

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Discontinued at Digi-Key
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc878-16ffi-3v3-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

4.3.3	Power-on Reset and PLL Timing 124	4
4.3.4	On-Chip Oscillator Characteristics 12	5
4.3.5	External Data Memory Characteristics	3
4.3.6	External Clock Drive XTAL1 128	3
4.3.7	JTAG Timing 129	9
4.3.8	SSC Master Mode Timing 13	1
5	Package and Quality Declaration	3
5.1	Package Parameters	3
5.2	Package Outline	4
5.3	Quality Declaration	3

General Device Information

2.2 Logic Symbol

The logic symbols of the XC878 and XC874 are shown in Figure 3.

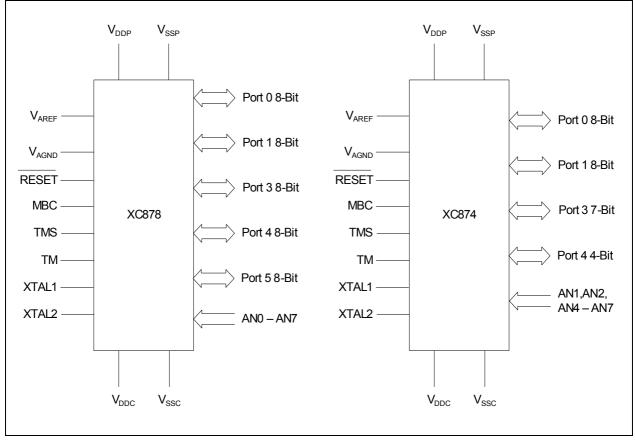


Figure 3 XC878 and XC874 Logic Symbol

General Device Information

2.3 Pin Configuration

The pin configuration of the XC878, which is based on the PG-LQFP-64, is shown in **Figure 4**, while that of the XC874, which is based on the PG-VQFN-48 package, is shown in **Figure 5**.

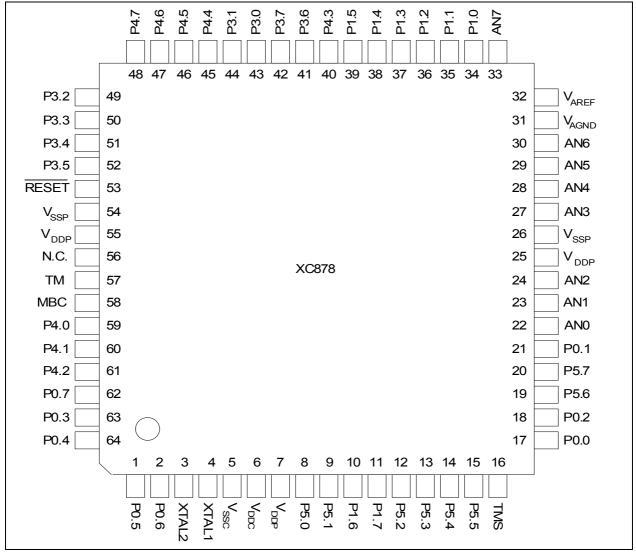


Figure 4 XC878 Pin Configuration, PG-LQFP-64 Package (top view)

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
Ρ4		I/O		I/O port. It ca for CCU6, Ti MultiCAN an	B-bit bidirectional general purpose an be used as alternate functions mer 0, Timer 1, T2CCU, Timer 21, ad External Bus Interface. al Bus Interface is not available in 4.
P4.0	59/45		Hi-Z	RXDC0_3 CC60_1 T2CC0_0/ EXINT3_1 D0	MultiCAN Node 0 Receiver Input Output of Capture/Compare channel 0 External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Data Line 0 Input/Output
P4.1	60/46		Hi-Z	TXDC0_3 COUT60_1 T2CC1_0/ EXINT4_1 D1	MultiCAN Node 0 Transmitter Output Output of Capture/Compare channel 0 External Interrupt Input 4/T2CCU Capture/Compare Channel 1 Data Line 1 Input/Output
P4.2	61/47		PU	EXINT6_1 T21_0 D2	External Interrupt Input 6 Timer 21 Input Data Line 2 Input/Output
P4.3	40/31		Hi-Z	T2EX_1 EXF21_1 COUT63_2 D3	Timer 2 External Trigger Input Timer 21 External Flag Output Output of Capture/Compare channel 3 Data Line 3 Input/Output
P4.4	45/-		Hi-Z	CCPOS0_3 T0_0 CC61_4 T2CC2_0/ EXINT5_1 D4	CCU6 Hall Input 0 Timer 0 Input Output of Capture/Compare channel 1 External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Data Line 4 Input/Output

XC87xCLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function				
P5		I/O		Port 5 Port 5 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for UART, UART1, T2CCU, JTAG and External Interface.				
P5.0	8/-		PU	EXINT1_1 A0	External Interrupt Input 1 Address Line 0 Output			
P5.1	9/-		PU	EXINT2_1 A1	External Interrupt Input 2 Address Line 1 Output			
P5.2	12/-		PU	RXD_2 T2CC2_2/ EXINT5_3 A2	UART Receive Data Input External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Address Line 2 Output			
P5.3	13/-		PU	CCPOS0_0 EXINT1_0 T12HR_2 CC61_3 TXD_2 T2CC5_2 A3	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input Input of Capture/Compare channel 1 UART Transmit Data Output/Clock Output Compare Output Channel 5 Address Line 3 Output			
P5.4	14/-		PU	CCPOS1_0 EXINT2_0 T13HR_2 CC62_3 RXDO_2 T2CC4_2 A4	•			

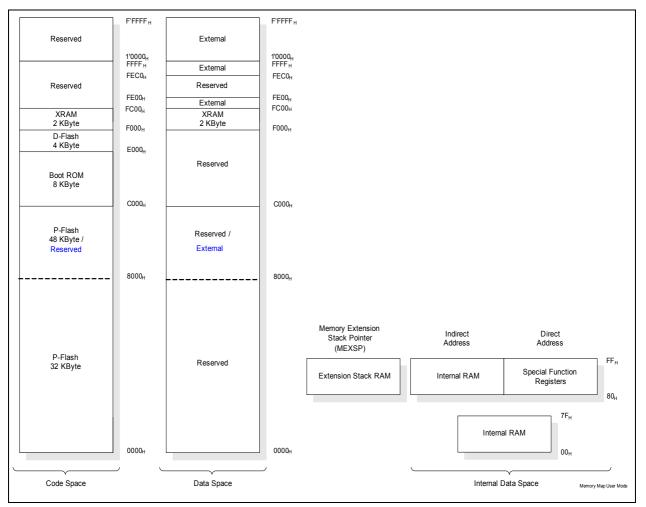


Figure 8 Memory Map of XC87x with 52K Flash Memory in user mode

Field	Bits	Туре	Description
OP	[7:6]	w	 Operation 0X Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

3.2.3 Bit Protection Scheme

The bit protection scheme prevents direct software writing of selected bits (i.e., protected bits) using the PASSWD register. When the bit field MODE is 11_B , writing 10011_B to the bit field PASS opens access to writing of all protected bits, and writing 10101_B to the bit field PASS closes access to writing of all protected bits. In both cases, the value of the bit field MODE is not changed even if PASSWD register is written with 98_H or $A8_H$. It can only be changed when bit field PASS is written with 11000_B , for example, writing D0_H to PASSWD register disables the bit protection scheme.

Note that access is opened for maximum 32 CCLKs if the "close access" password is not written. If "open access" password is written again before the end of 32 CCLK cycles, there will be a recount of 32 CCLK cycles. The protected bits include the N- and K-Divider bits, NDIV and KDIV; the Watchdog Timer enable bit, WDTEN; and the power-down and slow-down enable bits, PD and SD.

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
ab _h	SSC_CONH Reset: 00 _H Control Register High Operating Mode	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE
		Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh
ac _H	SSC_TBL Reset: 00 _H	Bit Field				TB_V	ALUE			
	Transmitter Buffer Register Low	Туре	rw							
ad _H	SSC_RBL Reset: 00 _H Receiver Buffer Register Low	Bit Field				RB_V	ALUE			
		Туре	rh							
AE _H	SSC_BRL Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer Reload Register Low	Туре				r	w			
af _h	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer Reload Register High	Туре				r	w			

Table 16SSC Register Overview (cont'd)

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Table 17CAN Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0			1						1
D8 _H	ADCON Reset: 00 _H	Bit Field	V3	V2	V1	V0	AU	AD	BSY	RWEN
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	r	w	rh	rw
D9 _H	CAN Address Register Low	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
da _h		Bit Field	0			CA13	CA12	CA11	CA10	
	CAN Address Register High	Туре	r			rwh	rwh	rwh	rwh	
db _h		Bit Field	CD							
	CAN Data Register 0	Туре	rwh							
dc _h	DATA1 Reset: 00 _H	Bit Field				С	D			
	CAN Data Register 1	Туре				rv	vh			
dd _H	DATA2 Reset: 00 _H	Bit Field				C	D			
	CAN Data Register 2	Туре				rv	vh			
de _H	DATA3 Reset: 00 _H	Bit Field				С	D			
	ADL Reset: 00 _H CAN Address Register Low AH ADH Reset: 00 _H CAN Address Register Low AH ADH Reset: 00 _H CAN Address Register High BH DATA0 Reset: 00 _H CAN Data Register 0 CAN Data Register 1 CH DATA1 Reset: 00 _H CAN Data Register 1 CAN Data Register 2	Туре				rv	vh			

3.2.4.14 OCDS Registers

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

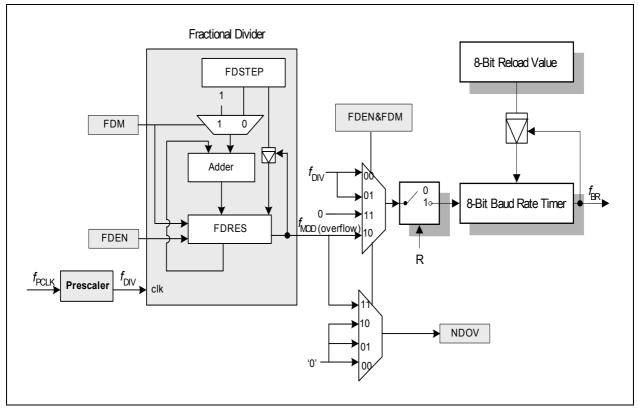
3.4.2 Interrupt Source and Vector

Each interrupt event source has an associated interrupt vector address for the interrupt node it belongs to. This vector is accessed to service the corresponding interrupt node request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the XC87x interrupt sources to the interrupt vector address and the corresponding interrupt node enable bits are summarized in Table 22.

Interrupt Source	Vector Address	Assignment for XC87x	Enable Bit	SFR
NMI	0073 _H	Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	
		Flash Timer NMI	NMIFLASH	
		V _{DDP} Prewarning NMI	NMIVDDP	
		Flash ECC NMI	NMIECC	
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	
XINTR5	002B _H	T2CCU	ET2	
		UART Fractional Divider (Normal Divider Overflow)		
		MultiCAN Node 0	1	
		LIN	1	

Table 22 Interrupt Vector Addresses

For power saving purposes, the clocks may be disabled or slowed down according to **Table 27**.


Table 27System frequency (f_{sys} = 144 MHz)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down ¹⁾	Oscillator and PLL are switched off.

1) SAK product variant does not support power-down mode.

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 26**.

Figure 26Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

3.16 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features

- Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

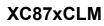
Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 28 shows the block diagram of the SSC.

3.22 Analog-to-Digital Converter

The XC87x includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC are available at AN0 - AN7.

Features


- Successive approximation
- 8-bit or 10-bit resolution
- Eight analog channels
- Four independent result registers
- Result data protection for slow CPU access (wait-for-read mode)
- Single conversion mode
- Autoscan functionality
- Limit checking for conversion results
- Data reduction filter (accumulation of up to 2 conversion results)
- Two independent conversion request sources with programmable priority
- · Selectable conversion request trigger
- Flexible interrupt generation with configurable service nodes
- Programmable sample time
- Programmable clock divider
- · Cancel/restart feature for running conversions
- Integrated sample and hold circuitry
- Compensation of offset errors
- Low power modes

3.22.1 ADC Clocking Scheme

A common module clock f_{ADC} generates the various clock signals used by the analog and digital parts of the ADC module:

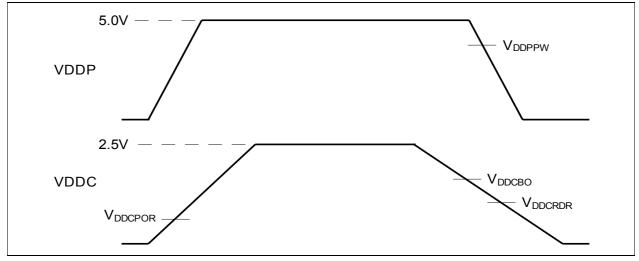
- f_{ADCA} is input clock for the analog part.
- f_{ADCI} is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock f_{ADCA} to generate a correct duty cycle for the analog components.
- f_{ADCD} is input clock for the digital part.

Figure 31 shows the clocking scheme of the ADC module. The prescaler ratio is selected by bit field CTC in register GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC87x can be subjected to without permanent damage.

Parameter	Symbol	Limit	Values	Unit	Notes	
		min.	max.			
Ambient temperature	T _A	-40	125	°C	under bias	
Storage temperature	T _{ST}	-65	150	°C		
Junction temperature	TJ	-40	140	°C	under bias	
Voltage on power supply pin with respect to V_{SS}	V _{DDP}	-0.5	6	V		
Voltage on any pin with respect to V_{SS}	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	Whatever is lower	
Input current on any pin during overload condition	I _{IN}	-10	10	mA		
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	-	50	mA		


Table 38	Absolute Maximum Rating Parameters
----------	------------------------------------

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

4.2.2 Supply Threshold Characteristics

 Table 41 provides the characteristics of the supply threshold in the XC87x.

Table 41 Supply Threshold Parameters (Operating Conditions apply)

Parameters	Symbol		I	Unit		
			min.	typ.	max.	
$V_{\rm DDC}$ brownout voltage ¹⁾	V _{DDCBO}	CC	1.7	1.9	2.2	V
RAM data retention voltage	V _{DDCRDR}	CC	1.2	-	-	V
$V_{\rm DDP}$ prewarning voltage ²⁾	V _{DDPPW}	CC	3.8	4.2	4.5	V
Power-on reset voltage ¹⁾³⁾	VDDCPOR	CC	1.7	1.9	2.2	V

1) Detection is enabled in both active and power-down mode.

2) Detection is enabled for 5.0V power supply variant. Detection is disabled for 3.3V power supply variant.

3) The reset of EVR is extended by 300 μ s typically after the VDDC reaches the power-on reset voltage.

Table 45Power Supply Current Parameters¹⁾ (Operating Conditions apply; $V_{\text{DDP}} = 3.3V$ range)

Parameter	Symbol	Limit	Values	Unit	Test
		typ. ²⁾	max. ³⁾		Conditions
V_{DDP} = 3.3V Range					
Active Mode	I _{DDP}	35.4	43	mA	4)
Idle Mode	I _{DDP}	27.6	33	mA	5)
Active Mode with slow-down enabled	I _{DDP}	8.6	13	mA	6)
Idle Mode with slow-down enabled	I _{DDP}	8	12	mA	7)

1) The table is only applicable to SAF and SAX variants.

2) The typical I_{DDP} values are based on preliminary measurements and are to be used as reference only. These values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 3.3 V.

3) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 105 °C and V_{DDP} = 3.6 V).

4) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz with onchip oscillator of 4 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

5) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

- 6) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , $\overline{\text{RESET}} = V_{\text{DDP}}$; all other pins are disconnected, no load on ports.
- 7) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

Table 46Power Down Current¹⁾ (Operating Conditions apply; $V_{DDP} = 3.3V$
range)

Parameter	Symbol	Limit	Values	Unit	Test Conditions
		typ. ²⁾	max. ³⁾	1	
V_{DDP} = 3.3V Range	·				
Power-Down Mode	I _{PDP}	20	80	μA	$T_{A} = + 25 \ ^{\circ}C^{4)5)}$
		-	250	μA	$T_{\rm A}$ = + 85 °C ⁵⁾⁶⁾

1) The table is only applicable to SAF and SAX variants.

2) The typical I_{PDP} values are based on preliminary measurements and are to be used as reference only. These values are measured at V_{DDP} = 3.3 V.

3) The maximum $I_{\rm PDP}$ values are measured at $V_{\rm DDP}$ = 3.6 V.

4) I_{PDP} has a maximum value of 450 μ A at T_A = + 105 °C.

5) I_{PDP} is measured with: $\overline{RESET} = V_{DDP}$, $V_{AGND} = V_{SS}$, RXD/INT0 = V_{DDP} ; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

6) Not subjected to production test, verified by design/characterization.

4.3.6 External Clock Drive XTAL1

Table 52 shows the parameters that define the external clock supply for XC87x. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Parameter	Symb	ol	Limi	t Values	Unit	Test Conditions
			Min.	Max.		
Oscillator period	t _{osc}	SR	50	500	ns	1)2)
High time	<i>t</i> ₁	SR	15	-	ns	2)3)
Low time	<i>t</i> ₂	SR	15	-	ns	2)3)
Rise time	t ₃	SR	-	10	ns	2)3)
Fall time	<i>t</i> ₄	SR	-	10	ns	2)3)

 Table 52
 External Clock Drive Characteristics (Operating Conditions apply)

1) The clock input signals with 45-55% duty cycle are used.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

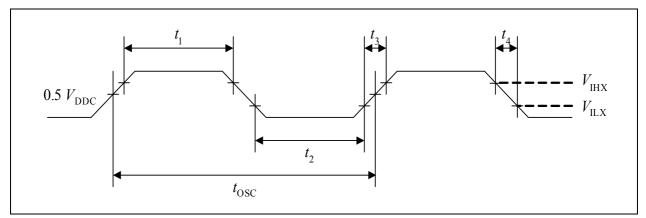


Figure 43 External Clock Drive XTAL1

4.3.7 JTAG Timing

 Table 53 provides the characteristics of the JTAG timing in the XC87x.

Table 53TCK Clock Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Sym	bol	Lin	nits	Unit	Test Conditions
			min	max		
TCK clock period	t _{TCK}	SR	50	-	ns	1)
TCK high time	<i>t</i> ₁	SR	20	-	ns	1)
TCK low time	<i>t</i> ₂	SR	20	-	ns	1)
TCK clock rise time	t ₃	SR	-	4	ns	1)
TCK clock fall time	<i>t</i> ₄	SR	-	4	ns	1)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

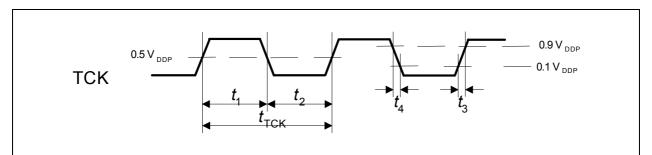


Figure 44 TCK Clock Timing

Table 54JTAG Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Syr	nbol	Lir	nits	Unit	Test Conditions
			min	max		
TMS setup to TCK	t ₁	SR	8	-	ns	1)
TMS hold to TCK	<i>t</i> ₂	SR	0	-	ns	1)
TDI setup to TCK	t ₁	SR	8	-	ns	1)
TDI hold to TCK ∡	<i>t</i> ₂	SR	4	-	ns	1)
TDO valid output from TCK	<i>t</i> ₃	CC	-	24	ns	5V Device ¹⁾
			-	31	ns	3.3V Device ¹⁾

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the XC87x package and reliability section.

5.1 Package Parameters

Table 56 provides the thermal characteristics of the package used in XC878 and XC874.

Parameter	Symbol		Lim	nit Values	Unit	Notes	
		N	Min.	Max.			
PG-LQFP-64-4 (XC878)	1						
Thermal resistance junction case ¹⁾	R _{TJC} C	CC -		13.8	K/W	-	
Thermal resistance junction lead ¹⁾	R_{TJL} C	CC -		34.6	K/W	-	
PG-VQFN-48-22 (XC874)		ľ					
Thermal resistance junction case ¹⁾	R _{TJC} C	CC -		16.6	K/W	-	
Thermal resistance junction lead ¹⁾	R _{TJL} C	CC -		30.7	K/W	-	

Table 56 Thermal Characteristics of the Packages

1) The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.