

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s105k6t6ctr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Block diagram

DocID14771 Rev 15

The IWDG time base spans from 60 μ s to 1 s.

4.8 Auto wakeup counter

- Used for auto wakeup from active halt mode,
- Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock,
- LSI clock can be internally connected to TIM1 input capture channel 1 for calibration.

4.9 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

The beeper output port is only available through the alternate function remap option bit AFR7.

4.10 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver

- 16-bit up, down and up/down autoreload counter with 16-bit prescaler
- Four independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Synchronization module to control the timer with external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

4.11 TIM2, TIM3 - 16-bit general purpose timers

- 16-bit auto reload (AR) up-counter
- 15-bit prescaler adjustable to fixed power of 2 ratios 1...32768
- Timers with 3 or 2 individually configurable capture/compare channels
- PWM mode
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

5 Pinout and pin description

Туре	I= Input, O = Output, S = Power supply			
	Input	CM = CMOS		
Level	Output	HS = High sink		
Output speed	ut speed 01 = Slow (up to 2 MHz) 02 = Fast (up to 10 MHz) 03 = Fast/slow programmability with slow as default state 04 = Fast/slow programmability with fast as default state			
Dart and control	Input	float = floating, wpu = weak pull-up		
configuration	Output	T = True open drain, OD = Open drain, PP = Push pull		
Reset state	Bold X (pin state after internal reset in Unless otherwise specified, the pin s phase and after the internal reset rel	elease). tate is the same during the reset ease.		

Table 4. Legend/abbreviations for pin description tables

Pinout and pin description

ADC_ETR/TIM2_CH2/(HS) PD3	1	32 PD2 (HS)/TIM3_CH1 [TIM2_CH3]
[BEEP] TIM2_CH1/(HS) PD4	2	31] рd1 (нs)/swiм
UART2_TX/PD5	3	
UART2_RX/PD6	4	29] PC7 (HS)/SPI_MISO
[TIM1_CH4] TLI/PD7	5	28 PC6 (HS)/SPI_MOSI
NRST	6	27] PC5 (HS)/SPI_SCK
OSCIN/PA1	7	26 PC4 (HS)/TIM1_CH4
OSCOUT/PA2	8	25] РСЗ (НЅ)/ТІМ1_СНЗ
vss	9	24 PC2 (HS)/TIM1_CH2
VCAP	10	23 PC1 (HS)/TIM1_CH1/UART2_CK
VDD	11	22 PE5/SPI_NSS
	12	21] PB0/AIN0 [TIM1_CH1N]
AIN12/PF4	13	20] рв1/аім1 [ТІМ1_СН2М]
VDDA	14	19 🛿 рв2/аіл2 [тім1_снзл]
VSSA	15	18 🛿 рвз/аілз [ТІМ1_ЕТК]
[I2C_SDA] AIN5/PB5	16	17 PB4/AIN4[I2C_SCL]
		MS38308V1

1. (HS) high sink capability.

2. (T) True open drain (P-buffer and protection diode to V_{DD} not implemented).

3. [] alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

F	Pin nu	umbe	r				Input	t		Out	put				
LQFP48	LQFP44	LQFP32/UFQFPN32	SDIP32	Pin name	Туре	Floating	ndw	Ext. interrupt	High sink	Speed	OD	dд	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	6	NRST	I/O	-	<u>X</u>	-	-		-	-	Reset		-
2	2	2	7	PA1/ OSC IN	I/O	<u>x</u>	х	-	-	01	х	х	Port A1	Resonato r/ crystal in	
3	3	3	8	PA2/ OSC OUT	I/O	<u>x</u>	х	-	-	01	х	х	Port A1	Resonato r/ crystal in	
4	4	-	-	VSSIO_1	S	-	-	-	-	-	-	-	I/O g	round	-
5	5	4	9	VSS	S	-	-	-	-	-	-	-	Digital	ground	-
6	6	5	10	VCAP	s	-	-	-	-	-	-	-	1.8 V re capa	egulator acitor	-

Table 5.	STM8S105x4/6	pin description
10010 01	0111100100/100	

6 Memory and register map

6.1 Memory map

The following table lists the boundary addresses for each memory size. The top of the stack is at the RAM end address in each case.

Memory area	Size (byte)	Start address	End address
Elach program momony	32 K	0x00 8000	0x00 FFFF
Flash program memory	16 K 0x00 800	0x00 8000	0x00 BFFF
RAM	2 K	0x00 0000	0x00 07FF
Data EEPROM	1024	0x00 4000	0x00 43FF

Table 6. Flash, data EEPROM and RAM boundary address

6.2 Register map

6.2.1 I/O port hardware register map

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0xXX ⁽¹⁾
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x00
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xXX ⁽¹⁾
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PB_IDR	Port C input pin value register	0xXX ⁽¹⁾
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0xXX ⁽¹⁾
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x02
0x00 5013]	PD_CR2	Port D control register 2	0x00

Address	Block	Register label	Register name	Reset status
0x00 5320		TIM3_CR1	TIM3 control register 1	0x00
0x00 5321		TIM3_IER	TIM3 Interrupt enable register	0x00
0x00 5322		TIM3_SR1	TIM3 status register 1	0x00
0x00 5323		TIM3_SR2	TIM3 status register 2	0x00
0x00 5324		TIM3_EGR	TIM3 event generation register	0x00
0x00 5325		TIM3_CCMR1	TIM3 capture/compare mode register 1	0x00
0x00 5326		TIM3_CCMR2	TIM3 capture/compare mode register 2	0x00
0x00 5327		TIM3_CCER1	TIM3 capture/compare enable register 1	0x00
0x00 5328	TIM3	TIM3_CNTRH	TIM3 counter high	0x00
0x00 5329		TIM3_CNTRL	TIM3 counter low	0x00
0x00 532A		TIM3_PSCR	TIM3 prescaler register	0x00
0x00 532B		TIM3_ARRH	TIM3 auto-reload register high	0xFF
0x00 532C		TIM3_ARRL	TIM3 auto-reload register low	0xFF
0x00 532D		TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00
0x00 532E		TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00
0x00 532F		TIM3_CCR2H	TIM3 capture/compare reg. 2 high	0x00
0x00 5330		TIM3_CCR2L	TIM3 capture/compare register 2 low	0x00
0x00 5331 to 0x00 533F	Reserved are	a (15 byte)		
0x00 5340		TIM4_CR1	TIM4 control register 1	0x00
0x00 5341		TIM4_IER	TIM4 interrupt enable register	0x00
0x00 5342		TIM4_SR	TIM4 status register	0x00
0x00 5343	TIM4	TIM4_EGR	TIM4 event generation register	0x00
0x00 5344		TIM4_CNTR	TIM4 counter	0x00
0x00 5345		TIM4_PSCR	TIM4 prescaler register	0x00
0x00 5346		TIM4_ARR	TIM4 auto-reload register	0xFF
0x00 5347 to 0x00 53DF	Reserved are	a (153 byte)		•
0x00 53E0 to 0x00 53F3	ADC1	ADC_DBxR	ADC data buffer registers	0x00
0x00 53F4 to 0x00 53FF	Reserved are	a (12 byte)		

Table 8.	General	hardware	register	map	(continued)
					(••••••••••••••••••••••••••••••••••••••

Address	Block	Register label	Register name	Reset status
0x00 5400		ADC_CSR	ADC control/status register	0x00
0x00 5401		ADC_CR1	ADC configuration register 1	0x00
0x00 5402		ADC_CR2	ADC configuration register 2	0x00
0x00 5403		ADC_CR3	ADC configuration register 3	0x00
0x00 5404		ADC_DRH	ADC data register high	0xXX
0x00 5405		ADC_DRL	ADC data register low	0xXX
0x00 5406	-	ADC_TDRH	ADC Schmitt trigger disable register high	0x00
0x00 5407		ADC_TDRL	ADC Schmitt trigger disable register low	0x00
0x00 5408		ADC_HTRH	ADC high threshold register high	0x03
0x00 5409	cont'd	ADC_HTRL	ADC high threshold register low	0xFF
0x00 540A	-	ADC_LTRH	ADC low threshold register high	0x00
0x00 540B		ADC_LTRL	ADC low threshold register low	0x00
0x00 540C		ADC_AWSRH	ADC analog watchdog status register high	0x00
0x00 540D		ADC_AWSRL	ADC analog watchdog status register low	0x00
0x00 540E	-	ADC _AWCRH	ADC analog watchdog control register high	0x00
0x00 540F		ADC_AWCRL	ADC analog watchdog control register low	0x00
0x00 5410 to 0x00 57FF	Reserved are	ea (1008 byte)		

Table 8. General hardware register map (continued)

1. Depends on the previous reset source.

2. Write-only register.

7 Interrupt vector mapping

IRQ no.	Source block	Description	Wakeup from halt mode	Wakeup from active-halt mode	Vector address
-	RESET	Reset	Yes	Yes	0x00 8000
-	TRAP	Software interrupt	-	-	0x00 8004
0	TLI	External top level interrupt	-	-	0x00 8008
1	AWU	Auto wake up from halt	-	Yes	0x00 800C
2	CLK	Clock controller	-	-	0x00 8010
3	EXTI0	Port A external interrupts	Yes ⁽¹⁾	Yes ⁽¹⁾	0x00 8014
4	EXTI1	Port B external interrupts	Yes	Yes	0x00 8018
5	EXTI2	Port C external interrupts	Yes	Yes	0x00 801C
6	EXTI3	Port D external interrupts	Yes	Yes	0x00 8020
7	EXTI4	Port E external interrupts	Yes	Yes	0x00 8024
8	Reserved	-	-	-	0x00 8028
9	Reserved	-	-	-	0x00 802C
10	SPI	End of transfer	Yes	Yes	0x00 8030
11	TIM1	TIM1 update/ overflow/ underflow/ trigger/ break	-	-	0x00 8034
12	TIM1	TIM1 capture/ compare	-	-	0x00 8038
13	TIM2	TIM2 update/ overflow	-	-	0x00 803C
14	TIM2	TIM2 capture/ compare	-	-	0x00 8040
15	ТІМЗ	TIM3 update/ overflow	-	-	0x00 8044
16	ТІМЗ	TIM3 capture/ compare	-	-	0x00 8048
17	Reserved	-	-	-	0x00 804C
18	Reserved	-	-	-	0x00 8050
19	12C	I2C interrupt	Yes	Yes	0x00 8054

Table 10. Interrupt mapping

IRQ no.	Source block	Description	Wakeup from halt mode	Wakeup from active-halt mode	Vector address	
20	UART2	Tx complete	-	-	0x00 8058	
21	UART2	Receive register DATA FULL	-	-	0x00 805C	
22	ADC1	ADC1 end of conversion/ analog watchdog interrupt	-	-	0x00 8060	
23	TIM4	TIM4 update/ overflow	-	-	0x00 8064	
24	Flash	EOP/WR_PG_DIS	-	-	0x00 8068	
Reserved					0x00 806C to 0x00 807C	

Table 10. Interrupt mapping (continued)

1. Except PA1.

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

10.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \Sigma$).

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \Sigma$).

10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Typical current consumption

For typical current consumption measurements, VDD, VDDIO and VDDA are connected together in the configuration shown in the following figure.

Figure 8. Supply current measurement conditions

Figure 14. Typ $I_{DD(RUN)}$ vs. f_{CPU} HSE user external clock, V_{DD} = 5 V

External clock sources and timing characteristics 10.3.3

HSE user external clock

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 31. HSE u	user external	clock charac	teristics
-----------------	---------------	--------------	-----------

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	0	16	MHz
V _{HSEH} ⁽¹⁾	OSCIN input pin high level voltage	-	0.7 x V _{DD}	V _{DD} + 0.3 V	V
V _{HSEL} ⁽¹⁾	OSCIN input pin low level voltage	-	V _{SS}	0.3 x V _{DD}	v
I _{LEAK_HSE}	OSCIN input leakage current	V_{SS} < V_{IN} < V_{DD}	-1	+1	μA

1. Data based on characterization results, not tested in production.

Figure 19. HSE external clock source

Low speed internal RC oscillator (LSI)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 34.	LSI	oscillator	characteristics
	LOI	Usumator	characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency	-	110	128	150	kHz
t _{su(LSI)}	LSI oscillator wakeup time	-	-	-	7 ⁽¹⁾	μs
IDD(LSI)	LSI oscillator power consumption	-	-	5	-	μA

1. Guaranteed by design, not tested in production.

Figure 38. Typical NRST pull-up resistance R_{PU} vs V_{DD} @ 4 temperatures

Figure 39. Typical NRST pull-up current $I_{\text{pu}} \text{ vs } V_{\text{DD}} @$ 4 temperatures

The reset network shown in *Figure 40* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below $V_{IL(NRST)}$ max (see *Table 41: NRST pin characteristics*), otherwise the reset is not taken into account internally.

For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If NRST signal is used to reset external circuitry, attention must be taken to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. Minimum recommended capacity is 100 nF.

 Data obtained with HSI clock configuration, after applying the hardware recommendations described in AN2860 (EMC guidelines for STM8S microcontrollers).

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC 61967-2 which specifies the board and the loading of each pin.

Symbol		Conditions				
	Parameter		Monitored	Max f _{HSE} /f _{CPU} ⁽¹⁾		Unit
		General conditions	frequency band	8 MHz/ 8 MHz	8 MHz/ 16 MHz	
S _{EMI} Peak level	V _{DD} = 5 V,	0.1 MHz to 30 MHz	13	14		
	Peak level	$T_{A} = 25 °C,$ LQFP48 package. Conforming to IEC 61967-2	30 MHz to 130 MHz	23	19	dBµV
			130 MHz to 1 GHz	-4.0	-4.0	
	EMI level		EMI level	2.0	1.5	-

Table	48.	EMI	data
-------	-----	-----	------

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD, DLU and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts x (n+1) supply pin). One model can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to SD22-C101	IV	1000	

Table 49. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production

11 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

11.1 LQFP48 package information

1. Drawing is not to scale.

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.100	-	-	0.0039

Table 53. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

OPT5 crystal oscillator stabilization HSECNT (check only one option)

[] 2048 HSE cycles

[] 128 HSE cycles

[] 8 HSE cycles

[] 0.5 HSE cycles

OTP6 is reserved

OTP7 is reserved

OTPBL bootloader option byte (check only one option)

Refer to the UM0560 (STM8L/S bootloader manual) for more details.

[] Disable (00h)

[] Enable (55h)

Comments:	
Supply operating range in the application:	
Notes:	
Date:	
Signature:	

Date	Revision	Changes
		Added UFQFPN32 package silhouette to the title page. In Features: added unique ID.
		and TIM3.
		<i>Section: Beeper:</i> added information about availability of the beeper output port through option bit AFR7.
		Section: Analog-to-digital converter (ADC1): added a note concerning additional AIN12 analog input.
		Section: STM8S105 pinouts and pin description: added UFQFPN32 package details; updated default alternate function of PB2/AIN2[TIM1_CH3N] pin in the "Pin description for STM8S105 microcontrollers" table.
		Section: Option bytes: added description of STM8L bootloader option bytes to the option byte description table.
		Added Section: Unique ID
21-Apr-2010	9	Section: Operating conditions: added introductory text; removed low power dissipation condition for TA, replaced "CEXT" by "VCAP", and added ESR and ESL data in table "general operating conditions".
		Section: Total current consumption in halt mode: replaced max value of IDD(H) at 85 °C from 20 μ A to 25 μ A for the condition "Flash in powerdown mode, HSI clock after wakeup in the table "total current consumption in halt mode at VDD = 5 V.
		Section: Low power mode wakeup times: added first condition (0 to 16 MHz) for the $t_{WU(WFI)}$ parameter in the table "wakeup times".
		Section: Internal clock sources and timing characteristics: In the table: HSI oscillator characteristics, replaced min and max values of ACCHSI factory calibrated parameter and removed footnote 4 concerning further characterization of results.
		Section: Functional EMS (electromagnetic susceptibility): IEC 1000 replaced with IEC 61000.
		Section: Designing hardened software to avoid noise problems: IEC 1000 replaced with IEC 61000.
		Section: Electromagnetic interference (EMI): SAE J 1752/3 replaced with IEC61967-2.
		Section: Thermal characteristics: Replaced the thermal resistance junction ambient temperature of LQFP32 7X7 mm from 59 °C to 60 °C in the thermal characteristics table.
		Added Section: 32-lead UFQFPN package mechanical data.
		Added Section STM8S105 FASTROM microcontroller option list.

