

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s105c4t3tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	recommended footprint	93
Figure 49.	LQFP48 marking example (package top view)	
Figure 50.	LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline	94
Figure 51.	LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package	
	recommended footprint	
Figure 52.	LQFP44 marking example (package top view)	97
Figure 53.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline	98
Figure 54.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package	
	recommended footprint	100
Figure 55.	LQFP32 marking example (package top view)	100
Figure 56.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package outline	101
Figure 57.	UFQFPN32 - 32-pin, 5 x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package recommended footprint	102
Figure 58.	UFQFPN32 marking example (package top view)	103
Figure 59.	SDIP32 package outline	104
Figure 60.	SDIP32 marking example (package top view)	
Figure 61.	STM8S105x4/6 access line ordering information scheme ⁽¹⁾	108

2 Description

The STM8S105x4/6 access line 8-bit microcontrollers offer from 16 to 32 Kbyte Flash program memory, plus integrated true data EEPROM. The STM8S microcontroller family reference manual (RM0016) refers to devices in this family as medium-density. All devices of the STM8S105x4/6 access line provide the following benefits: reduced system cost, performance and robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog and brown-out reset.

Device performance is ensured by a 16 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across common family product architecture with compatible pinout, memory map and modular peripherals.

Product longevity is ensured in the STM8S family thanks to their advanced core which is made in a state-of-the-art technology for applications with 2.95 V to 5.5 V operating supply.

Full documentation is offered as well as a wide choice of development tools.

5 Pinout and pin description

Туре	I= Input, O = Output, S = Power s	I= Input, O = Output, S = Power supply				
Level	Input	CM = CMOS				
Level	Output	HS = High sink				
Output speed	 O1 = Slow (up to 2 MHz) O2 = Fast (up to 10 MHz) O3 = Fast/slow programmability with slow as default state after reset O4 = Fast/slow programmability with fast as default state after reset 					
Dent and service!	Input	float = floating, wpu = weak pull-up				
Port and control configuration	Output	T = True open drain, OD = Open drain, PP = Push pull				
Reset state	Bold X (pin state after internal reset release). Unless otherwise specified, the pin state is the same during the reset phase and after the internal reset release.					

Table 4. Legend/abbreviations for pin description tables

F	Pin nu	umbe	r				Input			-	tput				
LQFP48	LQFP44	LQFP32/UFQFPN32	SDIP32	Pin name	Туре	Floating	ndw	Ext. interrupt	High sink	Speed	OD	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
24	22	-	-	PE6/ AIN9	I/O	<u>x</u>	х	Х	-	01	х	х	Port E6	Analog input 9 ⁽³⁾	-
25	23	17	22	PE5/ SPI_NSS	I/O	X	х	х	-	01	х	х	Port E5	SPI master/ slave select	-
26	24	18	23	PC1/ TIM1_CH1/ UART2_CK	I/O	X	х	x	HS	O3	x	х	Port C1	Timer 1 - channel 1/UART2 synchron ous clock	-
27	25	19	24	PC2/ TIM1_CH2	I/O	<u>x</u>	Х	х	HS	03	х	х	Port C2	Timor 1	
28	26	20	25	PC3/ TIM1_CH3	I/O	X	Х	Х	HS	O3	х	Х	Port C3	Timer 1 - channel 3	-
29	-	21	26	PC4/ TIM1_CH4	I/O	<u>x</u>	х	Х	HS	O3	х	Х	Port C4	Timer 1 - channel 4	-
30	27	22	27	PC5/ SPI_SCK	I/O	X		Х	HS	O3	Х	Х	Port C5	SPI clock	-
31	28	-	-	VSSIO_2	S	-	-	-	-	-	-	-	I/O g	round	-
32	29	-	-	VDDIO_2	S	-	-	-	-	-	-	-	I/O powe	er supply	-
33	30	23	28	PC6/ SPI_MOSI	I/O	X	х	х	HS	O3	x	х	Port C6	SPI master out/slave in	-
34	31	24	29	PC7/ SPI_ MISO	I/O	X	х	х	HS	O3	х	х	Port C7	SPI masterin/ slave out	-
35	32	-	-	PG0	I/O	<u>X</u>	Х	-	-	01	Х	Х	Port G0	-	-
36	33	-	-	PG1	I/O	X	Х	I	-	01	Х	Х	Port G1	-	-
37	-	-	-	PE3/ TIM1_BKIN	I/O	X	х	х	-	01	х	х	Port E3	Timer 1 - break input	-
38	34	-	-	PE2/12C_SDA	I/O	X	-	х	-	01	T (4)	-	Port E2	I 2C data	-
39	35	-	-	PE1/ I2C_SCL	I/O	<u>x</u>	-	х	-	01	T (4)	-	Port E1	I 2C clock	-

Table 5. STM8S105x4/6 pin description (continued)

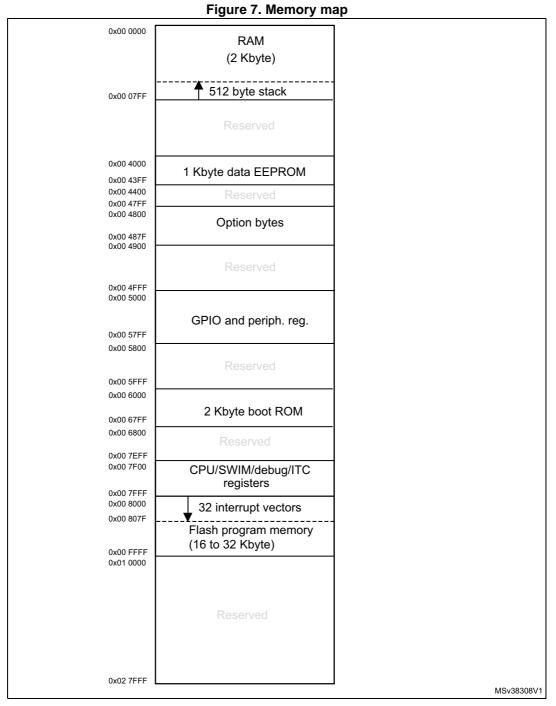
F	Pin nu	umbe	r				Input	t		Out	put				
LQFP48	LQFP44	LQFP32/UFQFPN32	SDIP32	Pin name	Туре	Floating	ndw	Ext. interrupt	High sink	Speed	OD	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
40	36	-	-	PE0/ CLK_CCO	I/O	x	х	х	HS	O3	х	х	Port E0	Configura ble clock output	-
41	37	25	30	PD0/ TIM3_CH2 [TIM1_BKIN] [CLK_CCO]	1/0	x	х	X	HS	O3	×	х	Port D0	Timer 3 - channel 2	TIM1_BK IN [AFR3]/ CLK_CC O [AFR2]
42	38	26	31	PD1/ SWIM ⁽⁵⁾	I/O	x	x	х	х	HS	04	х	Port D1	SWIM data interface	-
43	39	27	32	PD2/ TIM3_CH1 [TIM2_CH3]	I/O	x	х	х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH 3 [AFR1]
44	40	28	1	PD3/ TIM2_CH2 [ADC_ETR]	I/O	x	х	х	HS	O3	х	х	Port D3	Timer 2 - channel 2	ADC_ET R [AFR0]
45	41	29	2	PD4/ TIM2_CH1 [BEEP]	I/O	x	х	х	HS	O3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
46	42	30	3	PD5/ UART2_TX	I/O	x	х	х	-	01	х	х	Port D5	UART2 data transmit	-
47	43	31	4	PD6/ UART2_RX	I/O	x	х	х	-	01	х	х	Port D6	UART2 data receive	-
48	44	32	5	PD7/ TLI [TIM1_CH4	I/O	<u>x</u>	х	х	-	01	х	х	Port D7	Top level interrupt	TIM1_CH 4 [AFR4]

 Table 5. STM8S105x4/6 pin description (continued)

1. A pull-up is applied to PF4 during the reset phase. This pin is input floating after reset release.

2. AIN12 is not selectable in ADC scan mode or with analog watchdog.

3. In 44-pin package, AIN9 cannot be used by ADC scan mode.


4. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to V_{DD} are not implemented).

5. The PD1 pin is in input pull-up during the reset phase and after internal reset release.

6 Memory and register map

6.1 Memory map

The following table lists the boundary addresses for each memory size. The top of the stack is at the RAM end address in each case.

Address	Block	Register label	Register name	Reset status
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF
0x00 7F96		DM_CR1	DM debug module control register 1	0x00
0x00 7F97		DM_CR2	DM debug module control register 2	0x00
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10
0x00 7F99		DM_CSR2	DM debug module control/status register 2	0x00
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF
0x00 7F9B to 0x00 7F9F	Reserved area	a (5 byte)		

Table 9. CPU/SWIM/debug module/interrupt controller registers (continued
--

1. Accessible by debug module only.

10.2 Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V_{DDx} - V_{SS}	Supply voltage (including $V_{DDA and} V_{DDIO}$) ⁽¹⁾	-0.3	6.5	V
V	Input voltage on true open drain pins (PE1, PE2) ⁽²⁾	V _{SS} - 0.3	6.5	V
V _{IN}	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	v
V _{DDx} - V _{DD}	Variations between different power pins	-	50	mV
$ V_{SSx} - V_{SS} $	Variations between all the different ground pins	-	50	IIIV
V _{ESD}	Electrostatic discharge voltage		- 50 see Absolute maximum (electrical sensitivity) page 89	

Table 15.	Voltage	characteristics
-----------	---------	-----------------

1. All power (V_{DD}) and ground (V_{SS}) pins must always be connected to the external power supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

Symbol	Ratings	Max. ⁽¹⁾	Unit
I _{VDD}	Total current into V _{DD} power lines (source) ⁽²⁾	100	mA
I _{VSS}	Total current out of V_{SS} ground lines (sink) ⁽¹⁾	80	
	Output current sunk by any I/O and control pin	20	
I _{IO}	Output current source by any I/Os and control pin	-20	
	Total output current sourced (sum of all I/O and control pins) for devices with two $V_{DDIO}\ pins^{(3)}$	200	
21	Total output current sourced (sum of all I/O and control pins) for devices with one $V_{DDIO}\rm{pin}^{(3)}$	100	
ΣI _{IO}	Total output current sunk (sum of all I/O and control pins) for devices with two ${\rm V}_{\rm SSIO}$ pins^{(3)}	160	
	Total output current sunk (sum of all I/O and control pins) for devices with one $V_{SSIO}\text{pin}^{(3)}$	80	
	Injected current on NRST pin	±4	
I _{INJ(PIN)} ^{(4) (5)}	Injected current on OSCIN pin	±4	
	Injected current on any other pin ⁽⁶⁾	±4	
$\Sigma I_{INJ(PIN)}^{(4)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±20	

Table 16. Current characteristics

1. Data based on characterization results, not tested in production.

All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external supply.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IT+}	Power-on reset threshold	-	2.65	2.8	2.95	V
V _{IT-}	Brown-out reset threshold	-	2.58	2.65	2.88	v
V _{HYS(BOR)}	Brown-out reset hysteresis	-	-	70	-	mV

Table 19. Operating conditions at power-up/power-down (continued)

1. Guaranteed by design, not tested in production.

			Conditio	ns											
Symbol	Parameter	Main voltage regulator (MVR) ⁽²⁾	Flash mode ⁽³⁾	Clock source	Тур	Max at 85 °C ⁽¹⁾	Max at 85 °C ⁽¹⁾	Unit							
			Operating mode	HSE crystal osc. (16 MHz)	680	-	-								
	Supply current in active halt mode		Operating mode	LSI RC osc. (128 kHz)	200	320	400								
		On	Power down mode	HSE crystal osc. (16 MHz)	630	-	-								
I _{DD(AH)}											Power down mode	LSI RC osc. (128 kHz)	140	270	350
			Operating mode	LSI RC osc. (128 kHz)	66	120	220								
		Off	Power down mode	LSI RC osc. (128 kHz)	10	60	150								

1. Data based on characterization results, not tested in production.

2. Configured by the REGAH bit in the CLK_ICKR register.

3. Configured by the AHALT bit in the FLASH_CR1 register.

Total current consumption in halt mode

Table 26. Total current consumption in halt mode at V_{DD} = 5 V

		-		00		
Symbol	Parameter	Conditions	Тур	Max at 85 °C ⁽¹⁾	Max at 85 °C ⁽¹⁾	Unit
I _{DD(H)}	Supply current in halt	Flash in operating mode, HSI clock after wakeup	62	90	150	
	mode	Flash in power-down mode, HSI clock after wakeup	6.5	25	80	μA

1. Data based on characterization results, not tested in production.

Table 27. Tota	I current consumption	in halt mode at V_{DD} = 3.3 V
----------------	-----------------------	----------------------------------

Symbol	Parameter	Conditions	Тур	Max at 85 °C ⁽¹⁾	Max at 85 °C ⁽¹⁾	Unit
I _{DD(H)}	Supply current in halt	Flash in operating mode, HSI clock after wakeup	60	90	150	μA
	mode	Flash in power-down mode, HSI clock after wakeup	4.5	20	80	μΑ

1. Data based on characterization results, not tested in production.

HSI internal RC/f_{CPU}= f_{MASTER} = 16 MHz, V_{DD} = 5 V

Table 30. Peripheral current consumption

Symbol	Parameter		Unit
I _{DD(TIM1)}	TIM1 supply current ⁽¹⁾	230	
I _{DD(TIM2)}	TIM2 supply current ⁽¹⁾	115	
I _{DD(TIM3)}	TIM3 supply current ⁽¹⁾	90	
I _{DD(TIM4)}	TIM4 supply current ⁽¹⁾	30	
I _{DD(UART2)}	UART2 supply current ⁽²⁾	110	μΑ
I _{DD(SPI)}	SPI supply current ⁽²⁾	45	
I _{DD(I2C)}	I2C supply current ⁽²⁾	65	
I _{DD(ADC1)}	ADC1 supply current when converting ⁽³⁾	955	

 Data based on a differential I_{DD} measurement between reset configuration and timer counter running at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.

2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not tested in production.

3. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions. Not tested in production.

Current consumption curves

The following figures show typical current consumption measured with code executing in RAM.

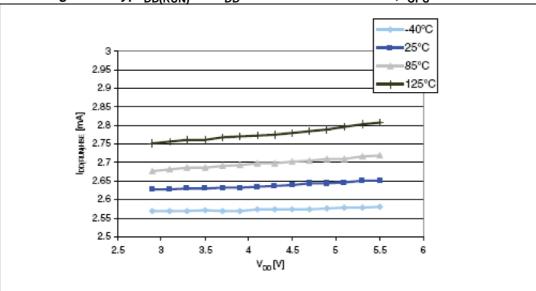


Figure 13. Typ $I_{DD(RUN)}$ vs. V_{DD} HSE user external clock, f_{CPU} = 16 MHz

10.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage		-0.3 V	-	0.3 x V _{DD}	V
V _{IH}	Input high level voltage	V _{DD} = 5 V	0.7 x V _{DD}	-	V _{DD} + 0.3 V	v
V _{hys}	Hysteresis ⁽¹⁾		-	700	-	mV
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	30	55	80	kΩ
t _R , t _F	Rise and fall time	Fast I/Os Load = 50 pF	-	-	35 ⁽²⁾	20
	(10% - 90%)	Standard and high sink I/Os Load = 50 pF	-	-	125 ⁽²⁾	ns
	Rise and fall time (10% - 90%)	Fast I/Os Load = 20 pF	-	-	20 ⁽²⁾	ns
t _R , t _F		Standard and high sink I/Os Load = 20 pF	-	-	50 ⁽²⁾	
l _{lkg}	Digital input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1 ⁽³⁾	μA
I _{lkg ana}	Analog input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±250 ⁽³⁾	nA
I _{lkg(inj)}	Leakage current in adjacent I/O	Injection current ±4 mA	-	-	±1 ⁽³⁾	μA

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

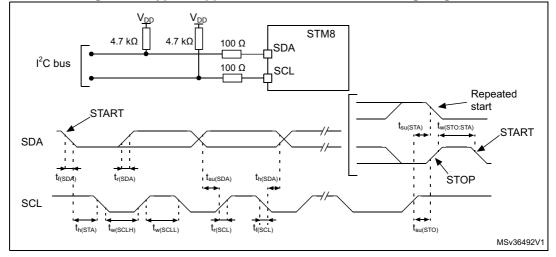
2. Data guaranteed by design.

3. Data based on characterization results, not tested in production

10.3.10 I²C interface characteristics

Symbol	Parameter	Standard mode I ² C		Fast mode I ² C ⁽¹⁾		Unit
	raiametei	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	onne
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾	-	0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time (V _{DD} = 3 to 5.5 V)	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time $(V_{DD} = 3 \text{ to } 5.5 \text{ V})$	-	300	-	300	
t _{h(STA)}	START condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	
Cb	Capacitive load for each bus line	-	400	-	400	pF

Table 43. I²C characteristics


1. f_{MASTER} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz)

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

Figure 44. Typical application with I²C bus and timing diagram

10.3.11 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MASTER}},\,\text{and}\,\,T_{\text{A}}\,\,\text{unless}$ otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
£		V _{DD} = 2.95 to 5.5 V	1	-	4	N 41 1-	
f _{ADC}	ADC clock frequency	V _{DD} = 4.5 to 5.5 V	1	-	6	MHz	
V _{DDA}	Analog supply	-	3.0	-	5.5		
V _{REF+}	Positive reference voltage	-	2.75 ⁽¹⁾	-	V _{DDA}	V	
V _{REF-}	Negative reference voltage	-	V_{SSA}	-	0.5 ⁽¹⁾		
V _{AIN}	Conversion voltage range ⁽²⁾	-	V _{SSA}	-	V _{DDA}		
		Devices with external V _{REF+} /V _{REF-}	V _{REF-}	-	V _{REF+}	V	
C _{ADC}	Internal sample and hold capacitor	-	-	3	-	pF	
ts ⁽²⁾	Minimum sampling time	f _{ADC} = 4 MHz	-	0.75	-	118	
is		f _{ADC} = 6 MHz	-	0.5	-	μs	
t _{STAB}	Wakeup time from standby	-	-	7.0	-	μs	
	Minimum total conversion time	f _{ADC} = 4 MHz		3.5		μs	
t _{CONV}	(including sampling time, 10-	f _{ADC} = 6 MHz	2.33		μs		
	bit resolution)	-	14			1/f _{ADC}	

1. Data guaranteed by design, not tested in production.

2. During the sample time, the sampling capacitance, C_{AIN} (3 pF max), can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S . After the end of the sample time t_S , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

10.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709 (EMC design guide for STM microcontrollers).

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. See application note AN1015 (Software techniques for improving microcontroller EMC performance).

Symbol	Parameter	Conditions	Level/class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 5 \text{ V}, \text{ T}_A = 25 \text{ °C},$ $f_{MASTER} = 16 \text{ MHz} \text{ (HSI clock)},$ Conforms to IEC 1000-4-2	2/B ⁽¹⁾
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 5 V$, $T_A = 25 °C$, $f_{MASTER} = 16 MHz$ (HSI clock), Conforms to IEC 1000-4-4	4/A ⁽¹⁾

Table 47. EMS data

 Data obtained with HSI clock configuration, after applying the hardware recommendations described in AN2860 (EMC guidelines for STM8S microcontrollers).

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC 61967-2 which specifies the board and the loading of each pin.

Symbol		Conditions				
	Parameter	General conditions	Monitored	Max f _{HS}	x f _{HSE} /f _{CPU} ⁽¹⁾	
			frequency band	8 MHz/ 8 MHz	8 MHz/ 16 MHz	
	Peak level $V_{DD} = 5 V$, $T_A = 25 °C$, LQFP48 package. Conforming to		0.1 MHz to 30 MHz	13	14	
S _{EMI}			30 MHz to 130 MHz	23	19	dBµV
			130 MHz to 1 GHz	-4.0	-4.0	
	EMI level	IEC 61967-2	EMI level	2.0	1.5	-

Table	48.	EMI	data
-------	-----	-----	------

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD, DLU and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

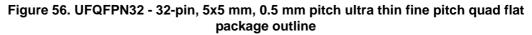
Electrostatic discharge (ESD)

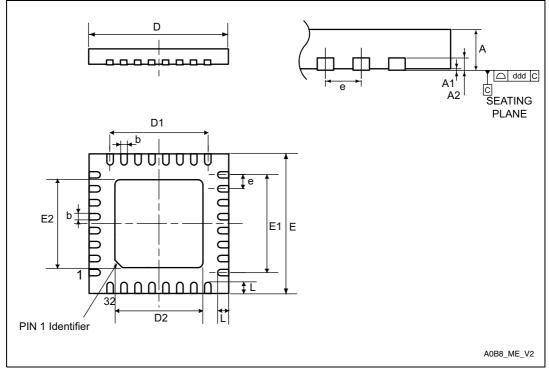
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts x (n+1) supply pin). One model can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to SD22-C101	IV	1000	v

Table 49. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production


Cumhal	millimeters			inches ⁽¹⁾		
Symbol Min		Тур	Max	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031


Table 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package			
mechanical data			

1. Values in inches are converted from mm and rounded to 4 decimal digits.

11.4 UFQFPN32 package information

1. Drawing is not to scale.

- 2. All leads/pads should be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this backside pad to PCB ground.
- 4. Dimensions are in millimeters.

14.3 **Programming tools**

During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on the application board via the SWIM protocol. Additional tools include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for the STM8 programming.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

Date	Revision	Changes
12-May-2009	7	Added SDIP32 silhouette and package to <i>Features</i> and <i>Section: SDIP32 package mechanical data</i> ; updated <i>Section: Pinout and pin description.</i> Updated VDD range (2.95 V to 5.5 V) on Features. Amended name of package VQFPN32. Added Table 5 on page 22. Updated <i>Section: Auto wakeup counter.</i> Updated pins 25, 30, and 31 in <i>Section: Pinout and pin description.</i> Removed Table 7: Pin-to-pin comparison of pin 7 to 12 in 32-pin access line devices. Added <i>Table: Description of alternate function</i> <i>remapping bits</i> [7:0] of OPT2. <i>Section: Electrical characteristics:</i> Updated VCAP specifications; updated Table 15, Table 18, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Table 27, Table 29, Table 35, and Table 42; added current consumption curves; removed Figure 20: typical HSE frequency vs fcpu @ 4 temperatures; updated Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17; modified HSI accuracy in Table 33; added Figure 44; modified f _{SCK} , t _{V(SO)} and t _{V(MO)} in Table 42; updated figures and tables of High speed internal RC oscillator (HSI); replaced Figure 23, Figure 24, Figure 26, and Figure 39. <i>Section Package information:</i> updated <i>Section: Thermal characteristics</i> and removed Table 57: Junction temperature range. Updated <i>Section: STM8S105xx</i> access line ordering information scheme.
10-Jun-2009	8	Document status changed from "preliminary data" to "datasheet". Standardized the name of the VFQFPN package. Removed 'wpu' from I2C pins Section: Pinout and pin description

