

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv32ka304t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		F						FV						
			Pin Number					Pin Number	r					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	1/0	Buffer	Description	
RC0	_	_	_	25	27	_	_	_	25	27	I/O	ST	PORTC Pins	
RC1	_	_	_	26	28	_	—	_	26	28	I/O	ST		
RC2	—	_	—	27	29	—	_	_	27	29	I/O	ST		
RC3	—	_	—	36	39	—	_	_	36	39	I/O	ST		
RC4	—	_	—	37	40	—	_	_	37	40	I/O	ST		
RC5	—	_	—	38	41	—	_	_	38	41	I/O	ST		
RC6	—	_	—	2	2	—	_	_	2	2	I/O	ST		
RC7	_	_	_	3	3	_	—	_	3	3	I/O	ST		
RC8	_	_	_	4	4	_	—	_	4	4	I/O	ST		
RC9	_	_	_	5	5		—	—	5	5	I/O	ST		
REFO	18	26	23	15	16	18	26	23	15	16	0	—	Reference Clock Output	
RTCC	17	25	22	14	15	17	25	22	14	15	0	_	Real-Time Clock/Calendar Output	
SCK1	15	22	19	9	10	15	22	19	9	10	I/O	ST	SPI1 Serial Input/Output Clock	
SCK2	2	14	11	38	41	2	14	11	38	41	I/O	ST	SPI2 Serial Input/Output Clock	
SCL1	12	17	14	44	48	12	17	14	44	48	I/O	l ² C	I2C1 Clock Input/Output	
SCL2	18	7	4	24	26	18	7	4	24	26	I/O	l ² C	I2C2 Clock Input/Output	
SCLKI	10	12	9	34	37	10	12	9	34	37	Ι	ST	Digital Secondary Clock Input	
SDA1	13	18	15	1	1	13	18	15	1	1	I/O	l ² C	I2C1 Data Input/Output	
SDA2	6	6	3	23	25	6	6	3	23	25	I/O	l ² C	I2C2 Data Input/Output	
SDI1	17	21	18	8	9	17	21	18	8	9	I	ST	SPI1 Serial Data Input	
SDI2	4	19	16	36	39	4	19	16	36	39	I	ST	SPI2 Serial Data Input	
SDO1	16	24	21	11	12	16	24	21	11	12	0	_	SPI1 Serial Data Output	
SDO2	3	15	12	37	40	3	15	12	37	40	0	—	SPI2 Serial Data Output	
SOSCI	9	11	8	33	36	9	11	8	33	36	Ι	ANA	Secondary Oscillator Input	
SOSCO	10	12	9	34	37	10	12	9	34	37	0	ANA	Secondary Oscillator Output	
SS1	18	26	23	15	16	18	26	23	15	16	0	_	SPI1 Slave Select	
SS2	15	23	20	35	38	15	23	20	35	38	0	_	SPI2 Slave Select	

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the "PIC24F Family Reference Manual", Section 2. "CPU" (DS39703).

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K word boundary of either program memory or data EEPROM memory, defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (i.e., A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is illustrated in Figure 3-1.

3.1 Programmer's Model

Figure 3-2 displays the programmer's model for the PIC24F. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions.

Table 3-1 provides a description of each register. All registers associated with the programmer's model are memory mapped.

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIF		—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	—	—	—	—	MI2C2IF	SI2C2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 13-3	Unimplemented: Read as '0'
bit 2	MI2C2IF: Master I2C2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 1	SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS
—	—	—	—	—	—	—	ULPWUIF
bit 7							bit 0
Logond		HS - Hardwa	ra Sattabla hit				

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIF: Ultra Low-Power Wake-up Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 8	REGISTER 8-25: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	_	—	—	—	—			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown			
bit 15-7	Unimplemen	ted: Read as ')'							
bit 6-4	SPI2IP<2:0>:	SPI2 Event Int	errupt Priority	bits						

REGISTER	9-2: CLK	DIV: CLOCK [GISTER							
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1				
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0				
bit 15	4	I	•				bit 8				
r											
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	—	—	—	—	—					
Dit 7							DITU				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown				
<u> </u>											
bit 15	ROI: Recove	r on Interrupt bi	t								
	1 = Interrupt	s clear the DOZ	EN bit, and re	eset the CPU an	d peripheral clo	ock ratio to 1:1					
	0 = Interrupts	s have no effec	t on the DOZE	N bit							
bit 14-12	DOZE<2:0>:	CPU and Perip	heral Clock R	atio Select bits							
	111 = 1:128										
	110 = 1:64										
	101 = 1:32 100 = 1:16										
	011 = 1:8										
	010 = 1:4										
	001 = 1:2										
1.11.44	000 = 1.1										
DIT 11	DOZEN: Doze Enable bit ⁽¹⁾										
	1 = DOZE<2 0 = CPU and	20> bits specify	ck ratio are se	peripheral clock t to 1:1	k ratio						
bit 10-8	RCDIV<2:0>: FRC Postscaler Select bits										
	When COSC	<2:0> (OSCCO	N<14:12>) = :	<u>111:</u>							
	111 = 31.25	kHz (divide-by-	256)								
	110 = 125 kF	1z (divide-by-64	·)								
	101 = 230 kF	12 (divide-by-32	.) i)								
	011 = 1 MHz	(divide-by-8))								
	010 = 2 MHz	(divide-by-4)									
	001 = 4 MHz	(divide-by-2) (d	default)								
	000 = 8 MHz		NZ14:105) - 1	110.							
	111 = 1.95 k	< <u>2.02 (05000</u> Hz (divide-bv-2)	<u>1N< 14. 122) = .</u> 56)	<u>110.</u>							
	110 = 7.81 k	Hz (divide-by-6	4)								
	101 = 15.62	kHz (divide-by-	32)								
	100 = 31.25	kHz (divide-by-	16)								
	011 = 62.5 kl	HZ (divide-by-8))								
	001 = 250 kF	Iz (divide-by-4)	(default)								
	000 = 500 k ⊦	Iz (divide-by-1)	(
h:+ 7 0		And. Deed as i	~,								

bit 7-0 Unimplemented: Read as '0'

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

FIGURE 13-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM

2: The A/D event trigger is available only on Timer2/3 and Timer4/5 in 32-bit mode, and Timer3 and Timer5 in 16-bit mode.

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even numbered module (ICy) provides the Most Significant 16 bits. Wraparounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bit (ICxCON2<8>) for both modules.

14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. If Synchronous mode is to be used, disable the Sync source before proceeding.
- 2. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 3. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired Sync/trigger source.
- Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source. If the desired clock source is running, set the ICTSELx bits before the input capture module is enabled, for proper synchronization with the desired clock source.
- 5. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency.
- 6. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSELx bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 7. Set the ICMx bits (ICxCON1<2:0>) to the desired operational mode.
- 8. Enable the selected Sync/trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- 1. Set the IC32 bits for both modules (ICyCON2<8> and (ICxCON2<8>), enabling the even numbered module first. This ensures the modules will start functioning in unison.
- Set the ICTSELx and SYNCSELx bits for both modules to select the same Sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bit settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency.
- 5. Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- Note: For Synchronous mode operation, enable the Sync source as the last step. Both input capture modules are held in Reset until the Sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired capture mode.

The module is ready to capture events when the time base and the Sync/trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

To set up the SPI1 module for the Enhanced Buffer Master (EBM) mode of operation:

- 1. If using interrupts:
 - a) Clear the SPI1IF bit in the IFS0 register.
 - b) Set the SPI1IE bit in the IEC0 register.
 - c) Write the respective SPI1IPx bits in the IPC2 register.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 1.
- 3. Clear the SPIROV bit (SPI1STAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPI1CON2<0>).
- 5. Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).
- 6. Write the data to be transmitted to the SPI1BUF register. Transmission (and reception) will start as soon as data is written to the SPI1BUF register.

To set up the SPI1 module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPI1BUF register.
- 2. If using interrupts:
 - a) Clear the SPI1IF bit in the IFS0 register.
 - b) Set the SPI1IE bit in the IEC0 register.
 - c) Write the respective SPI1IPx bits in the IPC2 register to set the interrupt priority.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SS1 pin.
- 6. Clear the SPIROV bit (SPI1STAT<6>).
- Select Enhanced Buffer mode by setting the SPIBEN bit (SPI1CON2<0>).
- Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).

FIGURE 16-2: SPI1 MODULE BLOCK DIAGRAM (ENHANCED BUFFER MODE)

REGISTER 24-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	_		_		—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	
bit 7							bit 0	
								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-8	Unimplemen	ted: Read as ')'					
bit 7	CVREN: Com	parator Voltage	e Reference E	nable bit				
	1 = CVREF ci	rcuit is powere	d on					
	0 = CVREF CI	rcuit is powere	d down					
bit 6	CVROE: Com	parator VREF (Dutput Enable	bit				
	1 = CVREF VC	oltage level is o	utput on the C	VREF pin	oin			
hit 5			Source Selectic	on hit	JIII			
DIL D		tor reference s						
	0 = Compara	tor reference s	ource, CVRSRC	c = AVDD - AV	KEF- /SS			
bit 4-0	CVR<4:0>: C	omparator VRE	F Value Select	ion $0 \leq CVR < 4$:0> ≤ 31 bits			
	When CVRSS	<u>S = 1:</u>						
	CVREF = (VRE	:F-) + (CVR<4:0)>/32) • (VREF+	+ – Vref-)				
	When CVRSS	S = 0:						
	CVREF = (AVS	ss) + (CVR<4:0	>/32) • (AVDD ·	– AVSS)				

NOTES:

27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	COM	f	f = f	1	1	N, Z
	COM	f.WREG	WREG = f	1	1	N.Z
	COM	Ws Wd	$Wd = \overline{Ws}$	1	1	N 7
CP	CP	f	Compare f with WREG	1	1	C DC N OV Z
Cr	CP	1 Wb #1:+5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb, #1105	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CPO	CPO	f		1	1	C, DC, N, OV, Z
CFU	CPO	L We		1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG with Borrow	1	1	C, DC, N, OV, Z
CFD	CPP	1 Wb #1:+5	Compare Wb with lit5 with Borrow	1	1	C, DC, N, OV, Z
	CPP	Wb, #1105	Compare Wb with Ws with Borrow	1	1	C, DC, N, OV, Z
	Crb	w D , wS	$(Wb - Ws - \overline{C})$	-		0, 00, 11, 01, 2
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 29-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments	
DVR10	Vbg	Band Gap Reference Voltage	0.973	1.024	1.075	V		
DVR11	Tbg	Band Gap Reference Start-up Time		1		ms		
DVR20	Vrgout	Regulator Output Voltage	3.1	3.3	3.6	V	-40°C < TA < +85°C	
			3.0	3.19	3.6	V	-40°C < TA < +125°C	
DVR21	CEFC	External Filter Capacitor Value	4.7	10		μF	Series resistance < 3 Ohm recommended; < 5 Ohm is required.	
DVR30	Vlvr	Retention Regulator Output Voltage		2.6	_	V		

TABLE 29-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions:} & 1.8V \ to \ 3.6V \ \mbox{PIC24F32KA3XX} \\ & 2.0V \ to \ 5.5V \ \mbox{PIC24FV32KA3XX} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ \mbox{for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \ \mbox{for Extended} \\ \end{array} $						
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Comments	Conditions	
DCT10	Ιουτ1	CTMU Current Source, Base Range	—	550	—	nA	CTMUICON<9:8> = 01		
DCT11	IOUT2	CTMU Current Source, 10x Range	_	5.5	—	μA	CTMUICON<9:8> = 10		
DCT12	Ιουτ3	CTMU Current Source, 100x Range	_	55	_	μA	CTMUICON<9:8> = 11	2.5V < VDD < VDDIMAX	
DCT13	IOUT4	CTMU Current Source, 1000x Range	_	550	_	μA	CTMUICON<9:8> = 00 (Note 2)		
DCT20	VF	Temperature Diode Forward Voltage	—	.76	_	V			
DCT21	VΔ	Voltage Change per Degree Celsius	—	1.6	—	mV/°C			

Note 1: Nominal value at the center point of the current trim range (CTMUICON<7:2> = 000000). On PIC24F32KA parts, the current output is limited to the typical current value when IOUT4 is chosen.

2: Do not use this current range with a temperature sensing diode.

TABLE 29-23: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
DO31	TIOR	Port Output Rise Time	—	10	25	ns			
DO32	TIOF	Port Output Fall Time	—	10	25	ns			
DI35	TINP	INTx Pin High or Low Time (output)	20	—	—	ns			
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү			

Note 1: Data in "Typ" column is at 3.3V, +25°C (PIC24F32KA3XX); 5.0V, +25°C (PIC24FV32KA3XX), unless otherwise stated.

FIGURE 29-19: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 29-37: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽²⁾	TCY/2	_		ns			
SP11	TscH	SCKx Output High Time ⁽²⁾	TCY/2	_	—	ns			
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns			
SP21	TscR	SCKx Output Rise Time ⁽³⁾	-	10	25	ns			
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns			
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	30	ns			
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: This assumes a 50 pF load on all SPIx pins.

30.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

Data for VDD levels greater than 3.3V are applicable to PIC24FV32KA304 family devices only.

30.1 Characteristcs for Industrial Temperature Devices (-40°C to +85°C)

Frequency (MHz)

18

22

26

30

FIGURE 30-2: TYPICAL AND MAXIMUM IDD vs. Fosc (EC MODE, 1.95 kHz TO 1 MHz, +25°C)

2

6

10

14

FIGURE 30-17: TYPICAL AND MAXIMUM IPD vs. TEMPERATURE (DEEP SLEEP MODE)

FIGURE 30-33: TYPICAL BAND GAP VOLTAGE vs. TEMPERATURE ($2.0V \le VDD \le 5.5V$)

NOTES: