

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Discontinued at Digi-Key
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	52KB (52K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc878m-13ffi-3v3-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Features: (continued)

- Power-on reset generation
- Brownout detection for core logic supply
- On-chip OSC and PLL for clock generation
 - Loss-of-Clock detection
- Power saving modes
 - slow-down mode
 - idle mode
 - power-down mode with wake-up capability via RXD or EXINT0¹⁾
 - clock gating control to each peripheral
 - Programmable 16-bit Watchdog Timer (WDT)
- Five ports

٠

- Up to 40 pins as digital I/O
- 8 dedicated analog inputs used as A/D converter input
- 8-channel, 10-bit ADC
- Four 16-bit timers
 - Timer 0 and Timer 1 (T0 and T1)
 - Timer 2 and Timer 21 (T2 and T21)
- Multiplication/Division Unit for arithmetic operations (MDU)
- CORDIC Coprocessor for computation of trigonometric, hyperbolic and linear functions
- MultiCAN with 2 nodes, 32 message objects
- Two Capture/compare units
 - Capture/compare unit 6 for PWM signal generation (CCU6)
 - Timer 2 Capture/compare unit for vaious digital signal generation (T2CCU)
- Two full-duplex serial interfaces (UART and UART1)
- Synchronous serial channel (SSC)
- On-chip debug support
 - 1 Kbyte of monitor ROM (part of the 8-Kbyte Boot ROM)
 - 64 bytes of monitor RAM
- Packages:
 - PG-LQFP-64
 - PG-VQFN-48
- Temperature range T_A :
 - SAF (-40 to 85 °C)
 - SAX (-40 to 105 °C)
 - SAK (-40 to 125 °C)

¹⁾ SAK product variant does not support power-down mode.

XC87xCLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P5.5	15/-		PU	CCPOS2_0 CTRAP_1 CC60_3	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare channel 0
				TDO_1 TXD1_2	JTAG Serial Data Output UART1 Transmit Data Output/ Clock Output
				T2CC0_2/ EXINT3_3 A5	External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Address Line 5 Output
P5.6	19/-		PU	TCK_1 RXDO1_2 T2CC1_2/ EXINT4_3 A6	JTAG Clock Input UART1 Transmit Data Output External Interrupt Input 4/T2CCU Capture/Compare Channel 1 Address Line 6 Output
P5.7	20/-		PU	TDI_1 RXD1_2 T2CC3_2/ EXINT6_4 A7	JTAG Serial Data Input UART1 Receive Data Input External Interrupt Input 6/T2CCU Capture/Compare Channel 3 Address Line 7 Output

Address Extension by Mapping

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable The access to the standard SFR area is enabled The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions. The rest bits of SYSCON0 should not be modified.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC87x has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 10**.

Field	Bits	Туре	Description
OP	[7:6]	w	 Operation 0X Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

3.2.3 Bit Protection Scheme

The bit protection scheme prevents direct software writing of selected bits (i.e., protected bits) using the PASSWD register. When the bit field MODE is 11_B , writing 10011_B to the bit field PASS opens access to writing of all protected bits, and writing 10101_B to the bit field PASS closes access to writing of all protected bits. In both cases, the value of the bit field MODE is not changed even if PASSWD register is written with 98_H or $A8_H$. It can only be changed when bit field PASS is written with 11000_B , for example, writing D0_H to PASSWD register disables the bit protection scheme.

Note that access is opened for maximum 32 CCLKs if the "close access" password is not written. If "open access" password is written again before the end of 32 CCLK cycles, there will be a recount of 32 CCLK cycles. The protected bits include the N- and K-Divider bits, NDIV and KDIV; the Watchdog Timer enable bit, WDTEN; and the power-down and slow-down enable bits, PD and SD.

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0, PAGE 2	1								<u>I</u>		
CAH	ADC_RESR0L Reset: 00 _H	Bit Field	RESULT 0			VF	DRC		CHNR			
	Result Register 0 Low	Туре	r	h	r	rh	rh		rh			
Св _н	ADC_RESR0H Reset: 00 _H	Bit Field			Ι	RES	SULT					
	Result Register 0 High	Туре				r	h					
сс _н	ADC_RESR1L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC	CHNR				
	Result Register 1 Low	Туре	r	h	r	rh	rh		rh			
CD _H	ADC_RESR1H Reset: 00 _H	Bit Field	RESULT									
	Result Register 1 High					r	h					
Ceh	ADC_RESR2L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR			
	Result Register 2 Low	Туре	r	h	r	rh	rh		rh			
CF _H	CF _H ADC_RESR2H Reset: 00 _H Result Register 2 High					RES	SULT					
						r	h					
D2 _H	D2 _H ADC_RESR3L Reset: 00 _H Result Register 3 Low		RES	SULT	0	VF	DRC		CHNR			
			r	'n	r	rh	rh		rh			
D3 _H	ADC_RESR3H Reset: 00 _H	Bit Field	RESULT									
	Result Register 3 High		rh									
RMAP =	= 0, PAGE 3											
са _Н	CA _H ADC_RESRA0L Reset: 00 _H		RESULT		VF	DRC		CHNR				
	Result Register 0, View A Low	Туре	rh			rh	rh		rh			
св _Н	ADC_RESRA0H Reset: 00 _H	Bit Field	RESULT									
	Result Register 0, View A High	Туре				r	h					
сс _Н	ADC_RESRA1L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR			
	Result Register 1, View A Low	Туре		rh		rh rh rh						
CD _H	ADC_RESRA1H Reset: 00 _H	Bit Field				RESULT						
	Result Register 1, View A High	Туре				rh						
CEH	ADC_RESRA2L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR			
	Result Register 2, View A Low	Туре		rh		rh	rh		rh			
CFH	ADC_RESRA2H Reset: 00 _H	Bit Field				RES	ULT					
	Result Register 2, View A High	Туре				r	h					
D2 _H	ADC_RESRA3L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR			
	Result Register 3, View A Low	Туре		rh		rh	rh		rh			
D3 _H	ADC_RESRA3H Reset: 00 _H	Bit Field	t Field RESULT									
	Result Register 3, View A High	Туре	rh									
RMAP =	= 0, PAGE 4											
са _Н	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R		
		Туре	rw	rw	r	rw		r		rw		

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0			
FD _H	CCU6_CC61RH Reset: 00 _H	Bit Field	CC61VH										
	Capture/Compare Register for Channel CC61 High	Туре		rh									
Fe _H	CCU6_CC62RL Reset: 00 _H	Bit Field		CC62VL									
	Capture/Compare Register for Channel CC62 Low	Туре				r	'n						
FF _H	CCU6_CC62RH Reset: 00 _H	Bit Field				CC6	62VH						
	Capture/Compare Register for Channel CC62 High	Туре				r	'n						
RMAP =	= 0, PAGE 2												
9A _H	CCU6_T12MSELL Reset: 00 _H	Bit Field		MSE	EL61			MSE	EL60				
	T12 Capture/Compare Mode Select Register Low	Туре		r	w			n	w				
9в _Н	CCU6_T12MSELH Reset: 00 _H	Bit Field	DBYP		HSYNC			MSE	EL62				
	Register High	Туре	rw		rw			n	w				
9CH	CCU6_IENL Reset: 00 _H Capture/Compare Interrupt Enable Register Low	Bit Field	ENT1 2 PM	ENT1 2 OM	ENCC 62F	ENCC 62R	ENCC 61F	ENCC 61R	ENCC 60F	ENCC 60R			
		Туре	rw	rw	rw	rw	rw	rw	rw	rw			
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM			
	Register High	Туре	rw	rw	rw	rw	r	rw	rw	rw			
9E _H	CCU6_INPL Reset: 40 _H	Bit Field	INP	CHE	INPO	CC62	INPO	CC61	INPO	CC60			
	Capture/Compare Interrupt Node Pointer Register Low	Туре	r	w	rw		rw		rw				
9F _H	CCU6_INPH Reset: 39 _H	Bit Field	(C	INPT13		INPT12		INPERR				
	Capture/Compare Interrupt Node Pointer Register High	Туре		r	r	w	rw		rw				
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R			
	Set Register Low	Туре	w	w	w	w	w	w	w	w			
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM			
	Set Register High	Туре	w	w	w	w	w	w	w	w			
A6 _H	CCU6_PSLR Reset: 00 _H	Bit Field	PSL63	0			P	SL					
	Passive State Level Register	Туре	rwh	r			rv	vh					
А7 _Н	CCU6_MCMCTR Reset: 00 _H	Bit Field	(0	SW	SYN	0		SWSEL				
	Multi-Channel Mode Control Register	Туре		r	r	w	r		rw				
FA _H	CCU6_TCTR2LReset: 00HTimer Control Register 2 Low	Bit Field	0	T13	TED		T13TEC		T13 SSC	T12 SSC			
		Туре	r	r	w		rw		rw	rw			
FB _H	CCU6_TCTR2H Reset: 00 _H	Bit Field		(0		T13F	RSEL	T12F	RSEL			
	I Imer Control Register 2 High	Туре			r		r	w	r	w			
FC _H	CCU6_MODCTRL Reset: 00 _H Modulation Control Register Low	Bit Field	MCM EN	0			T12M	ODEN					
		Туре	rw	r			r	w					

Table 18 OCDS Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1									
E9 _H MMCR2 Monitor Mode Con	MMCR2 Reset: 8U _H Monitor Mode Control 2	Bit Field	STMO DE	EXBC	DSUS P	MBCO N	ALTDI	MMEP	MMOD E	JENA
	Register	Туре	rw	rw	rw	rwh	rw	rwh	rh	rh
EA _H MEXTCR Reset: 0U _H	MEXTCR Reset: 0U _H	Bit Field		. (C	•		BAN	KBPx	
	Memory Extension Control Register	Туре			r			r	w	
EB _H	MMWR1 Reset: 00 _H	Bit Field				MM	WR1			
	Monitor Work Register 1	Туре				r	W			
ec _h	EC _H MMWR2 Reset: 00 _H	Bit Field				MM	WR2			
Monitor Work Register 2	Туре				r	W				
F1 _H MMCR Reset: 00 _H Monitor Mode Control Register	Bit Field	MEXIT _P	MEXIT	0	MSTE P	MRAM S_P	MRAM S	TRF	RRF	
		Туре	w	rwh	r	rw	w	rwh	rh	rh
F2 _H	MMSR Reset: 00 _H Monitor Mode Status Register	Bit Field	MBCA M	MBCIN	EXBF	SWBF	HWB3 F	HWB2 F	HWB1 F	HWB0 F
		Туре	rw	rwh	rwh	rwh	rwh	rwh	rwh	rwh
F3 _H	MMBPCRReset: 00HBreakpoints Control Register	Bit Field	SWBC HWB3C HW		HW	HWB2C H		HW	B0C	
		Туре	rw	r	w	r	w	rw	r	w
F4 _H	MMICR Reset: 00 _H Monitor Mode Interrupt Control	Bit Field	DVEC T	DRET R	COMR ST	MSTS EL	MMUI E_P	MMUI E	RRIE_ P	RRIE
	Register	Туре	rwh	rwh	rwh	rh	w	rw	w	rw
F5 _H	MMDR Reset: 00 _H	Bit Field	MMRR							
	Register Receive	Туре				r	h			
F6 _H	HWBPSR Reset: 00 _H Hardware Breakpoints Select	Bit Field		0		BPSEL _P		BP	SEL	
	Register	Туре		r		w		r	w	
F7 _H	HWBPDR Reset: 00 _H	Bit Field				HWI	BPxx			
	Register	Туре				r	w			

XC87xCLM

Figure 14 Interrupt Request Sources (Part 2)

Figure 16 Interrupt Request Sources (Part 4)

Figure 17 Interrupt Request Sources (Part 5)

3.4.2 Interrupt Source and Vector

Each interrupt event source has an associated interrupt vector address for the interrupt node it belongs to. This vector is accessed to service the corresponding interrupt node request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the XC87x interrupt sources to the interrupt vector address and the corresponding interrupt node enable bits are summarized in Table 22.

Interrupt Source	Vector Address	Assignment for XC87x	Enable Bit	SFR
NMI	0073 _H	Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	
		Flash Timer NMI	NMIFLASH	
		V _{DDP} Prewarning NMI	NMIVDDP	
		Flash ECC NMI	NMIECC	
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	
XINTR5	002B _H	T2CCU	ET2	
		UART Fractional Divider (Normal Divider Overflow)		
		MultiCAN Node 0		
		LIN		

Table 22 Interrupt Vector Addresses

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC87x. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features

- Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- Power-down mode support¹⁾

The CGU consists of an oscillator circuit and a PLL. In the XC87x, the oscillator can be from either of these two sources: the on-chip oscillator (4 MHz) or the external oscillator (2 MHz to 20 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

¹⁾ SAK product variant does not support power-down mode.

3.8.2 Clock Management

The CGU generates all clock signals required within the microcontroller from a single clock, f_{sys} . During normal system operation, the typical frequencies of the different modules are as follow:

- CPU clock: CCLK, SCLK = 24 MHz
- MultiCAN clock : MCANCLK = 24 or 48 MHz
- MDU clock : MDUCLK = 24 or 48 MHz
- CORDIC clock : CORDICCLK = 24 or 48 MHz
- CCU6 clock : CCU6CLK = 24 or 48 MHz
- T2CCU clock : T2CCUCLK = 24 or 48 MHz
- Peripheral clock: PCLK = 24 MHz

In addition, different clock frequencies can be output to pin CLKOUT (P0.0 or P0.7). The clock output frequency, which is derived from the clock output divider (bit COREL), can further be divided by 2 using toggle latch (bit TLEN is set to 1). The resulting output frequency has a 50% duty cycle. **Figure 22** shows the clock distribution of the XC87x.

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert FNMIWDT) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value ($\langle WDTREL \rangle * 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- The input frequency to the WDT can be selected to be either $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$
- The reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, $P_{\rm WDT}$, between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1 + WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

(3.3)

If the Window-Boundary Refresh feature of the WDT is enabled, the period $P_{\rm WDT}$ between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 25**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB cannot be smaller than WDTREL.

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 26**.

Figure 26Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

The following formulas calculate the final baud rate without and with the fractional divider respectively:

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)}$$
 where $2^{BRPRE} \times (BR_VALUE + 1) > 1$

(3.4)

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)} \times \frac{STEP}{256}$$

(3.5)

The maximum baud rate that can be generated is limited to $f_{\rm PCLK}/32$. Hence, for a module clock of 24 MHz, the maximum achievable baud rate is 0.75 MBaud.

Standard LIN protocol can support a maximum baud rate of 20 kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20 kHz to 57.6 kHz, the higher baud rates require the use of the fractional divider for greater accuracy.

Table 31 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 24 MHz is used.

Baud rate	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	Deviation Error
19.2 kBaud	1 (BRPRE=000 _B)	78 (4E _H)	0.17 %
9600 Baud	1 (BRPRE=000 _B)	156 (9C _H)	0.17 %
4800 Baud	2 (BRPRE=001 _B)	156 (9C _H)	0.17 %
2400 Baud	4 (BRPRE=010 _B)	156 (9C _H)	0.17 %

 Table 31
 Typical Baud rates for UART with Fractional Divider disabled

The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. **Table 32** lists the resulting deviation errors from generating a baud rate of 57.6 kHz, using different module clock frequencies. The fractional divider is enabled (fractional divider mode) and the corresponding parameter settings are shown.

3.20 Capture/Compare Unit 6

The Capture/Compare Unit 6 (CCU6) provides two independent timers (T12, T13), which can be used for Pulse Width Modulation (PWM) generation, especially for AC-motor control. The CCU6 also supports special control modes for block commutation and multi-phase machines.

The timer T12 can function in capture and/or compare mode for its three channels. The timer T13 can work in compare mode only.

The multi-channel control unit generates output patterns, which can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal modulation.

Timer T12 Features

- Three capture/compare channels, each channel can be used either as a capture or as a compare channel
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and lowside switches)
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- Dead-time control for each channel to avoid short-circuits in the power stage
- Concurrent update of the required T12/13 registers
- · Generation of center-aligned and edge-aligned PWM
- Supports single-shot mode
- Supports many interrupt request sources
- Hysteresis-like control mode

Timer T13 Features

- One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- Can be synchronized to T12
- Interrupt generation at period-match and compare-match
- Supports single-shot mode

Additional Features

- Implements block commutation for Brushless DC-drives
- Position detection via Hall-sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- · Control modes for multi-channel AC-drives
- Output levels can be selected and adapted to the power stage

The block diagram of the CCU6 module is shown in **Figure 29**.

Electrical Parameters

Table 45Power Supply Current Parameters¹⁾ (Operating Conditions apply; $V_{\text{DDP}} = 3.3 \text{V}$ range)

Parameter	Symbol	Limit	Values	Unit	Test	
		typ. ²⁾	max. ³⁾		Conditions	
V _{DDP} = 3.3V Range						
Active Mode	I _{DDP}	35.4	43	mA	4)	
Idle Mode	I _{DDP}	27.6	33	mA	5)	
Active Mode with slow-down enabled	I _{DDP}	8.6	13	mA	6)	
Idle Mode with slow-down enabled	I _{DDP}	8	12	mA	7)	

1) The table is only applicable to SAF and SAX variants.

2) The typical I_{DDP} values are based on preliminary measurements and are to be used as reference only. These values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 3.3 V.

3) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 105 °C and V_{DDP} = 3.6 V).

4) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz with onchip oscillator of 4 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

5) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

- 6) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , RESET = V_{DDP} ; all other pins are disconnected, no load on ports.
- 7) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the XC87x package and reliability section.

5.1 Package Parameters

Table 56 provides the thermal characteristics of the package used in XC878 and XC874.

Table 50 Thermal Cha	lactensi	105	UI LITE F	achayes		
Parameter	Symbol		Lin	nit Values	Unit	Notes
			Min.	Max.		
PG-LQFP-64-4 (XC878)					L	
Thermal resistance junction case ¹⁾	R _{TJC} (СС	-	13.8	K/W	-
Thermal resistance junction lead ¹⁾	$R_{\rm TJL}$ (СС	-	34.6	K/W	-
PG-VQFN-48-22 (XC874)						·
Thermal resistance junction case ¹⁾	R _{TJC} (СС	-	16.6	K/W	-
Thermal resistance junction lead ¹⁾	$R_{\rm TJL}$ (СС	-	30.7	K/W	-

Table 56 Thermal Characteristics of the Packages

1) The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.