

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc878-16ffi-3v3-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

4.3.3	Power-on Reset and PLL Timing 124	4
4.3.4	On-Chip Oscillator Characteristics 12	5
4.3.5	External Data Memory Characteristics	3
4.3.6	External Clock Drive XTAL1 128	3
4.3.7	JTAG Timing 129	9
4.3.8	SSC Master Mode Timing 13	1
5	Package and Quality Declaration	3
5.1	Package Parameters	3
5.2	Package Outline	4
5.3	Quality Declaration	3

Summary of Features

Table 2Device Profile (cont'd)

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAF-XC878CM-13FFI 3V3	Flash	52	3.3	-40 to 85	Industrial
SAF-XC878-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAF-XC878M-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAF-XC878CM-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAF-XC878-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878CM-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878LM-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878CLM-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAF-XC878CM-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAF-XC878LM-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAF-XC878CLM-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAX-XC878-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878CM-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878LM-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878CLM-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878CM-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878LM-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878CLM-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAK-XC878-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878CM-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878LM-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878CLM-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC878CM-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC878LM-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC878CLM-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAF-XC874LM-16FVA 5V	Flash	64	5.0	-40 to 85	Automotive

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function					
P3		I/O		Port 3 Port 3 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, UART1, T2CCU, Timer 21, MultiCAN and External Bus Interface. Note: External Bus Interface is not available in XC874.					
P3.0	43/33		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1 T2CC0_1/ EXINT3_2	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output External Interrupt Input 3/T2CCU Capture/Compare Channel 0				
P3.1	44/34		Hi-Z	CCPOS0_2 CC61_2 COUT60_0 TXD1_1	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare channel 0 UART1 Transmit Data Output/Clock Output				
P3.2	49/35		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0 T2CC1_1/ EXINT4_2	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1 External Interrupt Input 4/T2CCU Capture/Compare Channel 1				
P3.3	50/36		Hi-Z	COUT61_0 TXDC1_1 T2CC2_1/ EXINT5_2 A13	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Address Line 13 Output				

Flash Protection	Without hardware protection	With hardware protect	tion			
P-Flash program and erase	Possible	Possible only on the condition that MSB - 1 of password is set to 1	Possible only on the condition that MSB - 1 of password is set to 1			
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash			
External access to D- Flash	Not possible	Not possible	Not possible			
D-Flash program	Possible	Possible	Possible, on the condition that MSB - 1 of password is set to 1			
D-Flash erase	Possible	 Possible, on these conditions: MISC_CON.DFLASH EN bit is set to 1 prior to each erase operation; or the MSB - 1 of password is set to 1 	Possible, on the condition that MSB - 1 of password is set to 1			

Table 4Flash Protection Modes (cont'd)

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. To disable the flash protection, a password match is required. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. With a valid password, the Flash hardware protection is then enabled or disabled upon next reset. For the other protection strategies, no reset is necessary.

Although no protection scheme can be considered infallible, the XC87x memory protection strategy provides a very high level of protection for a general purpose microcontroller.

Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents.

Figure 10 Address Extension by Paging

In order to access a register located in a page different from the actual one, the current page must be exited. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

• Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or

 Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

Figure 11 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC87x supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

Table 5 CPU Registe	er Overview	(cont'd)
---------------------	-------------	----------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
97 _H	MEXSP Reset: 7F _H	Bit Field	0				MXSP					
	Memory Extension Stack Pointer Register	Туре	r		rwh							
98 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI		
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh		
99 _H	SBUF Reset: 00 _H	Bit Field	VAL									
	Serial Data Buffer Register	Туре		rwh								
A2 _H	EO Reset: 00 _H Extended Operation Register	Bit Field		0		TRAP_ EN	0			DPSE L0		
		Туре		r		rw		r		rw		
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0		
	Interrupt Enable Register 0	Туре	rw	r	rw	rw	rw	rw	rw	rw		
B8 _H	IP Reset: 00 _H	Bit Field	0		PT2	PS	PT1	PX1	PT0	PX0		
	Interrupt Priority Register	Туре		r	rw	rw	rw	rw	rw	rw		
в9 _Н	IPH Reset: 00 _H	Bit Field	()	PT2H	PSH	PT1H	PX1H	PT0H	PX0H		
- 11	Interrupt Priority High Register	Туре	r		rw	rw	rw	rw	rw	rw		
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р		
	Program Status Word Register	Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh		
E0 _H	ACC Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0		
	Accumulator Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC		
		Туре	rw	rw	rw	rw	rw	rw	rw	rw		
F0 _H	B Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0		
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC		
		Туре	rw	rw	rw	rw	rw	rw	rw	rw		
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H		
		Туре	rw	rw	rw	rw	rw	rw	rw	rw		

3.2.4.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6MDU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP = 1										
во _Н	MDUSTAT Reset: 00 _H	Bit Field			0			BSY	IERR	IRDY
	MDU Status Register	Туре			r	rh	rwh	rwh		

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
сс _Н	ADC_CRMR1 Reset: 00 _H Conversion Request Mode	Bit Field	Rsv	LDEV	CLRP ND	SCAN	ENSI	ENTR	0	ENGT
	Register 1	Туре	r	w	w	rw	rw	rw	r	rw
CD _H	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field	CEV	TREV	FLUS H	CLRV	0	ENTR	0	ENGT
		Туре	w	w	w	w	r	rw	r	rw
Ceh	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPT Y	EV	0		FI	LL
		Туре	r	r	rh	rh		r	rh	
CF _H	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	R
	Queue 0 Register 0	Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	R
	Queue Backup Register 0	Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	(C	F	REQCHN	R
	Queue Input Register 0	Туре	w	w	w		r		w	

Table 11ADC Register Overview (cont'd)

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
FD _H	CCU6_CC61RH Reset: 00 _H	Bit Field		1	1	CC6	61VH	1	1	Ι		
	Capture/Compare Register for Channel CC61 High	Туре				r	'n					
Fe _H	CCU6_CC62RL Reset: 00 _H	Bit Field				CC6	62VL					
	Capture/Compare Register for Channel CC62 Low	Туре				r	'n					
FF _H	CCU6_CC62RH Reset: 00 _H	Bit Field		CC62VH								
	Capture/Compare Register for Channel CC62 High	Туре				r	h					
RMAP =	= 0, PAGE 2											
9A _H	CCU6_T12MSELL Reset: 00 _H	Bit Field		MSEL61				MSE	EL60			
	T12 Capture/Compare Mode Select Register Low	Туре		r	w		rw					
9в _Н	CCU6_T12MSELH Reset: 00 _H	Bit Field	DBYP		HSYNC			MSE	EL62			
	Register High	Туре	rw		rw			n	w			
9CH	C _H CCU6_IENL Reset: 00 _H Capture/Compare Interrupt Enable Register Low	Bit Field	ENT1 2 PM	ENT1 2 OM	ENCC 62F	ENCC 62R	ENCC 61F	ENCC 61R	ENCC 60F	ENCC 60R		
		Туре	rw	rw	rw	rw	rw	rw	rw	rw		
9D _H CCU6_IEN Capture/Co	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM		
	Register High	Туре	rw	rw	rw	rw	r	rw	rw	rw		
9E _H	CCU6_INPL Reset: 40 _H	Bit Field	INP	CHE	INPO	CC62	INPO	CC61	INPO	CC60		
	Capture/Compare Interrupt Node Pointer Register Low	Туре	r	W	r	W	r	w	r	W		
9F _H	CCU6_INPH Reset: 39 _H	Bit Field	(C	INPT13		INPT12		INPERR			
	Pointer Register High	Туре		r	r	w	rw		rw			
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R		
	Set Register Low	Туре	w	w	w	w	w	w	w	w		
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM		
	Set Register High	Туре	w	w	w	w	w	w	w	w		
A6 _H	CCU6_PSLR Reset: 00 _H	Bit Field	PSL63	0			P	SL				
	Passive State Level Register	Туре	rwh	r			rv	vh				
А7 _Н	CCU6_MCMCTR Reset: 00 _H	Bit Field	(0	SW	SYN	0		SWSEL			
	Multi-Channel Mode Control Register	Туре		r	r	w	r		rw			
FA _H	CCU6_TCTR2LReset: 00HTimer Control Register 2 Low	Bit Field	0	T13	TED		T13TEC		T13 SSC	T12 SSC		
		Туре	r	r	w		rw		rw	rw		
FB _H	CCU6_TCTR2H Reset: 00 _H	Bit Field		(0		T13F	RSEL	T12F	RSEL		
	I imer Control Register 2 High	Туре			r		r	w	r	w		
FC _H	CCU6_MODCTRL Reset: 00 _H Modulation Control Register Low	Bit Field	MCM EN	0			T12M	ODEN				
		Туре	rw	r			r	w				

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
FD _H	CCU6_MODCTRH Reset: 00 _H Modulation Control Register High	Bit Field	ECT1 30	0			T13M	ODEN			
		Туре	rw	r			r	w			
Fe _H	CCU6_TRPCTRL Reset: 00 _H Trap Control Register Low	Bit Field			0			TRPM 2	TRPM 1	TRPM 0	
		Туре			r			rw	rw	rw	
FFH	CCU6_TRPCTRH Reset: 00 _H Trap Control Register High	Bit Field	TRPP EN	TRPE N13			TRI	PEN			
		Туре	rw	rw			r	w			
RMAP =	= 0, PAGE 3										
9A _H	CCU6_MCMOUTL Reset: 00 _H	Bit Field	0	R			MC	MP			
	Low	Туре	r	rh			r	'n			
9B _H	CCU6_MCMOUTH Reset: 00 _H	Bit Field	(0		CURH			EXPH		
	High	Туре		r		rh			rh		
9C _H CCU6_ISL Capture/Compare Ir	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12 PM	T12 OM	ICC62 F	ICC62 R	ICC61 F	ICC61 R	ICC60 F	ICC60 R	
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9D _H CCU6_ISH Capture/Comp Register High	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13 PM	T13 CM	
		Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	RP	ISCC62 ISC			C61	ISC	C60	
	Port input Select Register 0 Low	Туре	r	w	rw		r	rw rw		w	
9F _H	CCU6_PISEL0H Reset: 00 _H	Bit Field	IST1	2HR	ISPOS2		ISPOS1		ISP	OS0	
		Туре	r	w	r	W	r	W	rw		
A4 _H	CCU6_PISEL2 Reset: 00 _H	Bit Field)			IST1	3HR	
		Туре				r			r	W	
FA _H	CCU6_T12L Reset: 00 _H Timer T12 Counter Register Low	Bit Field				T12	CVL				
		Туре				rv	vh				
FBH	CCU6_T12H Reset: 00 _H Timer T12 Counter Register High	Bit Field				T12	CVH				
		Туре				rv	vh				
FCH	Timer T13 Counter Register Low	Bit Field				T13	CVL				
		Type				rv T40	vh				
FDН	Timer T13 Counter Register High	Bit Fleid				113					
Fe _H	CCU6_CMPSTATL Reset: 00 _H	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST	
		Туре	r	rh	rh	rh	rh	rh	rh	rh	
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS	
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	

3.3 Flash Memory

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The pagination of the Flash memory allows each page to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width
- of 1-byte for D-Flash and 2-bytes for P-Flash
- 1-page minimum erase width
- 1-byte read access
- Flash is delivered in erased state (read all ones)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: $1 \times t_{CCLK} = 38 \text{ ns}^{1}$
- Program time for 1 wordline: 1.6 ms²⁾
- Page erase time: 20 ms
- Mass erase time: 200 ms

¹⁾ Values shown here are typical values. f_{sys} = 144 MHz ± 7.5% (f_{CCLK} = 24 MHz ± 7.5%) is the maximum frequency range for Flash read access.

²⁾ Values shown here are typical values. f_{sys} = 144 MHz ± 7.5% (f_{CCLK} = 24 MHz ± 7.5%) is the typical frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 26**.

Figure 26Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

f _{pclk}	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error							
24 MHz	1	6 (6 _H)	59 (3B _H)	+0.03 %							
12 MHz	1	3 (3 _H)	59 (3B _H)	+0.03 %							
8 MHz	1	2 (2 _H)	59 (3B _H)	+0.03 %							
6 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %							

Table 32Deviation Error for UART with Fractional Divider enabled

3.13.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 baud rate=
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.6)

3.14 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 26**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.7)

3.16 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features

- Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 28 shows the block diagram of the SSC.

3.17 Timer 0 and Timer 1

Timer 0 and Timer 1 can function as both timers or counters. When functioning as a timer, Timer 0 and Timer 1 are incremented every machine cycle, i.e. every 2 input clocks (or 2 PCLKs). When functioning as a counter, Timer 0 and Timer 1 are incremented in response to a 1-to-0 transition (falling edge) at their respective external input pins, T0 or T1.

Timer 0 and 1 are fully compatible and can be configured in four different operating modes for use in a variety of applications, see **Table 33**. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Mode	Operation						
0	13-bit timer The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.						
1	16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter.						
2	8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.						
3	Timer 0 operates as two 8-bit timersThe timer registers, TL0 and TH0, operate as two separate 8-bit counters.Timer 1 is halted and retains its count even if enabled.						

Table 33Timer 0 and Timer 1 Modes

- Synchronization phase (*t*_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (*t*_{WR})

Figure 32 ADC Conversion Timing

Electrical Parameters

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC87x.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 4.2** and **Section 4.3**.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC87x and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

These parameters indicate **C**ontroller **C**haracteristics, which are distinctive features of the XC87x and must be regarded for a system design.

• SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the XC87x is designed in.

Electrical Parameters

Table 40Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
Maximum current per pin (excluding V_{DDP} and V_{SS})	$I_{M} \operatorname{SR}$	SR	_	25	mA		
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	_	150	mA		
Maximum current into $V_{\rm DDP}$	I _{MVDDP}	SR	-	200	mA	5)	
Maximum current out of V_{SS}	I _{MVSS}	SR	-	200	mA	5)	
$V_{\rm DDP}$ = 3.3 V Range							
Output low voltage	V _{OL}	CC	_	0.5	V	$I_{OL} = 6 \text{ mA} (DS = 0)^{1)}$ $I_{OL} = 8 \text{ mA} (DS = 1)^{2)}$	
Output high voltage	V _{OH}	СС	2.2	-	V	I_{OH} = -5 mA (DS = 0) ¹⁾ I_{OH} = -7 mA (DS = 1) ²⁾	
Input low voltage	V_{IL}	SR	-0.3	0.7	V	CMOS Mode	
Input high voltage	V _{IH}	SR	2	V_{DDP}	V	CMOS Mode	
Input Hysteresis	HYS	CC	0.28	_	V	CMOS Mode ³⁾⁷⁾	
Input low voltage at XTAL1	V _{ILX}	SR	-0.3	0.7	V		
Input high voltage at XTAL1	V _{IHX}	SR	2.3	V _{DDP}	V		
Pull-up current	I _{PU}	SR	-	-7	μA	$V_{\rm IH,min}$	
			-35	_	μA	$V_{\rm IL,max}$	
Pull-down current	I_{PD}	SR	-	12	μA	V _{IL,max}	
			60	_	μA	$V_{\rm IH,min}$	
Input leakage current	I _{OZ1}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 105^{\circ}C^{4)}$	
Overload current on any pin	I _{OV}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	5)	

Electrical Parameters

Table 46Power Down Current¹⁾(Operating Conditions apply; $V_{DDP} = 3.3V$
range)

Parameter	Symbol	Limit Values		Unit	Test Conditions
		typ. ²⁾	max. ³⁾		
$V_{\rm DDP}$ = 3.3V Range	·				
Power-Down Mode	I _{PDP}	20	80	μA	$T_{\rm A}$ = + 25 °C ⁴⁾⁵⁾
		-	250	μA	$T_{A} = + 85 \ ^{\circ}\mathrm{C}^{5)6)}$

1) The table is only applicable to SAF and SAX variants.

2) The typical I_{PDP} values are based on preliminary measurements and are to be used as reference only. These values are measured at V_{DDP} = 3.3 V.

3) The maximum $I_{\rm PDP}$ values are measured at $V_{\rm DDP}$ = 3.6 V.

4) I_{PDP} has a maximum value of 450 μ A at T_A = + 105 °C.

5) I_{PDP} is measured with: RESET = V_{DDP} , V_{AGND} = V_{SS} , RXD/INT0 = V_{DDP} ; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

6) Not subjected to production test, verified by design/characterization.

Package and Quality Declaration

5.2 Package Outline

Figure 47 shows the package outlines of the XC878.

Figure 47 PG-LQFP-64-4 Package Outline