

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Discontinued at Digi-Key
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	52KB (52K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25К х 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc878m-13ffi-5v-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Table 2Device Profile (cont'd)

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAF-XC878CM-13FFI 3V3	Flash	52	3.3	-40 to 85	Industrial
SAF-XC878-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAF-XC878M-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAF-XC878CM-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAF-XC878-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878CM-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878LM-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878CLM-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAF-XC878CM-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAF-XC878LM-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAF-XC878CLM-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAX-XC878-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878CM-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878LM-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878CLM-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878CM-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878LM-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878CLM-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAK-XC878-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878CM-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878LM-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878CLM-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC878CM-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC878LM-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC878CLM-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAF-XC874LM-16FVA 5V	Flash	64	5.0	-40 to 85	Automotive

General Device Information

2.3 Pin Configuration

The pin configuration of the XC878, which is based on the PG-LQFP-64, is shown in **Figure 4**, while that of the XC874, which is based on the PG-VQFN-48 package, is shown in **Figure 5**.

Figure 4 XC878 Pin Configuration, PG-LQFP-64 Package (top view)

XC87xCLM

General Device Information

Figure 5 XC874 Pin Configuration, PG-VQFN-48 Package (top view)

XC87xCLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P0.3	63/1		Hi-Z	SCK_1 COUT63_1	SSC Clock Input/Output Output of Capture/Compare channel 3
				RXDO1_0 A17	UART1 Transmit Data Output Address Line 17 Output
P0.4	64/2		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input
				CC62_1	Input/Output of Capture/Compare channel 2
				TXD1_0	UART1 Transmit Data Output/Clock Output
				A18	Address Line 18 Output
P0.5	1/3		Hi-Z	MRST_1	SSC Master Receive Input/Slave Transmit Output
				EXINT0_0	External Interrupt Input 0
				T2EX1_1	Timer 21 External Trigger Input
				RXD1_0	UART1 Receive Data Input
				00102_1	channel 2
				A19	Address Line 19 Output
P0.6	2/4		PU	T2CC4_1	Compare Output Channel 4
				WR	External Data Write Control Output
P0.7	62/48		PU	CLKOUT_1 T2CC5_1	Clock Output Compare Output Channel 5
				KD	External Data Read Control Output

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P1		I/O		Port 1 Port 1 is an 8 I/O port. It ca for the JTAG T2CCU, Tim External Bus Note: Extern XC872	B-bit bidirectional general purpose an be used as alternate functions 6, CCU6, UART, Timer 0, Timer 1, er 21, MultiCAN, SSC and 6 Interface. al Bus Interface is not available in 4.
P1.0	34/25		PU	RXD_0 T2EX_0 RXDC0_0 A8	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input Address Line 8 Output
P1.1	35/26		PU	EXINT3_0 T0_1 TXD_0 TXDC0_0 A9	External Interrupt Input 3 Timer 0 Input UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output Address Line 9 Output
P1.2	36/27		PU	SCK_0 A10	SSC Clock Input/Output Address Line 10 Output
P1.3	37/28		PU	MTSR_0 SCK_2 TXDC1_3 A11	SSC Master Transmit Output/Slave Receive Input SSC Clock Input/Output MultiCAN Node 1 Transmitter Output Address Line 11 Output
P1.4	38/29		PU	MRST_0 EXINT0_1 RXDC1_3 MTSR_2 A12	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input SSC Master Transmit Output/Slave Receive Input Address Line 12 Output

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P4		I/O		Port 4 Port 4 is an 8 I/O port. It ca for CCU6, Tin MultiCAN an Note: Extern XC874	B-bit bidirectional general purpose an be used as alternate functions mer 0, Timer 1, T2CCU, Timer 21, d External Bus Interface. al Bus Interface is not available in 4.
P4.0	59/45		Hi-Z	RXDC0_3 CC60_1 T2CC0_0/ EXINT3_1 D0	MultiCAN Node 0 Receiver Input Output of Capture/Compare channel 0 External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Data Line 0 Input/Output
P4.1	60/46		Hi-Z	TXDC0_3 COUT60_1 T2CC1_0/ EXINT4_1 D1	MultiCAN Node 0 Transmitter Output Output of Capture/Compare channel 0 External Interrupt Input 4/T2CCU Capture/Compare Channel 1 Data Line 1 Input/Output
P4.2	61/47		PU	EXINT6_1 T21_0 D2	External Interrupt Input 6 Timer 21 Input Data Line 2 Input/Output
P4.3	40/31		Hi-Z	T2EX_1 EXF21_1 COUT63_2 D3	Timer 2 External Trigger Input Timer 21 External Flag Output Output of Capture/Compare channel 3 Data Line 3 Input/Output
P4.4	45/-		Hi-Z	CCPOS0_3 T0_0 CC61_4 T2CC2_0/ EXINT5_1 D4	CCU6 Hall Input 0 Timer 0 Input Output of Capture/Compare channel 1 External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Data Line 4 Input/Output

Figure 8 Memory Map of XC87x with 52K Flash Memory in user mode

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in Figure 9.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

Address Extension by Mapping

Figure 10 Address Extension by Paging

In order to access a register located in a page different from the actual one, the current page must be exited. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

• Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0, PAGE 2	1								<u> </u>	
CA _H	ADC_RESR0L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR		
	Result Register 0 Low	Туре	r	'n	r	rh	rh	rh rh			
Св _н	ADC_RESR0H Reset: 00 _H	Bit Field			Ι	RES	SULT	Ι			
	Result Register 0 High	Туре	rh								
сс _н	ADC_RESR1L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR		
	Result Register 1 Low	Туре	r	'n	r	rh	rh		rh		
CD _H	ADC_RESR1H Reset: 00 _H	Bit Field			•	RES	SULT	•			
	Result Register 1 High	Туре	rh								
Ceh	ADC_RESR2L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR		
	Result Register 2 Low	Туре	r	'n	r	rh	rh		rh		
CF _H	ADC_RESR2H Reset: 00 _H	Bit Field			•	RES	SULT	•			
	Result Register 2 High	Туре				r	h				
D2 _H	ADC_RESR3L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR		
	Result Register 3 Low	Туре	r	'n	r	rh	rh		rh		
D3 _H	ADC_RESR3H Reset: 00 _H	Bit Field	RESULT								
	Result Register 3 High	Туре		rh							
RMAP =	= 0, PAGE 3										
са _Н	ADC_RESRA0L Reset: 00 _H	Bit Field	RESULT			VF	DRC		CHNR		
	Result Register 0, View A Low	Туре	rh			rh	rh		rh		
св _Н	ADC_RESRA0H Reset: 00 _H	Bit Field	it Field RESULT								
	Result Register 0, View A High	Туре				rh					
сс _Н	ADC_RESRA1L Reset: 00 _H	Bit Field		RESULT		VF	VF DRC CHNF				
	Result Register 1, View A Low	Туре		rh		rh rh rh					
CD _H	ADC_RESRA1H Reset: 00 _H	Bit Field				RES	SULT				
	Result Register 1, View A High	Туре				r	h				
CEH	ADC_RESRA2L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR		
	Result Register 2, View A Low	Туре		rh		rh	rh		rh		
CFH	ADC_RESRA2H Reset: 00 _H	Bit Field				RES	ULT				
	Result Register 2, View A High	Туре				r	h				
D2 _H	ADC_RESRA3L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR		
	Result Register 3, View A Low	Туре	rh			rh	rh		rh		
D3 _H	ADC_RESRA3H Reset: 00 _H	Bit Field				RES	SULT				
	Result Register 3, View A High	Туре				r	h				
RMAP =	= 0, PAGE 4										
са _Н	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R	
		Туре	rw	rw	r	rw		r		rw	

3.2.4.8 Timer 2 Compare/Capture Unit Registers

The Timer 2 Compare/Capture Unit SFRs can be accessed in the standard memory area (RMAP = 0).

Table 12T2CCU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
C7 _H	T2_PAGE Reset: 00 _H	Bit Field	0	Р	ST	NR	0	PAGE		
	Page Register	Туре	V	v	V	V	r		rwh	
RMAP =	0, PAGE 0		•				•	•		
c₀ ^H	T2_T2CON Reset: 00 _H Timer 2 Control Register	Bit Field	TF2	EXF2	()	EXEN 2	TR2	C/T2	CP/ RL2
		Туре	rwh	rwh	1	r	rw	rwh	rw	rw
C1 _H	T2_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN
		Туре	rw	rw	rw	rw		rw		rw
C2 _H	T2_RC2L Reset: 00 _H	Bit Field				R	C2			
	Register Low	Туре				rv	vh			
C3 _H	T2_RC2H Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register High	Туре				rv	vh			
C4 _H	T2_T2L Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register Low	Туре				rv	vh			
C5 _H	T2_T2H Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register High	Туре				rv	vh			
C6 _H	T2_T2CON1Reset: 03 _H Timer 2 Control Register 1	Bit Field	0						TF2EN	EXF2E N
		Туре			l	r			rw	rw
RMAP =	0, PAGE 1	-			-					
C0 _H	T2CCU_CCEN Reset: 00 _H	Bit Field	CC	M3	CC	M2	CC	M1	CC	MO
	Enable Register	Туре	r	N	r	N	r	N	r	N
C1 _H	T2CCU_CCTBSELReset: 00 _H T2CCU Capture/Compare Time	Bit Field	CASC	CCTT OV	CCTB 5	CCTB 4	CCTB 3	CCTB 2	CCTB 1	CCTB 0
	Base Select Register	Туре	rw	rwh	rw	rw	rw	rw	rw	rw
C2 _H	T2CCU_CCTRELLReset: 00 _H	Bit Field				ССТ	REL			
	Timer Reload Register Low	Туре				r	w			
C3 _H	T2CCU_CCTRELHReset: 00H	Bit Field				ССТ	REL			
	Timer Reload Register High	Туре				r	w			
C4 _H	T2CCU_CCTL Reset: 00 _H	Bit Field				C	СТ			
	Timer Register Low	Туре				rv	vh			

Table 12T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0, PAGE 4									
C2 _H	T2CCU_CCTDTCLReset: 00 _H					D	ГМ			
	Timer Dead-Time Control Register Low	Туре				r	w			
C3 _H	C3 _H T2CCU_CCTDTCHReset: 00 _H T2CCU Capture/Compare Timer Dead-Time Control Register High	Bit Field	DTRE S	DTR2	DTR1	DTR0	DTLEV	DTE2	DTE1	DTE0
		Туре	rwh	rh	rh	rh	rw	rw	rw	rw

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13T21 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 1									
c₀ _H	T21_T2CON Reset: 00 _H Timer 2 Control Register	Bit Field	TF2	EXF2	()	EXEN 2	TR2	C/T2	CP/ RL2
		Туре	rwh	rwh	l	ſ	rw	rwh	rw	rw
C1 _H	T21_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	T21_RC2L Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register Low	Туре				rv	/h			
C3 _H	T21_RC2H Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register High	Туре				rv	/h			
C4 _H	T21_T2L Reset: 00 _H	Bit Field				TH	L2			
	Timer 2 Register Low	Туре				rv	/h			
C5 _H	T21_T2H Reset: 00 _H	Bit Field				T⊦	L2			
	Timer 2 Register High	Туре				rv	/h			
C6 _H	T21_T2CON1 Reset: 03 _H Timer 2 Control Register 1	Bit Field			()			TF2EN	EXF2E N
		Туре				r			rw	rw

Figure 17 Interrupt Request Sources (Part 5)

Interrupt Source	Vector Address	Assignment for XC87x	Enable Bit	SFR
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1
		ADC[1:0]		
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
		T21	_	
		CORDIC		
		UART1		
		UART1 Fractional Divider (Normal Divider Overflow)		
		MDU[1:0]	_	
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4		
		External Interrupt 5		
		External Interrupt 6		
		T2CCU		
		MultiCAN Node 3		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
		MultiCAN Node 4		
XINTR11	005B _H	CCU6 INP1	ECCIP1	
		MultiCAN Node 5		
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
		MultiCAN Node 6		
XINTR13	006B _H	CCU6 INP3	ECCIP3	
		MultiCAN Node 7		

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 26**.

Figure 26Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

Table 37	Chip Identification	Number	(cont'd)
----------	----------------------------	--------	----------

Product Variant	Chip Identification Number				
	AC-step				
XC874CM-13FV 5V	4B590402 _H				
XC874LM-13FV 5V	4B510422 _H				
XC874-13FV 5V	4B590462 _H				

Electrical Parameters

4.2.4 **Power Supply Current**

Table 43, **Table 44**, **Table 45** and **Table 46** provide the characteristics of the power supply current in the XC87x.

Table 43Power Supply Current Parameters (Operating Conditions apply; V_{DDP} = 5V range)

	Symbol	Limit	Values	Unit	Tost Conditions	
Falameter	Symbol			Unit	rest conditions	
		typ. ¹⁾	max. ²⁾			
$V_{\rm DDP}$ = 5V Range						
Active Mode	I _{DDP}	37.5	45	mA	³⁾ SAF and SAX variants	
		40.5	48	mA	³⁾ SAK variant	
Idle Mode	I _{DDP}	29.2	35	mA	⁴⁾ SAF and SAX variants	
		32.2	38	mA	⁴⁾ SAK variant	
Active Mode with slow-	I_{DDP}	10	15	mA	⁵⁾ SAF and SAX variants	
down enabled		13	18	mA	⁵⁾ SAK variant	
Idle Mode with slow-	slow- <i>I</i> _{DDP} 9.2 14 12.2 17	9.2	14	mA	⁶⁾ SAF and SAX variants	
down enabled		17	mA	6) SAK variant		

1) The typical I_{DDP} values are based on preliminary measurements and are to be used as reference only. These values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

2) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 105 °C and V_{DDP} = 5.5 V).

3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz with onchip oscillator of 4 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

5) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , $\overline{\text{RESET}} = V_{\text{DDP}}$; all other pins are disconnected, no load on ports.

6) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 1 MHz by setting CLKREL in CMCON to 1000_B, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

Electrical Parameters

Table 45Power Supply Current Parameters¹⁾ (Operating Conditions apply; $V_{\text{DDP}} = 3.3 \text{V}$ range)

Parameter	Symbol	Limit	Values	Unit	Test
		typ. ²⁾	max. ³⁾		Conditions
V _{DDP} = 3.3V Range					
Active Mode	I _{DDP}	35.4	43	mA	4)
Idle Mode	I _{DDP}	27.6	33	mA	5)
Active Mode with slow-down enabled	I _{DDP}	8.6	13	mA	6)
Idle Mode with slow-down enabled	I _{DDP}	8	12	mA	7)

1) The table is only applicable to SAF and SAX variants.

2) The typical I_{DDP} values are based on preliminary measurements and are to be used as reference only. These values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 3.3 V.

3) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 105 °C and V_{DDP} = 3.6 V).

4) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz with onchip oscillator of 4 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

5) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

- 6) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , RESET = V_{DDP} ; all other pins are disconnected, no load on ports.
- 7) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the XC87x package and reliability section.

5.1 Package Parameters

Table 56 provides the thermal characteristics of the package used in XC878 and XC874.

Table 50 Thermal Cha	lacterist	163	UT LITE F	achayes		
Parameter	Symbol		Lin	nit Values	Unit	Notes
			Min. Max.			
PG-LQFP-64-4 (XC878)					L	
Thermal resistance junction case ¹⁾	R _{TJC}	СС	-	13.8	K/W	-
Thermal resistance junction lead ¹⁾	$R_{\rm TJL}$ (СС	-	34.6	K/W	-
PG-VQFN-48-22 (XC874)						
Thermal resistance junction case ¹⁾	R _{TJC}	СС	-	16.6	K/W	-
Thermal resistance junction lead ¹⁾	$R_{\rm TJL}$ (СС	-	30.7	K/W	-

Table 56 Thermal Characteristics of the Packages

1) The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.