

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core ProcessorSTM8Core Size8-BitSpeed16MHzConnectivityIPC, IrDA, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDTNumber of I/O54Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size256 x 8Nutage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Details	
Core Size8-BitSpeed16MHzConnectivityI*C, IrDA, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDTNumber of I/O54Program Memory Size64KB (64K × 8)Program Memory TypeFLASHEEPROM Size256 × 8RAM Size4K × 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Product Status	Active
Speed16MHzConnectivityPC, IrDA, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDTNumber of I/O54Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size256 x 8RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Core Processor	STM8
ProductivityPC, IrDA, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDTNumber of I/O54Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size256 x 8RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Core Size	8-Bit
PeripheralsBrown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDTNumber of I/O54Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size256 x 8RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Speed	16MHz
Number of I/O54Program Memory Size64KB (64K × 8)Program Memory TypeFLASHEEPROM Size256 × 8RAM Size4K × 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type64-LQFPSuppler Device Package64-LQFP (10x10)	Connectivity	I ² C, IrDA, SPI, UART/USART
Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size256 x 8RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Peripherals	Brown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size256 x 8RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Number of I/O	54
EEPROM Size256 x 8RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Program Memory Size	64KB (64K x 8)
RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	EEPROM Size	256 x 8
Data ConvertersA/D 28x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	RAM Size	4K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Operating Temperature -40°C ~ 85°C (TA) Mounting Type Surface Mount Package / Case 64-LQFP Supplier Device Package 64-LQFP (10x10)	Data Converters	A/D 28x12b
Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Oscillator Type	Internal
Package / Case 64-LQFP Supplier Device Package 64-LQFP (10x10)	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 64-LQFP (10x10)	Mounting Type	Surface Mount
	Package / Case	64-LQFP
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l052r8t6tr	Supplier Device Package	64-LQFP (10x10)
	Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l052r8t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This document describes the features, pinout, mechanical data and ordering information of the high density value line STM8L052R8 microcontroller with a Flash memory density of 64 Kbytes.

For further details on the whole STMicroelectronics high density family please refer to *Section 2.2: Ultra low power continuum*.

For detailed information on device operation and registers, refer to the reference manual (RM0031).

For information on to the Flash program memory and data EEPROM, refer to the programming manual (PM0054).

For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).

For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044).

High density value line devices provide the following benefits:

- Integrated system
 - 64 Kbytes of high density embedded Flash program memory
 - 256 bytes of data EEPROM
 - 4 Kbytes of RAM
 - Internal high speed and low-power low speed RC
 - Embedded reset
- Ultra low power consumption
 - 1 µA in Active-halt mode
 - Clock gated system and optimized power management
 - Capability to execute from RAM for Low power wait mode and low power run mode
- Advanced features
 - Up to 16 MIPS at 16 MHz CPU clock frequency
 - Direct memory access (DMA) for memory-to-memory or peripheral-to-memory access
- Short development cycles
 - Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals
 - Wide choice of development tools

These features make the value line STM8L05xxx ultra low power microcontroller family suitable for a wide range of consumer and mass market applications.

Refer to *Table 1: High density value line STM8L05xxx low power device features and peripheral counts* and *Section 3: Functional overview* for an overview of the complete range of peripherals proposed in this family.

Figure 1 shows the block diagram of the high density value line STM8L05xxx family.

2 Description

The high density value line STM8L05xxx devices are members of the STM8L ultra low power 8-bit family.

The value line STM8L05xxx ultra low power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-application debugging and ultra-fast Flash programming.

High density value line STM8L05xxx microcontrollers feature embedded data EEPROM and low-power, low-voltage, single-supply program Flash memory.

All devices offer 12-bit ADC, real-time clock, four 16-bit timers, one 8-bit timer as well as standard communication interface such as two SPIs, I2C, three USARTs and 8x24 or 4x28-segment LCD. The 8x24 or 4x 28-segment LCD is available on the high density value line STM8L05xxx.

The STM8L05xxx family operates from 1.8 V to 3.6 V and is available in the -40 to +85 °C temperature range.

The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

All value line STM8L ultra low power products are based on the same architecture with the same memory mapping and a coherent pinout.

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16-Mbyte linear memory space
- 16-bit stack pointer access to a 64-Kbyte level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The high density value line STM8L05xxx devices feature a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 32 interrupt vectors with hardware priority
- Up to 40 external interrupt sources on 11 vectors
- Trap and reset interrupts

3.9 Analog-to-digital converter

- 12-bit analog-to-digital converter (ADC1) with 27 channels (including 4 fast channels) and internal reference voltage
- Conversion time down to 1 µs with f_{SYSCLK}= 16 MHz
- Programmable resolution
- Programmable sampling time
- Single and continuous mode of conversion
- Scan capability: automatic conversion performed on a selected group of analog inputs
- Analog watchdog: interrupt generation when the converted voltage is outside the programmed threshold
- Triggered by timer

Note: ADC1 can be served by DMA1.

3.10 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.

The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1 and the internal reference voltage V_{REFINT} .

3.11 Timers

The high density value line STM8L05xxx devices contain one advanced control timer (TIM1), three 16-bit general purpose timers (TIM2, TIM3 and TIM5) and one 8-bit basic timer (TIM4).

All the timers can be served by DMA1.

Table 2 compares the features of the advanced control, general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA1 request generation	Capture/compare channels	Complementary outputs			
TIM1		Any power of 2		3 + 1	3				
TIM2	16-bit		up/down	up/down	up/down				
TIM3	IM3			Yes	2	None			
TIM5									
TIM4	8-bit	up	Any power of 2 from 1 to 32768		0				

Table 2. Timer feature comparison

Table 4. High density value line STM8L05xxx pin description (continued)												
Pin number				I	nput	:	0	utpu	It			
LQFP64	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	OD	ЬР	Main function (after reset)	Default alternate function	
42	PF5/LCD_SEG37/ LCD_COM5 ⁽⁵⁾	I/O	FT ⁽²⁾	x	Х	х	HS	х	х	Port F5	LCD_SEG37/ LCD COM5 ⁽⁵⁾	
43	PF6/LCD_SEG38/ LCD_COM6 ⁽⁵⁾	I/O	FT ⁽²⁾	x	х	х	HS	х	х	Port F6	LCD_SEG38/ LCD COM6 ⁽⁵⁾	
44	PF7/LCD_SEG39/ LCD_COM7 ⁽⁵⁾	I/O	FT ⁽²⁾	x	х	х	HS	х	х	Port F7	LCD_SEG39/ LCD COM7 ⁽⁵⁾	
18	VLCD	S	-	-	-	-	-	-	-	LCD booster external capacitor		
11	V _{DD1}	S	-	-	-	-	-	-	-	Digital power supply		
10	V _{SS1}	-	-	-	-	-	-	-	-	I/O grour	nd	
12	V _{DDA}	S	-	-	I	I	-	-	-	Analog s	upply voltage	
13	V _{REF+}	S	-	-	I	I	-	-	I	ADC1 po	ositive voltage reference	
14	PG0/USART3_RX/ [TIM2_BKIN]	I/O	FT ⁽²⁾	x	х	х	HS	х	х	Port G0	USART3 receive / [Timer 2 - break input]	
15	PG1/USART3_TX/ [TIM3_BKIN]	I/O	FT ⁽²⁾	x	Х	Х	HS	х	х	Port G1	USART3 transmit / [Timer 3 -break input]	
16	PG2/USART3_CK	I/O	FT ⁽²⁾	x	х	х	HS	Х	х	Port G2	USART 3 synchronous clock	
17	PG3 <i>[TIM3_ETR]</i>	I/O	FT ⁽²⁾	X	Х	Х	HS	Х	Х	Port G3	[Timer 3 - trigger]	
9	V_{SSA}/V_{REF}	S	-	-	-	-	-	-			round voltage / gative voltage reference	
55	V _{DD2}	S	-	-	I	I	-	-	I	IOs supply voltage		
56	V _{SS2}	S	-	-	-	-	-	-	-	IOs ground voltage		
1	PA0 ⁽⁶⁾ /[USART1_CK] ⁽⁸⁾ / SWIM/BEEP/IR_TIM ⁽⁷⁾	I/O	-	х	х	х	HS	x	х	Port A0	[USART1 synchronous clock] ⁽⁸⁾ / SWIM input and output /Beep output / Infrared Timer output	
29	V _{DD3}	S	-	-	-	-	-	-	-	IOs supp	ly voltage	
30	V _{SS3}	S	-	-	-	-	-	-	I	IOs grou	Os ground voltage	

Table 4. High density value line STM8L05xxx pin description (continued)

 At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1 pin as general purpose output in the STM8L15x and STM8L16x reference manual (RM0031).

Address	Block	Register label	Register name	Reset status
0x00 50C0		CLK_CKDIVR	Clock master divider register	0x03
0x00 50C1		CLK_CRTCR	Clock RTC register	0x00 ⁽¹⁾
0x00 50C2		CLK_ICKR	Internal clock control register	0x11
0x00 50C3		CLK_PCKENR1	Peripheral clock gating register 1	0x00
0x00 50C4		CLK_PCKENR2	Peripheral clock gating register 2	0x00
0x00 50C5		CLK_CCOR	Configurable clock control register	0x00
0x00 50C6		CLK_ECKR	External clock control register	0x00
0x00 50C7		CLK_SCSR	System clock status register	0x01
0x00 50C8	CLK	CLK_SWR	System clock switch register	0x01
0x00 50C9		CLK_SWCR	Clock switch control register	0xX0
0x00 50CA		CLK_CSSR	Clock security system register	0x00
0x00 50CB		CLK_CBEEPR	Clock BEEP register	0x00
0x00 50CC		CLK_HSICALR	HSI calibration register	0xXX
0x00 50CD		CLK_HSITRIMR	HSI clock calibration trimming register	0x00
0x00 50CE		CLK_HSIUNLCKR	HSI unlock register	0x00
0x00 50CF		CLK_REGCSR	Main regulator control status register	0bxx11100
0x00 50D0		CLK_PCKENR3	CLK_PCKENR3 Peripheral clock gating register 3	
0x00 50D1 to 0x00 50D2		F	Reserved area (2 bytes)	·
0x00 50D3		WWDG_CR	WWDG control register	0x7F
0x00 50D4	- WWDG	WWDG_WR	WWDR window register	0x7F
0x00 50D5 to 00 50DF		R	Reserved area (11 bytes)	
0x00 50E0		IWDG_KR	IWDG key register	0xXX
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF
0x00 50E3 to 0x00 50EF		R	eserved area (13 bytes)	
0x00 50F0		BEEP_CSR1	BEEP control/status register 1	0x00
0x00 50F1 0x00 50F2	BEEP		BEEP_CSR1 BEEP control/status register 1 Reserved area (2 bytes)	
0x00 50F3	1	BEEP_CSR2	BEEP control/status register 2	0x1F
0x00 50F4 to 0x00 513F		R	teserved area (76 bytes)	

Table 7. General hardware register map (continued)

Address	Block	Register Label	Register Name	Reset Status	
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF	
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF	
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF	
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF	
0x00 7F94		DM_BK2RH DM breakpoint 2 register high byte		0xFF	
0x00 7F95	DM	DM_BK2RL	BK2RL DM breakpoint 2 register low byte		
0x00 7F96		DM_CR1	DM Debug module control register 1	0x00	
0x00 7F97		DM_CR2	DM Debug module control register 2	0x00	
0x00 7F98		DM_CSR1	DM Debug module control/status register 1	0x10	
0x00 7F99		DM_CSR2	DM Debug module control/status register 2	0x00	
0x00 7F9A		DM_ENFCTR	M_ENFCTR DM enable function register		
0x00 7F9B to 0x00 7F9F	Reserved area (5 bytes)				

Table 8. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active- halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address		
21	TIM3/USART3	TIM3 update/overflow/ trigger/break USART3 transmission complete/transmit data register empty interrupt	-	-	Yes	Yes ⁽⁵⁾	0x00 805C		
22	TIM3/USART3	TIM3 capture/compareUSART3 Receive register data full/overrun/idle line detected/parity error/ interrupt	-	-	Yes	Yes ⁽⁵⁾	0x00 8060		
23	TIM1	Update /overflow/trigger/ COM	-	-	-	Yes ⁽⁵⁾	0x00 8064		
24	TIM1	Capture/compare	-	-	-	Yes ⁽⁵⁾	0x00 8068		
25	TIM4	TIM4 update/overflow/ trigger	-	-	Yes	Yes ⁽⁵⁾	0x00 806C		
26	SPI1	End of Transfer	Yes	Yes	Yes	Yes ⁽⁵⁾	0x00 8070		
27	USART1/TIM5	USART1 transmission complete/transmit data register empty/ TIM5 update/overflow/ trigger/break	-	-	Yes	Yes ⁽⁵⁾	0x00 8074		
28	USART1/TIM5	USART1 received data ready/overrun error/ idle line detected/parity error/TIM5 capture/compare	-	-	Yes	Yes ⁽⁵⁾	0x00 8078		
29	I ² C1/SPI2	I ² C1 interrupt ⁽⁴⁾ /SPI2	Yes	Yes	Yes	Yes ⁽⁵⁾	0x00 807C		

Table 9. Interrupt mapping (continued)

1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode.

2. The TLI interrupt is the logic OR between TIM2 overflow interrupt, and TIM4 overflow interrupts.

 The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in the RM0031).

4. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.

5. In WFE mode, this interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. When this interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.

Table 11. Option byte description						
Option byte no.	Option description					
OPT0	ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L reference manual (RM0031).					
OPT1	UBC[7:0] Size of the user boot code area UBC[7:0] Size of the user boot code area 0x00: No UBC 0x01: Page 0 reserved for the UBC and write protected. 0xFF: Page 0 to 254 reserved for the UBC and write-protected. Refer to User boot code section in the STM8L reference manual (RM0031).					
OPT2	PCODESIZE[7:0] Size of the proprietary code area 0x00: No proprietary code area 0x01: Page 0 reserved for the proprietary code and read/write protected. 0xFF: Page 0 to 254 reserved for the proprietary code and read/write protected. Refer to Proprietary code area (PCODE) section in the STM8L reference manual (RM0031) for more details.					
	IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG_HALT: Independent watchdog off in Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode					
OPT3	WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode					
ΟΡΤ4	HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles					
OPT4	LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles					

Table 11. Option byte description

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} power line (source)	80	
I _{VSS}	Total current out of V _{SS} ground line (sink)	80	
I _{VSS} I _{IO}	Output current sunk by IR_TIM pin (with high sink LED driver capability)	80	
	Output current sunk by any other I/O and control pin	25	
	Output current sourced by any I/Os and control pin	- 25	mA
	Injected current on true open-drain pins (PC0 and PC1) ⁽¹⁾	- 5 / +0	
I _{INJ(PIN)}	Injected current on five-volt tolerant (FT) pins ⁽¹⁾	- 5 / +0	
	Injected current on any other pin ⁽²⁾	- 5 / +5	
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) $^{(3)}$	± 25	

Table 13. Current characteristics

 Positive injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 12*. for maximum allowed input voltage values.

2. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 12*. for maximum allowed input voltage values.

3. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 14. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	C

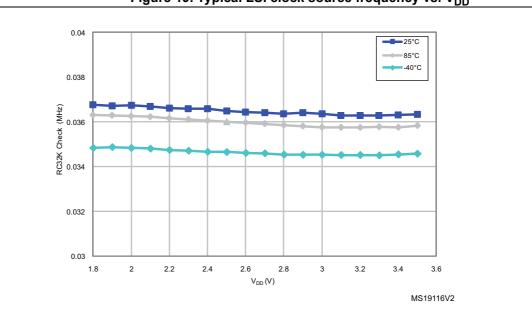


Figure 19. Typical LSI clock source frequency vs. V_{DD}

8.3.5 Memory characteristics

 T_A = -40 to 85 °C unless otherwise specified.

Table 32. RAM and hardware registers

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{RM}	Data retention mode ⁽¹⁾	Halt mode (or Reset)	1.8	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization results.

8.3.6 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.).

The test results are given in the following table.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on true open-drain pins	-5	+0	
I _{INJ}	Injected current on all 5 V tolerant (FT) pins	-5	+0	mA
	Negative injection Positive injection Injected current on true open-drain pins -5 +0 Height of current on clips			

Table 34. I/O current injection susceptibility

8.3.7 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Electrical parameters

Symbol	Parameter	Conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
		Input voltage on true open-drain pins (PC0 and PC1)	Vss-0.3	-	0.3 x V _{DD}	
V_{IL}	Input low level voltage ⁽²⁾	Input voltage on five- volt tolerant (FT) pins	Vss-0.3	-	0.3 x V _{DD}	V
		Input voltage on any other pin	Vss-0.3	-	0.3 x V _{DD}	
		Input voltage on true open-drain pins (PC0 and PC1) with V _{DD} < 2 V	0.70 x V _{DD}	-	5.2	
		Input voltage on true open-drain pins (PC0 and PC1) with $V_{DD} \ge 2 V$	0.70 X VDD	-	5.5	
V _{IH}	Input high level voltage ⁽²⁾	Input voltage on five- volt tolerant (FT) pins with V _{DD} < 2 V	0.70 x V	-	5.2	V
V _{IH} Inp V _{hys} Scr I _{lkg} Inp R _{PU} We res		Input voltage on five- volt tolerant (FT) pins with $V_{DD} \ge 2 V$	0.70 x V _{DD}	-	5.5	
V _{IH} Input high		Input voltage on any other pin	0.70 x V _{DD}	- V _{DD} +0.3		
N/	a	Standard I/Os	-	200	-	
V hys	Schmitt trigger voltage hysteresis ⁽³⁾	True open drain I/Os	-	200	-	- mV
		V _{SS} ≤V _{IN} ≤V _{DD} Standard I/Os	-	$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & & &$		
l _{ikg}	Input leakage current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD} True open drain I/Os	-	-	200 ⁽⁵⁾	nA
		V _{SS} ≤V _{IN} ≤V _{DD} PA0 with high sink LED driver capability	-	-	200 ⁽⁵⁾	
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾⁽⁶⁾	V _{IN} =V _{SS}	30	45	60	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 35. I/O static characteristics

1. V_{DD} = 3.0 V, T_A = -40 to 85 °C unless otherwise specified.

2. Guaranteed by characterization results.

3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

4. The max. value may be exceeded if negative current is injected on adjacent pins.

5. Not tested in production.

 R_{PU} pull-up equivalent resistor based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 23).

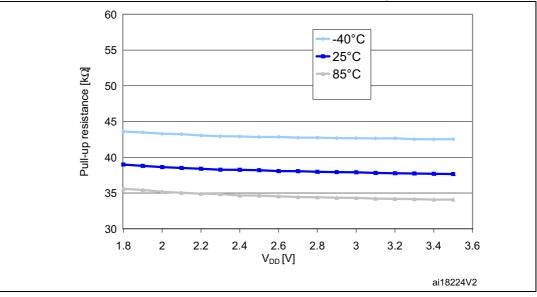
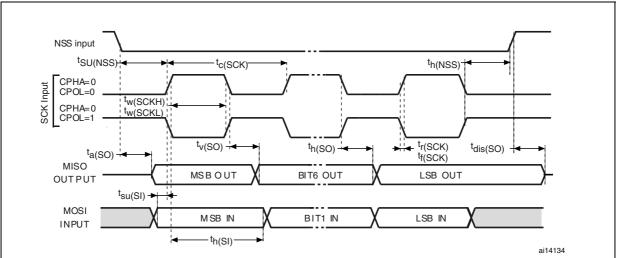
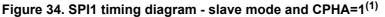
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IL(NRST)}	NRST input low level voltage (1)	-	V_{SS}	-	0.8	
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	-	1.4	-	V _{DD}	
Vermeen		I_{OL} = 2 mA for 2.7 V \leq V _{DD} \leq 3.6 V	-			V
V _{OL(NRST)}	NRST output low level voltage ⁽¹⁾	I _{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-	0.4	
V _{HYST}	NRST input hysteresis ⁽³⁾	-	10%V _{DD} (2)	-	-	mV
R _{PU(NRST)}	NRST pull-up equivalent resistor ⁽¹⁾	-	30	45	60	kΩ
V _{F(NRST)}	NRST input filtered pulse ⁽³⁾	-	-	-	50	ne
V _{NF(NRST)}	NRST input not filtered pulse ⁽³⁾	-	300	-	-	ns

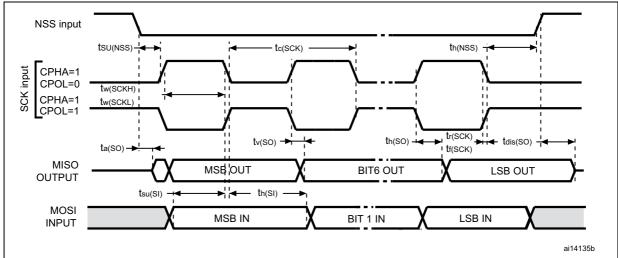
Table 39. NRST pin characteristics

1. Guaranteed by characterization results.

2. 200 mV min.

3. Guaranteed by design.


Figure 30. Typical NRST pull-up resistance R_{PU} vs. V_{DD}

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

I²C - Inter IC control interface

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{SYSCLK}},$ and T_{A} unless otherwise specified.

The STM8L I²C interface (I2C1) meets the requirements of the Standard I²C communication protocol described in the following table with the restriction mentioned below:

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Table 41. I2C characteristics							
Symbol	Parameter	Standard	mode I ² C	Fast mode I ² C ⁽¹⁾		Unit	
Symbol	Falameter	Min. ⁽²⁾		Min. ⁽²⁾	Max. ⁽²⁾	onit	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-		
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	0	-	0	900		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300		
t _{h(STA)}	START condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	- µs	
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	

Table 41. I2C characteristics

1. f_{SYSCLK} must be at least equal to 8 MHz to achieve max fast I²C speed (400 kHz).

2. Data based on standard I²C protocol requirement, not tested in production.

Note: For speeds around 200 kHz, the achieved speed can have a \pm 5% tolerance. For other speed ranges, the achieved speed can have a \pm 2% tolerance. The above variations depend on the accuracy of the external components used.

8.3.9 LCD controller

In the following table, data are guaranteed by design, not tested in production.

Symbol	Parameter	Min.	Тур.	Max.	Unit	
V _{LCD}	LCD external voltage	-	-	3.6		
V _{LCD0}	LCD internal reference voltage 0	-	2.6	-		
V _{LCD1}	LCD internal reference voltage 1	-	2.7	- - - V		
V _{LCD2}	LCD internal reference voltage 2	-	2.8			
V _{LCD3}	LCD internal reference voltage 3	-	3.0			
V _{LCD4}	LCD internal reference voltage 4	-	3.1	-		
V_{LCD5}	LCD internal reference voltage 5	-	3.2	-		
V_{LCD6}	LCD internal reference voltage 6	-	3.4	-		
V _{LCD7}	LCD internal reference voltage 7	-	3.5	-		
C _{EXT}	V _{LCD} external capacitance	0.1	1	2	μF	
1	Supply current ⁽¹⁾ at V_{DD} = 1.8 V	-	3	-	μΑ	
I _{DD}	Supply current ⁽¹⁾ at V _{DD} = 3 V	-	3	-		
$R_{HN}^{(2)}$	High value resistive network (low drive)	-	6.6	-	MΩ	
$R_{LN}^{(3)}$	Low value resistive network (high drive)	-	240	-	kΩ	
V ₃₃	Segment/Common higher level voltage	-	-	V _{LCDx}		
V ₃₄	Segment/Common 3/4 level voltage	-	3/4V _{LCDx}	-		
V ₂₃	Segment/Common 2/3 level voltage	-	2/3V _{LCDx}	-		
V ₁₂	Segment/Common 1/2 level voltage	-	1/2V _{LCDx}	-	V	
V ₁₃	Segment/Common 1/3 level voltage	-	1/3V _{LCDx}	-		
V ₁₄	Segment/Common 1/4 level voltage	-	1/4V _{LCDx}	-		
V ₀	Segment/Common lowest level voltage	0	-	-		

Table	42.	LCD	characteristics

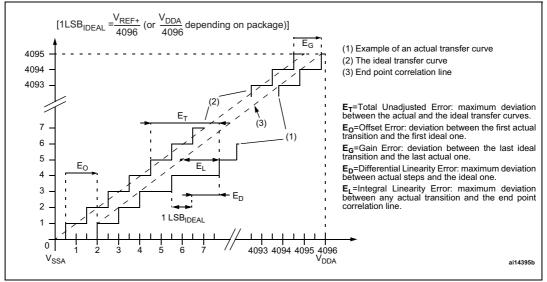
1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected.

2. $\ensuremath{\mathsf{R}_{\mathsf{HN}}}$ is the total high value resistive network.

3. $\ R_{LN}$ is the total low value resistive network.

VLCD external capacitor

The application can achieve a stabilized LCD reference voltage by connecting an external capacitor C_{EXT} to the V_{LCD} pin. C_{EXT} is specified in *Table 42*.


8.3.11 12-bit ADC1 characteristics

In the following table, data are guaranteed by design, not tested in production.

Table 44. ADC1 characteristics							
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
V_{DDA}	Analog supply voltage	-	1.8	-	3.6	V	
M	Reference supply	2.4 V ≤V _{DDA} ≤ 3.6 V	2.4	-	V _{DDA}	V	
V_{REF} +	voltage	1.8 V≤V _{DDA} ≤ 2.4 V		V _{DDA}	•	V	
V _{REF-}	Lower reference voltage	-		V_{SSA}		V	
I _{VDDA}	Current on the VDDA input pin	-	-	1000	1450	μA	
I	Current on the VREF+ input pin	-	-	400	700 (peak) ⁽¹⁾	μA	
I _{VREF+}		-	-	400	450 (average) ⁽¹⁾	μA	
V _{AIN}	Conversion voltage range	-	0 ⁽²⁾	-	V _{REF+}	-	
T _A	Temperature range	-	-40	-	85	°C	
R _{AIN}	External resistance on	on PF0/1/2/3 fast channels	-	-	50 ⁽³⁾	kΩ	
	V _{AIN}	on all other channels	-	-			
C _{ADC}	Internal sample and hold capacitor	on PF0/1/2/3 fast channels	-	16	-	pF	
		on all other channels	-		-		
fere	ADC sampling clock frequency	2.4 V≤V _{DDA} ≤3.6 V without zooming	0.320	-	16	MHz	
f _{ADC}		1.8 V≤V _{DDA} ≤2.4 V with zooming	0.320	-	8	MHz	
f _{CONV}	12-bit conversion rate	V _{AIN} on PF0/1/2/3 fast channels	-	-	1 ⁽³⁾⁽⁴⁾	MHz	
		V _{AIN} on all other channels	-	-	760 ⁽³⁾⁽⁴⁾	kHz	
f _{TRIG}	External trigger frequency	-	-	-	t _{conv}	1/f _{ADC}	
t _{LAT}	External trigger latency	-	-	-	3.5	1/f _{SYSCLK}	

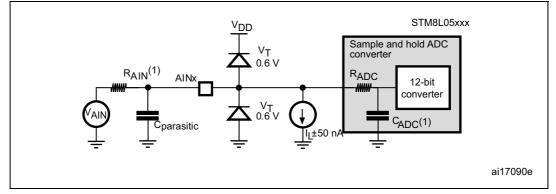

Table 44	. ADC1	characteristics
		onulationstics

Figure 37. ADC1 accuracy characteristics

Figure 38. Typical connection diagram using the ADC

- 1. Refer to Table 44 for the values of R_{AIN} and C_{ADC} .
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 39 or Figure 40, depending on whether $V_{\text{REF+}}$ is connected to V_{DDA} or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip.

8.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions				
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{T}_{\text{A}} = +25 ^{\circ}\text{C},$ $f_{\text{CPU}} = 16 \text{ MHz},$ conforms to IEC 61000		2B		
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on	V _{DD} = 3.3 V, T _A = +25 °C, f _{CPU} = 16 MHz,	Using HSI	4A		
VEFTB V _{DD} and V _{SS} pins to induce a functional disturbance	conforms to IEC 61000 Using HSE					

Table 48. EMS data

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin.

