

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s105k4t6ctr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		6.2.3	CPU/SWIM/debug module/interrupt controller registers
7	Interr	upt vec	tor mapping
8	Optio	n byte	
	8.1	Alternat	e function remapping bits 49
9	Uniqu	ie ID	
10	Electr	ical cha	aracteristics
	10.1	Parame	ter conditions
		10.1.1	Minimum and maximum values51
		10.1.2	Typical values
		10.1.3	Typical curves
		10.1.4	Typical current consumption
		10.1.5	Loading capacitor
		10.1.6	Pin input voltage
	10.2	Absolute	e maximum ratings 53
	10.3	Operatir	ng conditions
		10.3.1	VCAP external capacitor
		10.3.2	Supply current characteristics
		10.3.3	External clock sources and timing characteristics
		10.3.4	Internal clock sources and timing characteristics
		10.3.5	Memory characteristics
		10.3.6	I/O port pin characteristics
		10.3.7	Typical output level curves
		10.3.8	Reset pin characteristics
		10.3.9	SPI serial peripheral interface
		10.3.10	I ² C interface characteristics
		10.3.11	10-bit ADC characteristics
		10.3.12	EMC characteristics
11	Packa	age info	rmation
	11.1	LQFP48	3 package information
	11.2	LQFP44	package information
	11.3	LQFP32	2 package information
	11.4	UFQFP	N32 package information 101

3 Block diagram

DocID14771 Rev 15

4.2 Single wire interface module (SWIM) and debug module (DM)

The single wire interface module and debug module permits non-intrusive, real-time incircuit debugging and fast memory programming.

SWIM

Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 bytes/ms.

Debug module

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real-time by means of shadow registers.

- R/W to RAM and peripheral registers in real-time
- R/W access to all resources by stalling the CPU
- Breakpoints on all program-memory instructions (software breakpoints)
- Two advanced breakpoints, 23 predefined configurations

4.3 Interrupt controller

- Nested interrupts with three software priority levels,
- 32 interrupt vectors with hardware priority,
- Up to 37 external interrupts on 6 vectors including TLI,
- Trap and reset interrupts

4.4 Flash program and data EEPROM memory

- Up to 32 Kbyte of Flash program single voltage Flash memory,
- Up to 1 Kbyte true data EEPROM,
- Read while write: writing in data memory possible while executing code in program memory,
- User option byte area.

Write protection (WP)

Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction.

There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, data EEPROM and option bytes.

To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to write to data EEPROM, modify the contents of main program memory or the device option bytes.

A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to the figure below.

Figure 5. UFQFPN32/LQFP32 pinout

1. (HS) high sink capability.

2. [] alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

Pinout and pin description

ADC_ETR/TIM2_CH2/(HS) PD3		32 PD2 (HS)/TIM3_CH1 [TIM2_CH3]
[BEEP] TIM2_CH1/(HS) PD4	2	31] рd1 (нs)/swiм
UART2_TX/PD5	3	
UART2_RX/PD6	4	29] PC7 (HS)/SPI_MISO
[TIM1_CH4] TLI/PD7	5	28 PC6 (HS)/SPI_MOSI
NRST	6	27] PC5 (HS)/SPI_SCK
OSCIN/PA1	7	26 PC4 (HS)/TIM1_CH4
OSCOUT/PA2	8	25] РСЗ (НЅ)/ТІМ1_СНЗ
vss	9	24 PC2 (HS)/TIM1_CH2
VCAP	10	23 PC1 (HS)/TIM1_CH1/UART2_CK
VDD	11	22 PE5/SPI_NSS
	12	21] PB0/AIN0 [TIM1_CH1N]
AIN12/PF4	13	20 рв1/аім1 [ТІМ1_CH2N]
VDDA	14	19 🛿 рв2/аіл2 [тім1_снзл]
VSSA	15	18 🛿 рвз/аілз [ТІМ1_ЕТК]
[I2C_SDA] AIN5/PB5	16	17 PB4/AIN4[I2C_SCL]
		MS38308V1

1. (HS) high sink capability.

2. (T) True open drain (P-buffer and protection diode to V_{DD} not implemented).

3. [] alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

F	Pin nu	umbe	r				Input	t		Out	put				
LQFP48	LQFP44	LQFP32/UFQFPN32	SDIP32	Pin name	Туре	Floating	ndw	Ext. interrupt	High sink	Speed	OD	dд	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	6	NRST	I/O	-	<u>X</u>	-	-		-	-	Re	set	-
2	2	2	7	PA1/ OSC IN	I/O	<u>x</u>	х	-	-	01	х	х	Port A1	Resonato r/ crystal in	
3	3	3	8	PA2/ OSC OUT	I/O	<u>x</u>	х	-	-	01	х	х	Port A1	Resonato r/ crystal in	
4	4	-	-	VSSIO_1	S	-	-	-	-	-	-	-	I/O g	round	-
5	5	4	9	VSS	S	-	-	-	-	-	-	-	Digital	ground	-
6	6	5	10	VCAP	s	-	-	-	-	-	-	-	1.8 V re capa	egulator acitor	-

Table 5.	STM8S105x4/6	pin description
10010 01	0111100100/100	

6.2.2 General hardware register map

Address	Block	Register label	Register name	Reset status
0x00 5050 to 0x00 5059	Reserved are	ea (10 byte)		
0x00 505A		FLASH_CR1	Flash control register 1	0x00
0x00 505B		FLASH_CR2	Flash control register 2	0x00
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF
0x00 505D	Flash	FLASH_FPR	Flash protection register	0x00
0x00 505E		FLASH_NFPR	Flash complementary protection register	0xFF
0x00 505F		FLASH_IAPSR	Flash in-application programming status register	0x00
0x00 5060 to 0x00 5061	Reserved are	ea (2 byte)		·
0x00 5062	Flash	FLASH_PUKR	Flash program memory unprotection register	0x00
0x00 5063	Reserved are	ea (1 byte)		
0x00 5064	Flash	FLASH_DUKR	Data EEPROM unprotection register	0x00
0x00 5065 to 0x00 509F	Reserved are	ea (59 byte)		·
0x00 50A0		EXTI_CR1	External interrupt control register 1	0x00
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00
0x00 50A2 to 0x00 50B2	Reserved are	ea (17 byte)		·
0x00 50B3	RST	RST_SR	Reset status register	0xXX ⁽¹⁾
0x00 50B4 to 0x00 50BF	Reserved are	ea (12 byte)		
0x00 50C0		CLK_ICKR	Internal clock control register	0x01
0x00 50C1		CLK_ECKR	External clock control register	0x00
0x00 50C2	Reserved are	ea (1 byte)		

Table 8. General hardware register map

Table 8.	General	hardware	reaister	map	(continued)
	••••••				(

		0	• • • •	
Address	Block	Register label	Register name	Reset status
0x00 5250		TIM1_CR1	TIM1 control register 1	0x00
0x00 5251		TIM1_CR2	TIM1 control register 2	0x00
0x00 5252		TIM1_SMCR	TIM1 slave mode control register	0x00
0x00 5253		TIM1_ETR	TIM1 external trigger register	0x00
0x00 5254		TIM1_IER	TIM1 interrupt enable register	0x00
0x00 5255		TIM1_SR1	TIM1 status register 1	0x00
0x00 5256		TIM1_SR2	TIM1 status register 2	0x00
0x00 5257		TIM1_EGR	TIM1 event generation register	0x00
0x00 5258		TIM1_CCMR1	TIM1 capture/compare mode register 1	0x00
0x00 5259		TIM1_CCMR2	TIM1 capture/compare mode register 2	0x00
0x00 525A		TIM1_CCMR3	TIM1 capture/compare mode register 3	0x00
0x00 525B		TIM1_CCMR4	TIM1 capture/compare mode register 4	0x00
0x00 525C		TIM1_CCER1	TIM1 capture/compare enable register 1	0x00
0x00 525D		TIM1_CCER2	TIM1 capture/compare enable register 2	0x00
0x00 525E		TIM1_CNTRH	TIM1 counter high	0x00
0x00 525F		TIM1_CNTRL	TIM1 counter low	0x00
0x00 5260		TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 5261		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 5262		TIM1_ARRH	TIM1 auto-reload register high	0xFF
0x00 5263		TIM1_ARRL	TIM1 auto-reload register low	0xFF
0x00 5264		TIM1_RCR	TIM1 repetition counter register	0x00
0x00 5265		TIM1_CCR1H	TIM1 capture/compare register 1 high	0x00
0x00 5266		TIM1_CCR1L	TIM1 capture/compare register 1 low	0x00
0x00 5267		TIM1_CCR2H	TIM1 capture/compare register 2 high	0x00
0x00 5268		TIM1_CCR2L	TIM1 capture/compare register 2 low	0x00
0x00 5269		TIM1_CCR3H	TIM1 capture/compare register 3 high	0x00

6.2.3 CPU/SWIM/debug module/interrupt controller registers

Address	Block	Register label	Register name	Reset status
0x00 7F00		A	Accumulator	0x00
0x00 7F01		PCE	Program counter extended	0x00
0x00 7F02		PCH	Program counter high	0x00
0x00 7F03		PCL	Program counter low	0x00
0x00 7F04		ХН	X index register high	0x00
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00
0x00 7F06		YH	Y index register high	0x00
0x00 7F07		YL	Y index register low	0x00
0x00 7F08		SPH	Stack pointer high	0x03
0x00 7F09		SPL	Stack pointer low	0xFF
0x00 7F0A		CCR	Condition code register	0x28
0x00 7F0B to 0x00 7F5F	Reserved area	a (85 byte)		1
0x00 7F60	CPU	CFG_GCR	Global configuration register	0x00
0x00 7F70		ITC_SPR1	Interrupt software priority register 1	0xFF
0x00 7F71		ITC_SPR2	Interrupt software priority register 2	0xFF
0x00 7F72		ITC_SPR3	Interrupt software priority register 3	0xFF
0x00 7F73		ITC_SPR4	Interrupt software priority register 4	0xFF
0x00 7F74		ITC_SPR5	Interrupt software priority register 5	0xFF
0x00 7F75	_	ITC_SPR6	Interrupt software priority register 6	0xFF
0x00 7F76	_	ITC_SPR7	Interrupt software priority register 7	0xFF
0x00 7F77		ITC_SPR8	Interrupt software priority register 8	0xFF
0x00 7F78 to 0x00 7F79	Reserved area	a (2 byte)		•
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00
0x00 7F81 to 0x00 7F8F	Reserved area	a (15 byte)		

Table 9. CPU/SWIM/debug module/interrupt controller registers

Symbol	Parameter	Conditi	ons	Тур	Max ⁽¹⁾	Unit
			HSE crystal osc. (16 MHz)	1.75	-	
		f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	1.55	2.0	
	Supply		HSI RC osc. (16 MHz)	1.5	1.9	
DD(WFI)	wait mode	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.3	-	ΜA
		f _{CPU} = f _{MASTER} /s128 = 15.625 kHz	HSI RC osc. (16 MHz/8) ⁽²⁾	0.7	-	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.5	-	

Table 23. Total current consumption in wait mode at V_{DD} = 3.3 V

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.

Total current consumption in active halt mode

			Conditio	ns				
Symbol	Parameter	Main voltage regulator (MVR) ⁽²⁾	Flash mode ⁽³⁾	Clock source	Тур	Max at 85 °C ⁽¹⁾	Max at 85 °C ⁽¹⁾	Unit
			Operating mode	HSE crystal osc. (16 MHz)	1080	-	-	
			Operating mode	LSI RC osc. (128 kHz)	200	320	400	
1	Supply current in	On	Power down mode	HSE crystal osc. (16 MHz)	1030	-	-	
'DD(AH)	active halt mode		Power down mode	LSI RC osc. (128 kHz)	140	270	350	μΛ
			Operating mode	LSI RC osc. (128 kHz)	68	120	220	
		Off	Power down mode	LSI RC osc. (128 kHz)	12	60	150	

Table 27. Total current consumption in active nait mode at $v = 0$
--

1. Data based on characterization results, not tested in production.

2. Configured by the REGAH bit in the CLK_ICKR register.

3. Configured by the AHALT bit in the FLASH_CR1 register.

		Conditions						
Symbol	Parameter	Main voltage regulator (MVR) ⁽²⁾	Flash mode ⁽³⁾	Clock source	Тур	Max at 85 °C ⁽¹⁾	Max at 85 °C ⁽¹⁾	Unit
	Supply current in active halt mode		Operating mode	HSE crystal osc. (16 MHz)	680	-	-	
			Operating mode	LSI RC osc. (128 kHz)	200	320	400	
I _{DD(AH)}		Supply current in active halt mode	Power down mode	HSE crystal osc. (16 MHz)	630	-	-	
			active halt Power down mode mode	Power down mode	LSI RC osc. (128 kHz)	140	270	350
	Off		Operating mode	LSI RC osc. (128 kHz)	66	120	220	
				Off	Power down mode	LSI RC osc. (128 kHz)	10	60

1. Data based on characterization results, not tested in production.

2. Configured by the REGAH bit in the CLK_ICKR register.

3. Configured by the AHALT bit in the FLASH_CR1 register.

Total current consumption in halt mode

Table 26. Total current consumption in halt mode at V_{DD} = 5 V

Symbol	Parameter	Conditions	Тур	Max at 85 °C ⁽¹⁾	Max at 85 °C ⁽¹⁾	Unit
I _{DD(H)}	Supply current in halt mode	Flash in operating mode, HSI clock after wakeup	62	90	150	
		Flash in power-down mode, HSI clock after wakeup	6.5	25	80	μΑ

1. Data based on characterization results, not tested in production.

Table 27. Tota	current	consumption	in ha	alt mode a	at V _{DD}	= 3.3 V
----------------	---------	-------------	-------	------------	--------------------	---------

Symbol	Parameter	Conditions	Тур	Max at 85 °C ⁽¹⁾	Max at 85 °C ⁽¹⁾	Unit
I _{DD(H)}	Supply current in halt	Flash in operating mode, HSI clock after wakeup	60	90	150	uА
	mode	Flash in power-down mode, HSI clock after wakeup	4.5	20	80	μΛ

1. Data based on characterization results, not tested in production.

External clock sources and timing characteristics 10.3.3

HSE user external clock

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 31. HSE u	user external	clock charac	teristics
-----------------	---------------	--------------	-----------

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	0	16	MHz
V _{HSEH} ⁽¹⁾	OSCIN input pin high level voltage	-	0.7 x V _{DD}	V _{DD} + 0.3 V	V
V _{HSEL} ⁽¹⁾	OSCIN input pin low level voltage	-	V _{SS}	0.3 x V _{DD}	v
I _{LEAK_HSE}	OSCIN input leakage current	V_{SS} < V_{IN} < V_{DD}	-1	+1	μA

1. Data based on characterization results, not tested in production.

Figure 19. HSE external clock source

10.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

High speed internal RC oscillator (HSI)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
ACC _{HS}	Accuracy of HSI oscillator	User-trimmed with CLK_HSITRIMR register for given V_{DD} and T_{A} conditions $^{(1)}$	-	-	1 ⁽²⁾	
		$V_{DD} = 5 V,$ $T_A = 25 °C^{(3)}$	-1.0	-	1.0	%
	HSI oscillator accuracy (factory calibrated)	V_{DD} = 5 V, -25°C ≤ T _A ≤ 85 °C	-2.0	-	2.0	
		$\begin{array}{llllllllllllllllllllllllllllllllllll$	-3.0 ⁽³⁾	-	3.0 ⁽³⁾	
t _{su(HSI)}	HSI oscillator wakeup time including calibration	-	-	-	1.0 ⁽²⁾	μs
I _{DD(HSI)}	HSI oscillator power consumption	-	-	170	250 ⁽³⁾	μA

Table 33. HSI oscillator characteristics

1. Refer to application note.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 21. Typical HSI accuracy @ V_{DD} = 5 V vs 5 temperatures

10.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage		-0.3 V	-	0.3 x V _{DD}	V
V _{IH}	Input high level voltage	V _{DD} = 5 V	0.7 x V _{DD}	-	V _{DD} + 0.3 V	v
V _{hys}	Hysteresis ⁽¹⁾		-	700	-	mV
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	30	55	80	kΩ
t _R , t _F	Rise and fall time	Fast I/Os Load = 50 pF	-	-	35 ⁽²⁾	20
	(10% - 90%)	Standard and high sink I/Os Load = 50 pF	-	-	125 ⁽²⁾	115
t _R , t _F	Rise and fall time	Fast I/Os Load = 20 pF	-	-	20 ⁽²⁾	20
	(10% - 90%)	Standard and high sink I/Os Load = 20 pF	-	-	50 ⁽²⁾	115
I _{lkg}	Digital input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1 ⁽³⁾	μA
I _{Ikg ana}	Analog input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±250 ⁽³⁾	nA
l _{Ikg(inj)}	Leakage current in adjacent I/O	Injection current ±4 mA	-	-	±1 ⁽³⁾	μA

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

2. Data guaranteed by design.

3. Data based on characterization results, not tested in production

Figure 40. Recommended reset pin protection

10.3.9 SPI serial peripheral interface

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Мах	Unit	
f _{SCK}	SPI clock frequency	Master mode	0	8	- MHz	
1/t _{c(SCK)}	SFT Clock frequency	Slave mode	0	6		

Table 42. SPI characteristics

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 49. LQFP48 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such

11.5 SDIP32 package information

Figure 59. SDIP32 package outline

Table 55. SDIP32 package mechanical data

Dim	mm			inches ⁽¹⁾			
Din.	Min	Тур	Max	Min	Тур	Max	
А	3.556	3.759	5.080	0.1400	0.1480	0.2000	
A1	0.508	-	-	0.0200	-	-	
A2	3.048	3.556	4.572	0.1200	0.1400	0.1800	
В	0.356	0.457	0.584	0.0140	0.0180	0.0230	
B1	0.762	1.016	1.397	0.0300	0.0400	0.0550	
С	0.203	0.254	0.356	0.0079	0.0100	0.0140	
D	27.430	27.940	28.450	1.0799	1.1000	1.1201	
E	9.906	10.410	11.050	0.3900	0.4098	0.4350	
E1	7.620	8.890	9.398	0.3000	0.3500	0.3700	
е	-	1.778	-	-	0.0700	_	
eA	-	10.160	-	-	0.4000	-	

13 Ordering information

Figure 61. STM8S105x4/6 access line ordering information scheme ⁽¹⁾								
Example:	STM8	S	105	K	4	Т	6	TR
Product class								
STM8 microcontroller								
Family type								
S = Standard								
Sub-family type								
10x = Access line								
105 sub-family								
Pin count								
K = 32 pins								
S = 44 pins								
C = 48 pins								
Program memory size								
4 = 16 Kbyte								
6 = 32 Kbyte								
Package type								
B = SDIP								
T = LQFP								
U = UFQFPN								
Temperature range								
3 = -40 to 125 °C								
6 = -40 to 85 °C								
Package pitch/thickness								
Blank = 0.5 mm]
C = 0.8 mm								
A = 0.55 mm thickness for UFQFPN32								
De altin a								
Packing								
TR = Tape and reel								

1. A dedicated ordering information scheme will be released if, in the future, memory programming service (FastROM) is required The letter "P" will be added after STM8S. Three unique letters identifying the customer application code will also be visible in the codification. Example: STM8SP103K3MACTR.

For a list of available options (for example memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to *www.st.com* or contact the nearest ST Sales Office.

14 STM8 development tools

Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer.

14.1 Emulation and in-circuit debugging tools

The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application.

In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet your development requirements and to adapt your emulation system to support existing and future ST microcontrollers.

14.1.1 STice key features

- Occurrence and time profiling and code coverage (new features),
- Advanced breakpoints with up to 4 levels of conditions,
- Data breakpoints,
- Program and data trace recording up to 128 KB records,
- Read/write on the fly of memory during emulation,
- In-circuit debugging/programming via SWIM protocol,
- 8-bit probe analyzer,
- 1 input and 2 output triggers,
- Power supply follower managing application voltages between 1.62 to 5.5 V,
- Modularity that allows you to specify the components you need to meet your development requirements and adapt to future requirements.
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

14.3 **Programming tools**

During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on the application board via the SWIM protocol. Additional tools include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for the STM8 programming.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

