

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s105c6t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	11.5	SDIP32 package information 104
12	Ther	nal characteristics
	12.1	Reference document
	12.2	Selecting the product temperature range
13	Orde	ring information
	13.1	STM8S105 FASTROM microcontroller option list
14	STM	3 development tools 113
	14.1	Emulation and in-circuit debugging tools
		14.1.1 STice key features 113
	14.2	Software tools
		14.2.1 STM8 toolset
		14.2.2 C and assembly toolchains
	14.3	Programming tools
15	Revis	sion history

3 Block diagram

DocID14771 Rev 15

4 **Product overview**

The following section provides an overview of the basic features of the device functional modules and peripherals.

For more detailed information please refer to the corresponding family reference manual (RM0016).

4.1 Central processing unit STM8

The 8-bit STM8 core is designed for code efficiency and performance.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

Architecture and registers

- Harvard architecture,
- 3-stage pipeline,
- 32-bit wide program memory bus single cycle fetching for most instructions,
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations,
- 8-bit accumulator,
- 24-bit program counter 16-Mbyte linear memory space,
- 16-bit stack pointer access to a 64 K-level stack,
- 8-bit condition code register 7 condition flags for the result of the last instruction.

Addressing

- 20 addressing modes,
- Indexed indirect addressing mode for look-up tables located anywhere in the address space,
- Stack pointer relative addressing mode for local variables and parameter passing.

Instruction set

- 80 instructions with 2-byte average instruction size,
- Standard data movement and logic/arithmetic functions,
- 8-bit by 8-bit multiplication,
- 16-bit by 8-bit and 16-bit by 16-bit division,
- Bit manipulation,
- Data transfer between stack and accumulator (push/pop) with direct stack access,
- Data transfer using the X and Y registers or direct memory-to-memory transfers.

I	יin nu	umbe	۶r				Input	t		Out	tput				
LQFP48	LQFP44	LQFP32/UFQFPN32	SDIP32	Pin name	Туре	Floating	ndw	Ext. interrupt	High sink	Speed	OD	dд	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
40	36	-	-	PE0/ CLK_CCO	I/O	x	x	x	HS	O3	х	х	Port E0	Configura ble clock output	-
41	37	25	30	PD0/ TIM3_CH2 [TIM1_BKIN] [CLK_CCO]	I/O	x	x	x	HS	O3	x	x	Port D0	Timer 3 - channel 2	TIM1_BK IN [AFR3]/ CLK_CC O [AFR2]
42	38	26	31	PD1/ SWIM ⁽⁵⁾	I/O	x	x	x	x	HS	04	х	Port D1	SWIM data interface	-
43	39	27	32	PD2/ TIM3_CH1 [TIM2_CH3]	I/O	x	x	x	HS	О3	x	х	Port D2	Timer 3 - channel 1	TIM2_CH 3 [AFR1]
44	40	28	1	PD3/ TIM2_CH2 [ADC_ETR]	I/O	x	x	x	НS	O3	x	х	Port D3	Timer 2 - channel 2	ADC_ET R [AFR0]
45	41	29	2	PD4/ TIM2_CH1 [BEEP]	I/O	x	x	x	нs	O3	x	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
46	42	30	3	PD5/ UART2_TX	I/O	x	x	x	-	01	x	х	Port D5	UART2 data transmit	-
47	43	31	4	PD6/ UART2_RX	I/O	x	x	x	-	01	x	x	Port D6	UART2 data receive	-
48	44	32	5	PD7/ TLI [TIM1_CH4	I/O	<u>x</u>	х	х	-	01	х	х	Port D7	Top level interrupt	TIM1_CH 4 [AFR4]

 Table 5. STM8S105x4/6 pin description (continued)

1. A pull-up is applied to PF4 during the reset phase. This pin is input floating after reset release.

2. AIN12 is not selectable in ADC scan mode or with analog watchdog.

3. In 44-pin package, AIN9 cannot be used by ADC scan mode.

4. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to V_{DD} are not implemented).

5. The PD1 pin is in input pull-up during the reset phase and after internal reset release.

6 Memory and register map

6.1 Memory map

The following table lists the boundary addresses for each memory size. The top of the stack is at the RAM end address in each case.

Memory area	Size (byte)	Start address	End address		
Elach program momony	32 K	0x00 8000	0x00 FFFF		
Flash program memory	16 K	0x00 8000	0x00 BFFF		
RAM	2 K	0x00 0000	0x00 07FF		
Data EEPROM	1024	0x00 4000	0x00 43FF		

Table 6. Flash, data EEPROM and RAM boundary address

6.2 Register map

6.2.1 I/O port hardware register map

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0xXX ⁽¹⁾
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x00
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xXX ⁽¹⁾
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PB_IDR	Port C input pin value register	0xXX ⁽¹⁾
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0xXX ⁽¹⁾
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x02
0x00 5013]	PD_CR2	Port D control register 2	0x00

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

10.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \Sigma$).

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \Sigma$).

10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Typical current consumption

For typical current consumption measurements, VDD, VDDIO and VDDA are connected together in the configuration shown in the following figure.

Figure 8. Supply current measurement conditions

10.2 Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DDx} - V _{SS}	Supply voltage (including $V_{DDA and} V_{DDIO}$) ⁽¹⁾	-0.3	6.5	V
V	Input voltage on true open drain pins (PE1, PE2) ⁽²⁾	V _{SS} - 0.3	6.5	V
VIN	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	v
V _{DDx} - V _{DD}	Variations between different power pins	-	50	m\/
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	IIIV
V _{ESD}	Electrostatic discharge voltage	see Absolu (electric	ite maximum cal sensitivity, page 89	ratings) on

1. All power (V_{DD}) and ground (V_{SS}) pins must always be connected to the external power supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

Symbol	Ratings	Max. ⁽¹⁾	Unit
I _{VDD}	Total current into V _{DD} power lines (source) ⁽²⁾	100	mA
I _{VSS}	Total current out of V_{SS} ground lines $(sink)^{(1)}$	80	
lio	Output current sunk by any I/O and control pin	20	
10	Output current source by any I/Os and control pin	-20	
5,	Total output current sourced (sum of all I/O and control pins) for devices with two $V_{DDIO}\ \text{pins}^{(3)}$	200	
	Total output current sourced (sum of all I/O and control pins) for devices with one $V_{DDIO}\text{pin}^{(3)}$	100	
210	Total output current sunk (sum of all I/O and control pins) for devices with two $\rm V_{SSIO}pins^{(3)}$	160	
I _{IO} ΣI _{IO} I _{INJ(PIN)} ^{(4) (5)}	Total output current sunk (sum of all I/O and control pins) for devices with one $\rm V_{SSIO}pin^{(3)}$	80	
I _{INJ(PIN)} ^{(4) (5)}	Injected current on NRST pin	±4	
	Injected current on OSCIN pin	±4	
	Injected current on any other pin ⁽⁶⁾	±4	
$\Sigma I_{INJ(PIN)}^{(4)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±20	

Table 16. Current characteristics

1. Data based on characterization results, not tested in production.

All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external supply.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IT+}	Power-on reset threshold	-	2.65	2.8	2.95	V
V _{IT-}	Brown-out reset threshold	-	2.58	2.65	2.88	v
V _{HYS(BOR)}	Brown-out reset hysteresis	-	-	70	-	mV

Table 19. Operating conditions at power-up/power-down (continued)

1. Guaranteed by design, not tested in production.

10.3.1 VCAP external capacitor

The stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 18*. Care should be taken to limit the series inductance to less than 15 nH.

1. ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as illustrated in Figure 10: Pin input voltage.

Total current consumption in run mode

Table 20. Total c	urrent consumption with	code execution in run	mode at $V_{DD} = 5 V$
-------------------	-------------------------	-----------------------	------------------------

Symbol	Parameter	Condition	ons	Тур	Max ⁽¹⁾	Unit
I _{DD(RUN)}			HSE crystal osc. (16 MHz)	3.2	-	
		f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	2.6	3.2	
	Supply		HSI RC osc. (16 MHz)	2.5	3.2	
	Run mode, code executed from RAM	, f _{CPU} = f _{MASTER} /128 = 125 kHz	HSE user ext. clock (16 MHz)	1.6	2.2	mA
			HSI RC osc. (16 MHz)	1.3	2.0	
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.75	-	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.55	-	
		f _{CPU} = f _{MASTER} = 16 MHz	HSE crystal osc. (16 MHz)	7.7	-	
			HSE user ext. clock (16 MHz)	7.0	8.0	
	current in		HSI RC osc. (16 MHz)	7.0	8.0	
I _{DD(RUN)}	Run mode,	f _{CPU} = f _{MASTER} = 2 MHz	HSI RC osc. (16 MHz/8) ⁽²⁾	1.5	-	mA
	executed	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.35	2.0	
	from Flash	f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.75	-	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.6	-	

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.

External clock sources and timing characteristics 10.3.3

HSE user external clock

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 31. HSE u	user external	clock charac	teristics
-----------------	---------------	--------------	-----------

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	0	16	MHz
V _{HSEH} ⁽¹⁾	OSCIN input pin high level voltage	-	0.7 x V _{DD}	V _{DD} + 0.3 V	V
V _{HSEL} ⁽¹⁾	OSCIN input pin low level voltage	-	V _{SS}	0.3 x V _{DD}	v
I _{LEAK_HSE}	OSCIN input leakage current	V_{SS} < V_{IN} < V_{DD}	-1	+1	μA

1. Data based on characterization results, not tested in production.

Figure 19. HSE external clock source

Figure 22. Typical HSI frequency variation vs $\rm V_{DD}$ @ 4 temperatures

Symbol	Parameter	Conditions	Min	Мах	Unit
V.	Output low level with 2 pins sunk	I _{IO} = 10 mA, V _{DD} = 5 V	-	1.0	
V _{OL}	Output low level with 2 pins sunk	I _{IO} = 10 mA, V _{DD} = 3.3 V	-	1.5 ⁽¹⁾	V
V _{OH}	Output high level with 2 pins sourced	I _{IO} = 10 mA, V _{DD} = 5 V	-	2.0 ⁽¹⁾	

Table 39. Output driving current (true open drain ports)

1. Data based on characterization results, not tested in production

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{OL}	Output low level with 8 pins sunk	I _{IO} = 10 mA, V _{DD} = 5 V	-	0.9	
	Output low level with 4	I _{IO} = 10 mA, V _{DD} = 3.3 V	-	1.1 ⁽¹⁾	
	pins sunk	I _{IO} = 20 mA, V _{DD} = 5 V	-	1.6 ⁽¹⁾	V
V _{OH} Ou pir	Output high level with 8 pins sourced	I _{IO} = 10 mA, V _{DD} = 5 V	3.8	-	v
	Output high level with 4	I _{IO} = 10 mA, V _{DD} = 3.3 V	1.9 ⁽¹⁾	-	
	pins sourced	I _{IO} = 20 mA, V _{DD} = 5 V	2.9 ⁽¹⁾	-	

	.					
Table 40.	Output	drivina	current	(hiah	sink ports)

1. Data based on characterization results, not tested in production.

10.3.7 Typical output level curves

The following figures show the typical output level curves measured with the output on a single pin.

 Data obtained with HSI clock configuration, after applying the hardware recommendations described in AN2860 (EMC guidelines for STM8S microcontrollers).

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC 61967-2 which specifies the board and the loading of each pin.

Symbol Pa		Conditions					
	Parameter		Monitored	Max f _{HSE} /f _{CPU} ⁽¹⁾		Unit	
		General conditions	frequency band	8 MHz/ 8 MHz	8 MHz/ 16 MHz		
S _{EMI} Peak level	V _{DD} = 5 V,	0.1 MHz to 30 MHz	13	14			
	Peak level	$T_A = 25 \degree C$,	30 MHz to 130 MHz	23	19	dBµV	
		Conforming to	130 MHz to 1 GHz	-4.0	-4.0		
	EMI level	IEC 61967-2	EMI level	2.0	1.5	-	

Table	48.	EMI	data
-------	-----	-----	------

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD, DLU and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts x (n+1) supply pin). One model can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to SD22-C101	IV	1000	

Table 49. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production

11.3 LQFP32 package information

Figure 53. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

11.5 SDIP32 package information

Figure 59. SDIP32 package outline

Table 55. SDIP32 package mechanical data

Dim.	mm			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	3.556	3.759	5.080	0.1400	0.1480	0.2000
A1	0.508	-	-	0.0200	-	-
A2	3.048	3.556	4.572	0.1200	0.1400	0.1800
В	0.356	0.457	0.584	0.0140	0.0180	0.0230
B1	0.762	1.016	1.397	0.0300	0.0400	0.0550
С	0.203	0.254	0.356	0.0079	0.0100	0.0140
D	27.430	27.940	28.450	1.0799	1.1000	1.1201
E	9.906	10.410	11.050	0.3900	0.4098	0.4350
E1	7.620	8.890	9.398	0.3000	0.3500	0.3700
е	-	1.778	-	-	0.0700	_
eA	-	10.160	-	-	0.4000	-

Dim	mm			inches ⁽¹⁾				
Dim.	Min	Тур	Max	Min	Тур	Max		
eB	-	-	12.700	-	-	0.5000		
L	2.540	3.048	3.810	0.1000	0.1200	0.1500		

Table 55. SDIP32 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 60. SDIP32 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

12 Thermal characteristics

The maximum junction temperature (T_{Jmax}) of the device must never exceed the values specified in *Table 18: General operating conditions*, otherwise the functionality of the device cannot be guaranteed.

The maximum junction temperature T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma \left(\mathsf{V}_{\mathsf{OL}} * \mathsf{I}_{\mathsf{OL}} \right) + \Sigma \left(\left(\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}} \right) * \mathsf{I}_{\mathsf{OH}} \right),$

taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP48 - 7x7 mm		
Θ _{JA}	Thermal resistance junction-ambient LQFP44 - 10x10 mm		
	Thermal resistance junction-ambient LQFP32 - 7x7 mm		°C/W
	Thermal resistance junction-ambient UFQFPN32 - 5x5 mm		
	Thermal resistance junction-ambient SDIP32 - 400 ml		

Table 56.	Thermal	characteristics	(1))
-----------	---------	-----------------	-----	---

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

12.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

Padding value for unused program memory (check only one option)

[]0xFF	Fixed value
[]0x83	TRAP instruction code
[]0x75	Illegal opcode (causes a reset when executed)

OTP0 memory readout protection (check only one option)

[] Disable or [] Enable

OTP1 user boot code area (UBC)

0x(__) fill in the hexadecimal value, referring to the datasheet and the binary format below:

UBC, bit0	[] 0: Reset [] 1: Set
UBC, bit1	[] 0: Reset [] 1: Set
UBC, bit2	[] 0: Reset [] 1: Set
UBC, bit3	[] 0: Reset [] 1: Set
UBC, bit4	[] 0: Reset [] 1: Set
UBC, bit5	[] 0: Reset [] 1: Set

OTP2 alternate function remapping

AFR0 (check only one option)	[] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description[] 1: Port D3 alternate function = ADC_ETR
AFR1 (check only one option)	 [] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description [] 1: Port A3 alternate function = TIM3_CH1, port D2 alternate function = TIM2_CH3
AFR2 (check only one option)	 [] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description [] 1: Port D0 alternate function = CLK_CCO Note: if both AFR2 and AFR3 are activated, AFR2 option has priority over AFR3.
AFR3 (check only one option)	[] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description [] 1: Port D0 alternate function = TIM1_BKIN

OPT5 crystal oscillator stabilization HSECNT (check only one option)

[] 2048 HSE cycles

[] 128 HSE cycles

[] 8 HSE cycles

[] 0.5 HSE cycles

OTP6 is reserved

OTP7 is reserved

OTPBL bootloader option byte (check only one option)

Refer to the UM0560 (STM8L/S bootloader manual) for more details.

[] Disable (00h)

[] Enable (55h)

Comments:	
Supply operating range in the application:	
Notes:	
Date:	
Signature:	

