7:0>: PWM Sample Window Timer bits							
	 11111111 = Sample window is always enabled, even when PWCEN = 0 11111110 = Sample window is 254 TPWCCLK clock periods 							
	•							
	0000000 = Sample window is 0 TPWCCLK clock periods The sample window timer starts counting at the end of the stability window when PWCEN = 1. If PWCSTAB<7:0> = 00000000, the sample window timer starts counting from every alarm event when PWCEN = 1.							

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 22-8:	AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH WORD) ⁽¹⁾	
----------------	--	--

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
_	CSS30	CSS29	CSS28	CSS27	CSS26		—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
—	—	—		—	—	CSS17	CSS16			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkn	x = Bit is unknown			
bit 15	bit 15 Unimplemented: Read as '0'									

- bit 14-10CSS<30:26>: A/D Input Scan Selection bits
1 = Includes corresponding channel for input scan
0 = Skips channel for input scanbit 9-2Unimplemented: Read as '0'bit 1-0CSS<17:16>: A/D Input Scan Selection bits
 - 1 = Includes corresponding channel for input scan
 - 0 = Skips channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.

REGISTER 22-9: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15		•	•		<u> </u>		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7		•	•		<u> </u>		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 C

CSS<15:0>: A/D Input Scan Selection bits

- 1 = Includes corresponding ANx input for scan
- 0 = Skips channel for input scan

Note 1: Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	CTMUEN: C	TMU Enable bit					
	1 = Module is	s enabled s disabled					
bit 14	Unimplemen	ted: Read as '0	,				
bit 13		CTMU Stop in Ic	lle Mode bit				
	1 = Discontir	nues module ope	eration when	device enters l	dle mode		
	0 = Continue	s module opera	tion in Idle mo	ode			
bit 12	TGEN: Time	Generation Ena	ble bit				
	1 = Enables	edge delay gen	eration				
1.11.44	0 = Disables	edge delay gen	eration				
DIT 11	EDGEN: Edge Enable bit						
	0 = Edges an	re blocked					
bit 10	EDGSEQEN:	Edge Sequenc	e Enable bit				
	1 = Edge 1 e	event must occu	r before Edge	2 event can o	ccur		
	0 = No edge	sequence is ne	eded				
bit 9	IDISSEN: An	alog Current So	urce Control b	oit			
	1 = Analog c	urrent source ou	utput is ground	ded			
hit Q			utput is not gro	ounded			
DILO		wut nigger Com					
	0 = Trigger of	output is disabled	d l				
bit 7-0	Unimplemen	ted: Read as '0	,				
	-						

REGISTER 25-1: CTMUCON1: CTMU CONTROL REGISTER 1

CTMUCONO, CTMU CONTROL DECISTER 2

REGISTER 2	5-2. CTWC		UCUNIKUL	REGISTER	4		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 15 t						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	EDG1MOD: Edge 1 Edge-Sensitive Select bit 1 = Input is edge-sensitive 0 = Input is level-sensitive						
bit 14	EDG1POL: E	dge 1 Polarity	Select bit				
	1 = Edge 1 is 0 = Edge 1 is	programmed for programmed for	or a positive ed or a negative ed	ge response dge response			
bit 13-10	EDG1SEL<3:	: 0>: Edge 1 So	urce Select bits	6			
	<pre>1111 = Edge 1 source is Comparator 3 output 1110 = Edge 1 source is Comparator 2 output 1101 = Edge 1 source is Comparator 1 output 1100 = Edge 1 source is IC3 1011 = Edge 1 source is IC2 1010 = Edge 1 source is IC1 1001 = Edge 1 source is CTED8 1000 = Edge 1 source is CTED7 0111 = Edge 1 source is CTED6 0110 = Edge 1 source is CTED5 0101 = Edge 1 source is CTED5 0101 = Edge 1 source is CTED4 0100 = Edge 1 source is CTED1 0011 = Edge 1 source is CTED2 0011 = Edge 1 source is CTED2 0011 = Edge 1 source is CTED2</pre>						
bit 9	EDG2STAT: E	Edge 2 Status b	oit				
	Indicates the	status of Edge	2 and can be w	ritten to contro	ol the current so	ource.	
	1 = Edge 2 ha	as occurred					
hit Q			.;4				
υπ ο	EUGISIAI: E	Euge I Status D	III. 1 and can be w	ritten to contro	the current or		
	1 = Fdge 1 ha						
	0 = Edge 1 ha	as not occurred					
bit 7	EDG2MOD: E	Edge 2 Edge-Se	ensitive Select	bit			
	1 = Input is ed 0 = Input is le	dge-sensitive vel-sensitive					

- Note 1: Edge sources, CTED11 and CTED12, are not available on PIC24FV32KA302 devices.
 - 2: Edge sources, CTED3, CTED11, CTED12 and CTED13, are not available on PIC24FV32KA301 devices.

26.0 SPECIAL FEATURES

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watch- dog Timer, High-Level Device Integration and Programming Diagnostics, refer to the individual sections of the "PIC24F Family Reference Manual" provided below:
	 Section 9. "Watchdog Timer (WDT)" (DS39697) Section 36. "High-Level Integration

 Section 36. "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725)

• Section 33. "Programming and Diagnostics" (DS39716)

PIC24FV32KA304 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

26.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list of Configuration register locations is provided in Table 26-1. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-8.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using table reads and table writes.

TABLE 26-1: CONFIGURATION REGISTERS LOCATIONS

Configuration Register	Address
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E
FDS	F80010

REGISTER 26-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	BSS2	BSS1	BSS0	BWRP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

bit 3-1	BSS<2:0>: Boot Segment Program Flash Code Protection bits					
	111 = No boot program Flash segment					
	011 = Reserved					

110 = Standard security, boot program Flash segment starts at 200h, ends at 000AFEh

010 = High-security boot program Flash segment starts at 200h, ends at 000AFEh

101 = Standard security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾

001 = High-security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾

100 = Standard security; boot program Flash segment starts at 200h, ends at $002BFEh^{(1)}$

000 = High-security; boot program Flash segment starts at 200h, ends at 002BFEh⁽¹⁾

bit 0 BWRP: Boot Segment Program Flash Write Protection bit

- 1 = Boot segment may be written
- 0 = Boot segment is write-protected

Note 1: This selection should not be used in PIC24FV16KA3XX devices.

REGISTER 2	26-4: FOSC	: OSCILLAT	OR CONFIGU	JRATION REC	SISTER		
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FCKSM1	FCKSM0	SOSCSEL	POSCFREQ1	POSCFREQ0	OSCIOFNC	POSCMD1	POSCMD0
bit 7							bit 0

Legend:			
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Selection Configuration bits
	 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5	SOSCSEL: Secondary Oscillator Power Selection Configuration bit
	 1 = Secondary oscillator is configured for high-power operation 0 = Secondary oscillator is configured for low-power operation
bit 4-3	POSCFREQ<1:0>: Primary Oscillator Frequency Range Configuration bits
	 11 = Primary oscillator/external clock input frequency is greater than 8 MHz 10 = Primary oscillator/external clock input frequency is between 100 kHz and 8 MHz 01 = Primary oscillator/external clock input frequency is less than 100 kHz 00 = Reserved; do not use
bit 2	OSCIOFNC: CLKO Enable Configuration bit
	 1 = CLKO output signal is active on the OSCO pin; primary oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMD<1:0> = 11 or 00) 0 = CLKO output is disabled
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits
	 11 = Primary Oscillator mode is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = External Clock mode is selected

REGISTER 26-8: FDS: DEEP SLEEP CONFIGURATION REGISTER										
R/P-1	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
DSWDTEN	DSBOREN	—	DSWDTOSC	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0			
bit 7							bit 0			
Legend:										
R = Readable bit		P = Programmable bit		U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 7	DSWDTEN: De	eep Sleep Wat	chdog Timer Er	nable bit						
	1 = DSWDT is	enabled								
	0 = DSWDT is disabled									
bit 6	DSBOREN: De	ep Sleep/Low-	Power BOR En	able bit						
	(does not affect	operation in n	on Deep Sleep	modes)						
	1 = Deep Sleep BOR is enabled in Deep Sleep									
	0 = Deep Sleep BOR is disabled in Deep Sleep									
DIT 5	Unimplemented: Read as '0'									
bit 4	 DSWDTOSC: DSWDT Reference Clock Select bit 1 = DSWDT uses LPRC as the reference clock DSWDT uses 2000 as the reference clock 									
hit 2 0	U = DSVVDT uses SUSU as the relefence clock									
DIL 3-0	USWDIPS (<i>s</i> : u): Deep Sleep Watchdog Timer Postscale Select Dits									
	The DSWDT prescaler is 32; this creates an approximate base time unit of 1 ms.									
	1111 = 1.2,147,483,648 (25.7 days) nominal 1110 = 1.536,870,912 (6.4 days) nominal									
	1101 = 1:134.217.728 (38.5 hours) nominal									
	1100 = 1:33,554,432 (9.6 hours) nominal									
	1011 = 1:8,388,608 (2.4 hours) nominal									
	1010 = 1:2,097,152 (36 minutes) nominal									
	1001 = 1:524,2	288 (9 minutes)) nominal							
	1000 = 1.131,0 0111 = 1.3276	38 (34 seconds)	a) nominal							
	0110 = 1:8.192	2 (8.5 seconds)) nominal							
	0101 = 1:2,048	3 (2.1 seconds)) nominal							
	0100 = 1:512 (528 ms) nomir	nal							
	0011 = 1:128 (132 ms) nomir	nal							
	0010 = 1:32(3)	3 ms) nominal								
	0001 = 1.8 (8.3)	nominal								
	0000 - 1.2 (2.	i ins) nominal								

27.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

27.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

27.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

27.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

27.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

TABLE 29-26:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET TIMING REQUIREMENTS

			Standard Operating Conditions:				1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XX
			Operating temperature			-40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended	
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
SY10	TmcL	MCLR Pulse Width (low)	2	_		μs	
SY11	TPWRT	Power-up Timer Period	50	64	90	ms	
SY12	TPOR	Power-on Reset Delay	1	5	10	μS	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	—	100	ns	
SY20	Twdt	Watchdog Timer Time-out	0.85	1.0	1.15	ms	1.32 prescaler
		Period	3.4	4.0	4.6	ms	1:128 prescaler
SY25	TBOR	Brown-out Reset Pulse Width	1	-		μs	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	2.0	2.3	μs	
SY45	TRST	Internal State Reset Time	_	5	_	μS	
SY50	TVREG	On-Chip Voltage Regulator Output Delay	-	10	—	μs	(Note 2)
SY55	TLOCK	PLL Start-up Time	_	100		μS	
SY65	Tost	Oscillator Start-up Time	-	1024	_	Tosc	
SY70	TDSWU	Wake-up from Deep Sleep Time	_	100	_	μS	Based on full discharge of 10 μF capacitor on VCAP; includes TPOR and TRST
SY71	Трм	Program Memory Wake-up Time	—	1		μs	Sleep wake-up with PMSLP = 0
SY72	Tlvr	Retention Regulator Wake-up Time	—	250	_	μS	
SY73	Thvld	HVLD Interrupt Response Time		2		μS	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This applies to PIC24FV32KA3XX devices only.

FIGURE 30-51: VIL/VIH vs. VDD (GENERAL PURPOSE I/O, TEMPERATURES AS NOTED)

FIGURE 30-52: VIL/VIH vs. VDD (I²C[™], TEMPERATURES AS NOTED)

