

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

D.A. II.	
Details	
Product Status	Discontinued at Digi-Key
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc878m-16ffi-5v-aa

General Device Information

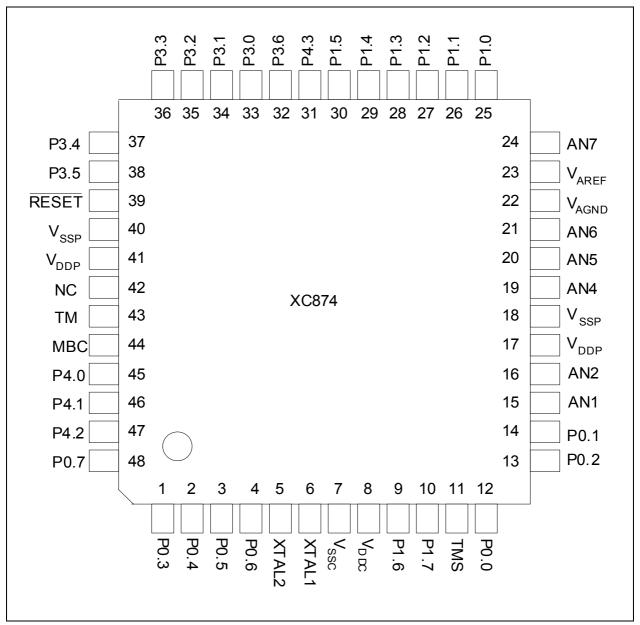


Figure 5 XC874 Pin Configuration, PG-VQFN-48 Package (top view)

General Device Information

 Table 3
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function				
P4		I/O		Port 4 Port 4 is an 8-bit bidirectional general purpo I/O port. It can be used as alternate function for CCU6, Timer 0, Timer 1, T2CCU, Timer 2 MultiCAN and External Bus Interface. Note: External Bus Interface is not available XC874.				
P4.0	59/45		Hi-Z	RXDC0_3 CC60_1 T2CC0_0/ EXINT3_1 D0	MultiCAN Node 0 Receiver Input Output of Capture/Compare channel 0 External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Data Line 0 Input/Output			
P4.1	60/46		Hi-Z	TXDC0_3 COUT60_1 T2CC1_0/ EXINT4_1 D1	MultiCAN Node 0 Transmitter Output Output of Capture/Compare channel 0 External Interrupt Input 4/T2CCU Capture/Compare Channel 1 Data Line 1 Input/Output			
P4.2	61/47		PU	EXINT6_1 T21_0 D2	External Interrupt Input 6 Timer 21 Input Data Line 2 Input/Output			
P4.3	40/31		Hi-Z	T2EX_1 EXF21_1 COUT63_2 D3	Timer 2 External Trigger Input Timer 21 External Flag Output Output of Capture/Compare channel 3 Data Line 3 Input/Output			
P4.4	45/-		Hi-Z	CCPOS0_3 T0_0 CC61_4 T2CC2_0/ EXINT5_1 D4	CCU6 Hall Input 0 Timer 0 Input Output of Capture/Compare channel 1 External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Data Line 4 Input/Output			

- Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE
 - (this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

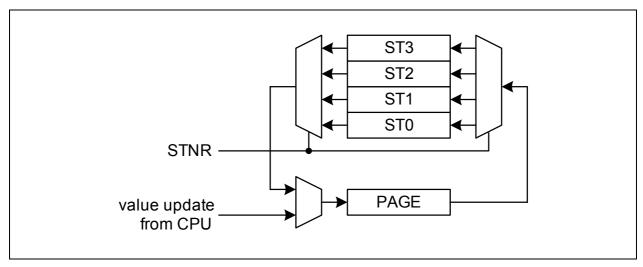


Figure 11 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC87x supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

Data Sheet 30 V1.5, 2011-03

 Table 7
 CORDIC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
9C _H	CD_CORDYL Reset: 00H	Bit Field		DATAL								
	CORDIC Y Data Low Byte	Туре		rw								
9D _H	CD_CORDYH Reset: 00H	Bit Field				DA	ГАН					
	CORDIC Y Data High Byte	Туре	rw									
9E _H	CD_CORDZL Reset: 00H	Bit Field				DA	TAL					
	CORDIC Z Data Low Byte	Туре				r	w					
9F _H	CD_CORDZH Reset: 00H	Bit Field				DA	ГАН					
	CORDIC Z Data High Byte	Туре				r	w					
A0 _H	CD_STATC Reset: 00 _H CORDIC Status and Data	Bit Field	KEEP Z	KEEP Y	KEEP X	DMAP	INT_E N	EOC	ERRO R	BSY		
	Control Register	Туре	rw	rw	rw	rw	rw	rwh	rh	rh		
A1 _H	CD_CON Reset: 00 _H CORDIC Control Register	Bit Field	ield MPS X_USI ST_M ROTV MODE ST GN ODE EC					ST				
		Туре	n	N	rw	rw	rw	r	W	rwh		

3.2.4.4 System Control Registers

The system control SFRs can be accessed in the mapped memory area (RMAP = 0).

Table 8 SCU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 0 or 1	•		•	•		•	•		
8F _H	SYSCON0 Reset: 04 _H System Control Register 0	Bit Field	0			IMOD E		1	0	RMAP
		Туре		r		rw	r	r	r	rw
RMAP =	0									
BFH	SCU_PAGE Reset: 00H	Bit Field	С)P	ST	NR	0		PAGE	
	Page Register	Туре	1	N	١	V	r		rwh	
RMAP =	0, PAGE 0									
вз _Н	MODPISEL Reset: 00 _H Peripheral Input Select Register	Bit Field	0	URRIS H	JTAGT DIS	JTAGT CKS	EXINT 2IS	EXINT 1IS	EXINT 0IS	URRIS
		Туре	r	rw	rw	rw	rw	rw	rw	rw
^{B4} H	IRCON0 Reset: 00 _H Interrupt Request Register 0	Bit Field	0	EXINT 6	EXINT 5	EXINT 4	EXINT 3	EXINT 2	EXINT 1	EXINT 0
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
в5 _Н	IRCON1 Reset: 00 _H Interrupt Request Register 1	Bit Field	0	CANS RC2	CANS RC1	ADCS R1	ADCS R0	RIR	TIR	EIR
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
в6 _Н	IRCON2 Reset: 00 _H Interrupt Request Register 2	Bit Field	_	0		CANS RC3		0		CANS RC0
		Туре		r		rwh		r		rwh

3.2.4.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 9 WDT Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	: 1			•		•		•			
ввн	WDTCON Reset: 00 _H Watchdog Timer Control	Bit Field	()	WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N	
	Register	Туре	r		rw	rh	r	rw	rwh	rw	
всн	WDTREL Reset: 00 _H	Bit Field				WDT	REL				
	Watchdog Timer Reload Register	Туре				r	w				
BD _H	WDTWINB Reset: 00H	Bit Field	WDTWINB								
	Watchdog Window-Boundary Count Register	Туре				r	w				
BE _H	WDTL Reset: 00 _H	Bit Field				W	DT				
	Watchdog Timer Register Low Type			rh							
BF _H	WDTH Reset: 00 _H					W	DT				
	Watchdog Timer Register High	Туре				r	h				

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10 Port Register Overview

Addr	Register Name		Bit	7	6	5	4	3	2	1	0
RMAP =	= 0				•						
B2 _H	PORT_PAGE Reset: 00H		Bit Field	0	P	ST	NR	0			
	Page Register		Туре	٧	v	V	V	r		rwh	
RMAP =	0, PAGE 0										
80 _H	P0_DATA Rese	t: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register		Туре	rwh							
86 _H		t: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Register		Туре	rw							
90 _H	P1_DATA Rese	t: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register		Туре	rwh							
91 _H		t: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Register		Туре	rw							
92 _H		t: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register		Туре	rwh							
93 _H		t: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Register		Туре	rw							

Table 12 T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
C5 _H	T2CCU_CCTH Reset: 00H	Bit Field				C	CT			
	T2CCU Capture/Compare Timer Register High	Туре				rv	vh			
C6 _H	T2CCU_CCTCON Reset: 00 _H T2CCU CaptureCcompare	Bit Field		ССТ	PRE		CCTO VF	CCTO VEN	TIMSY N	CCTS T
	Timer Control Register	Туре		r	W		rwh	rw	rw	rw
RMAP =	: 0, PAGE 2									
C0H	T2CCU_COSHDWReset: 00 _H T2CCU Capture/compare	Bit Field	ENSH DW	TXOV	COOU T5	COOU T4	COOU T3	COOU T2	COOU T1	COOU T0
	Enable Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
C1 _H	T2CCU_CC0L Reset: 00 _H T2CCU Capture/Compare	Bit Field				CC/	/ALL			
	Register 0 Low	Туре	rwh							
C2 _H	T2CCU_CC0H Reset: 00H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 0 High	Туре	rwh							
C3 _H	T2CCU_CC1L Reset: 00H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 1 Low	Туре	rwh							
C4 _H	T2CCU_CC1H Reset: 00 _H T2CCU Capture/compare	Bit Field				CCV	/ALH			
	Register 1 High	Туре				rv	vh			
C5 _H	T2CCU_CC2L Reset: 00H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 2 Low	Туре				rv	vh			
C6 _H	T2CCU_CC2H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 2 High	Туре				rv	vh			
RMAP =	: 0, PAGE 3									
C0H	T2CCU_COCON Reset: 00 _H T2CCU Compare Control	Bit Field	CCM5	CCM4	CM5F	CM4F	POLB	POLA	CON	ИOD
	Register	Туре	rw	rw	rwh	rwh	rw	rw	r	W
C1 _H	T2CCU_CC3L Reset: 00H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 3 Low	Туре				rv	vh			
C2 _H	T2CCU_CC3H Reset: 00H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 3 High	Туре				rv	vh			
СЗН	T2CCU_CC4L Reset: 00H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 4 Low	Туре	rwh							
C4 _H	T2CCU_CC4H Reset: 00H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 4 High	Туре				rv	vh			
C5 _H	T2CCU_CC5L Reset: 00H	Bit Field	field CCVALL							
	T2CCU Capture/compare Register 5 Low	Туре				rv	vh			
C6 _H	T2CCU_CC5H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 5 High	Туре				rv	vh			

Table 14 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
FDH	CCU6_CC61RH Reset: 00H	Bit Field		l		CC6	1VH					
	Capture/Compare Register for Channel CC61 High	Туре				r	h					
FEH	CCU6_CC62RL Reset: 00H	Bit Field				CC6	S2VL					
	Capture/Compare Register for Channel CC62 Low	Туре		rh								
FFH	CCU6_CC62RH Reset: 00H	Bit Field		CC62VH								
	Capture/Compare Register for Channel CC62 High	Туре				r	h					
RMAP =	= 0, PAGE 2											
9A _H	CCU6_T12MSELL Reset: 00 _H T12 Capture/Compare Mode Select	Bit Field		MSE	EL61			MSE	EL60			
	Register Low	Туре		r	W			r	W			
9B _H	CCU6_T12MSELH Reset: 00 _H T12 Capture/Compare Mode Select	Bit Field	DBYP		HSYNC			MSE	EL62			
	Register High	Туре	rw		rw			r	W			
9C _H	CCU6_IENL Reset: 00 _H Capture/Compare Interrupt Enable Register Low	Bit Field	ENT1 2 PM	ENT1 2 OM	ENCC 62F	ENCC 62R	ENCC 61F	ENCC 61R	ENCC 60F	ENCC 60R		
		Туре	rw	rw	rw	rw	rw	rw	rw	rw		
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM		
	Register High	Туре	rw	rw	rw	rw	r	rw	rw	rw		
9E _H	CCU6_INPL Reset: 40 _H	Bit Field	INP	CHE	INPO	CC62	INPO	CC61	INPO	CC60		
	Capture/Compare Interrupt Node Pointer Register Low	Туре	n	W	r	w	r	w	rw			
9F _H	CCU6_INPH Reset: 39 _H	Bit Field	()	INPT13		INPT12		INP	ERR		
	Capture/Compare Interrupt Node Pointer Register High	Туре	!	r	r	w	r	W	r	w		
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R		
	Set Register Low	Туре	W	w	W	W	w	w	w	W		
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM		
	Set Register High	Туре	W	w	w	W	W	W	W	W		
A6 _H	CCU6_PSLR Reset: 00 _H Passive State Level Register	Bit Field	PSL63	0			P	SL				
	Passive State Level Register	Туре	rwh	r			rv	vh				
A7 _H	CCU6_MCMCTR Reset: 00 _H Multi-Channel Mode Control Register	Bit Field	()	SW	SYN	0		SWSEL			
	Wulli-Chaille Wode Control Negister	Туре	ı	r	r	W	r		rw			
FA _H	CCU6_TCTR2L Reset: 00 _H Timer Control Register 2 Low	Bit Field	0	T13	TED		T13TEC		T13 SSC	T12 SSC		
		Туре	r	r	W		rw		rw	rw		
FB _H	CCU6_TCTR2H Reset: 00 _H Timer Control Register 2 High	Bit Field			0		T13F	RSEL	T12F	RSEL		
	Timor Control Negrater 2 High	Туре			r		rw rw					
FC _H	CCU6_MODCTRL Reset: 00 _H Modulation Control Register Low	Bit Field	MCM EN	0			T12M	ODEN				
		Туре	rw	r			r	w				

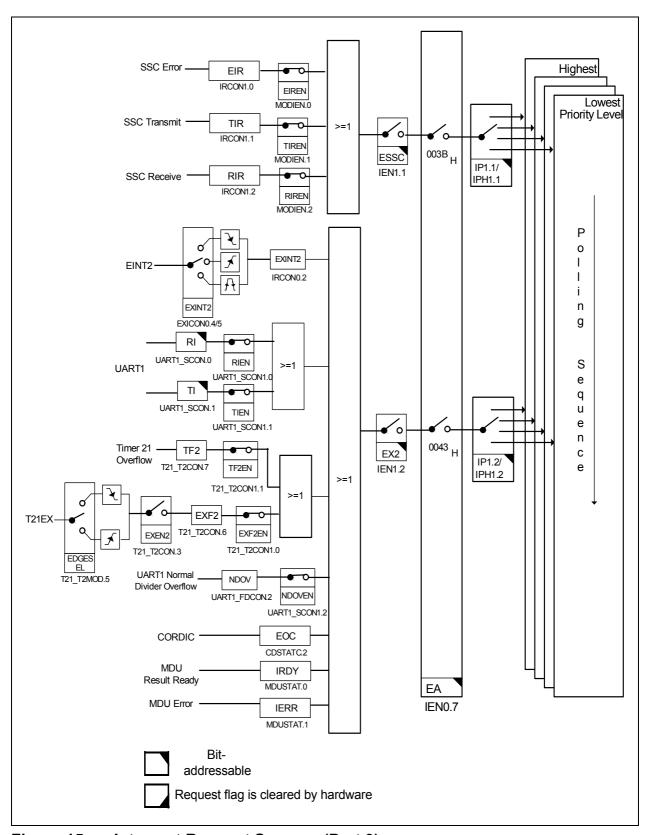


Figure 15 Interrupt Request Sources (Part 3)

3.5 Parallel Ports

The XC87x has 40 port pins organized into five parallel ports: Port 0 (P0), Port 1 (P1), Port 3 (P3), Port 4 (P4) and Port 5 (P5). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. These ports are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected.

Bidirectional Port Features

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Configurable drive strength
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

3.7.2 Booting Scheme

When the XC87x is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. **Table 25** shows the available boot options in the XC87x.

Table 25 XC87x Boot Selection 1)

MBC	TMS	P0.0	Type of Mode	PC Start Value
1	0	Х	User Mode ²⁾ ; on-chip OSC/PLL non-bypassed	0000 _H
0	0	X	BSL Mode; (LIN Mode ³⁾ , UART/ MultiCAN Mode ⁴⁾⁵⁾ and Alternate BSL Mode ⁶⁾); on-chip OSC/PLL non-bypassed	0000 _H
0	1	0	OCDS Mode; on-chip OSC/PLL non- bypassed	0000 _H
1	1	0	User (JTAG) Mode ⁷⁾ ; on-chip OSC/PLL non-bypassed (normal)	0000 _H

- 1) In addition to the pins MBC, TMS and P0.0, TM pin also requires an external pull down for all the boot options.
- 2) BSL mode is automatically entered if no valid password is installed and data at memory address 0000H equals zero.
- 3) If a device is programmed as LIN, LIN BSL is always used instead of UART/MultiCAN.
- 4) UART or MultiCAN BSL is decoded by firmware based on the protocol for product variant with MultiCAN. If no MultiCAN and LIN variant, UART BSL is used.
- 5) In MultiCAN BSL mode, the clock source is switched to XTAL by firmware, bypassing the on-chip oscillator. This avoids any frequency invariance with the on-chip oscillator and allows other frequency clock input, thus ensuring accurate baud rate detection (especially at high bit rates).
- 6) Alternate BSL Mode is a user defined BSL code programmed in Flash. It is entered if the AltBSLPassword is valid.
- 7) Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

Note: The boot options are valid only with the default set of UART and JTAG pins.

Data Sheet 74 V1.5, 2011-03

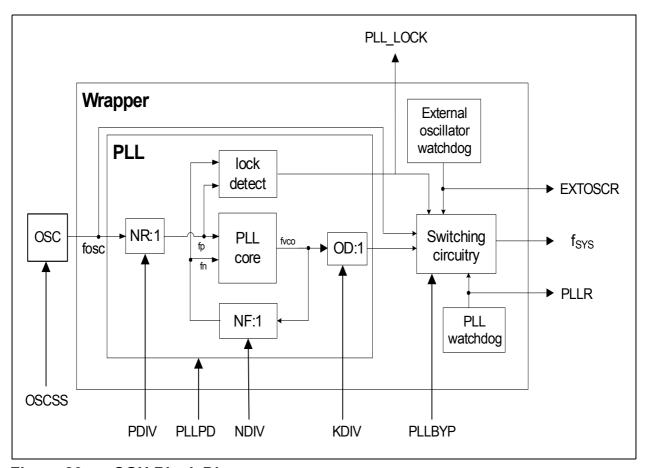


Figure 20 CGU Block Diagram

Direct Drive (PLL Bypass Operation)

During PLL bypass operation, the system clock has the same frequency as the external clock source.

(3.1)

$$f_{SYS} = f_{OSC}$$

PLL Mode

The CPU clock is derived from the oscillator clock, divided by the NR factor (PDIV), multiplied by the NF factor (NDIV), and divided by the OD factor (KDIV). PLL output must

3.9 Power Saving Modes

The power saving modes of the XC87x provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- · Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 23**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- Idle mode
- Slow-down mode
- Power-down mode

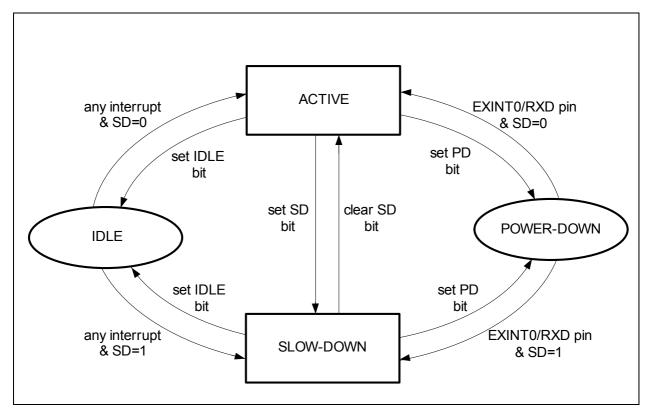


Figure 23 Transition between Power Saving Modes

Note: SAK product variant does not support power-down mode.

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 26**.

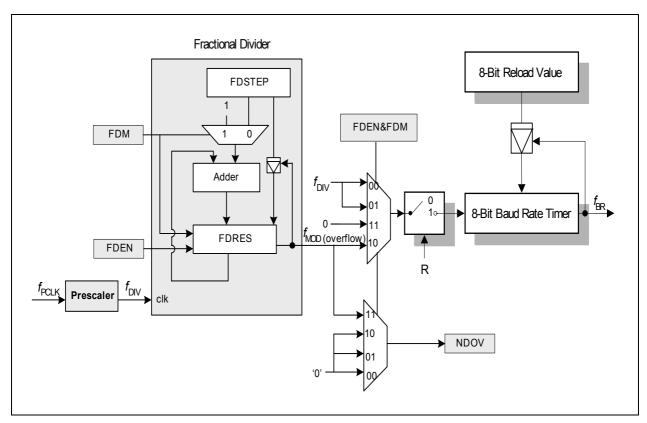


Figure 26 Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP
 (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

Data Sheet 89 V1.5, 2011-03

The following formulas calculate the final baud rate without and with the fractional divider respectively:

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)}$$
 where $2^{BRPRE} \times (BR_VALUE + 1) > 1$

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)} \times \frac{STEP}{256}$$

(3.5)

The maximum baud rate that can be generated is limited to $f_{\rm PCLK}/32$. Hence, for a module clock of 24 MHz, the maximum achievable baud rate is 0.75 MBaud.

Standard LIN protocol can support a maximum baud rate of 20 kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20 kHz to 57.6 kHz, the higher baud rates require the use of the fractional divider for greater accuracy.

Table 31 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 24 MHz is used.

Table 31 Typical Baud rates for UART with Fractional Divider disabled

Baud rate	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	Deviation Error
19.2 kBaud	1 (BRPRE=000 _B)	78 (4E _H)	0.17 %
9600 Baud	1 (BRPRE=000 _B)	156 (9C _H)	0.17 %
4800 Baud	2 (BRPRE=001 _B)	156 (9C _H)	0.17 %
2400 Baud	4 (BRPRE=010 _B)	156 (9C _H)	0.17 %

The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. **Table 32** lists the resulting deviation errors from generating a baud rate of 57.6 kHz, using different module clock frequencies. The fractional divider is enabled (fractional divider mode) and the corresponding parameter settings are shown.

Data Sheet 90 V1.5, 2011-03

needed for the handshaking between the master and slave tasks is provided by the master task through the header portion of the frame.

The header consists of a break and synch pattern followed by an identifier. Among these three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data. The break must contain a dominant value of 13 bits or more to ensure proper synchronization of slave nodes.

In the LIN communication, a slave task is required to be synchronized at the beginning of the protected identifier field of frame. For this purpose, every frame starts with a sequence consisting of a break field followed by a synch byte field. This sequence is unique and provides enough information for any slave task to detect the beginning of a new frame and be synchronized at the start of the identifier field.

Upon entering LIN communication, a connection is established and the transfer speed (baud rate) of the serial communication partner (host) is automatically synchronized in the following steps:

STEP 1: Initialize interface for reception and timer for baud rate measurement

STEP 2: Wait for an incoming LIN frame from host

STEP 3: Synchronize the baud rate to the host

STEP 4: Enter for Master Request Frame or for Slave Response Frame

Note: Re-synchronization and setup of baud rate are always done for **every** Master Request Header or Slave Response Header LIN frame.

Data Sheet 93 V1.5, 2011-03

3.21 Controller Area Network (MultiCAN)

The MultiCAN module contains two Full-CAN nodes operating independently or exchanging data and remote frames via a gateway function. Transmission and reception of CAN frames is handled in accordance to CAN specification V2.0 B active. Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

Both CAN nodes share a common set of message objects, where each message object may be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects may be combined to build gateways between the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double chained lists, where each CAN node has it's own list of message objects. A CAN node stores frames only into message objects that are allocated to the list of the CAN node. It only transmits messages from objects of this list. A powerful, command driven list controller performs all list operations.

The bit timings for the CAN nodes are derived from the peripheral clock (f_{CAN}) and are programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connects each CAN node to a bus transceiver.

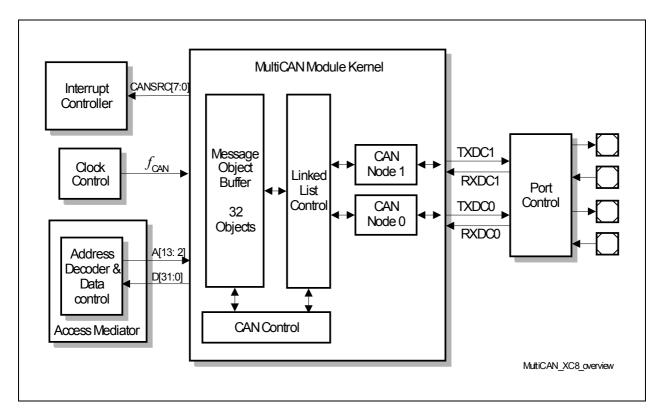


Figure 30 Overview of the MultiCAN

Features

Compliant to ISO 11898.

Electrical Parameters

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC87x.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 4.2** and **Section 4.3**.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC87x and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

· cc

These parameters indicate Controller Characteristics, which are distinctive features of the XC87x and must be regarded for a system design.

SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the XC87x is designed in.

Data Sheet 108 V1.5, 2011-03

Electrical Parameters

4.3.2 Output Rise/Fall Times

Table 47 provides the characteristics of the output rise/fall times in the XC87x.

Table 47 Output Rise/Fall Times Parameters (Operating Conditions apply)

•				` •	•	,		
Parameter	Symbol	Limit Values				Unit	Test Conditions	
		min.	max.					
$V_{\rm DDP}$ = 5V Range		•		•				
Rise/fall times	t _R , t _F	_	10	ns	20 pF. ^{1) 2)3)}			
$V_{\rm DDP}$ = 3.3V Range								
Rise/fall times	t _R , t _F	_	10	ns	20 pF. ^{1) 2)4)}			

- 1) Rise/Fall time measurements are taken with 10% 90% of pad supply.
- 2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.
- 3) Additional rise/fall time valid for $C_{\rm L}$ = 20pF 100pF @ 0.125 ns/pF.
- 4) Additional rise/fall time valid for $C_{\rm L}$ = 20pF 100pF @ 0.225 ns/pF.

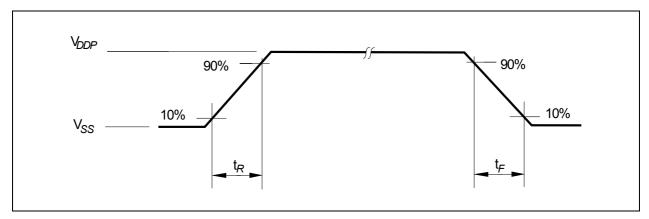


Figure 39 Rise/Fall Times Parameters

Electrical Parameters

4.3.3 Power-on Reset and PLL Timing

Table 48 provides the characteristics of the power-on reset and PLL timing in the XC87x.

Table 48 Power-On Reset and PLL Timing (Operating Conditions apply)

Parameter	Symbol	nbol Limit Values			Unit	Test Conditions	
			min.	typ.	max.		
On-Chip Oscillator start-up time	t_{OSCST}	CC	_	-	500	ns	1)
PLL lock-in in time	t_{LOCK}	CC	_	_	200	μS	1)
PLL accumulated jitter	D_{P}		_	_	1.8	ns	1)2)

- 1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.
- 2) PLL lock at 144 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 72 and P = 1.

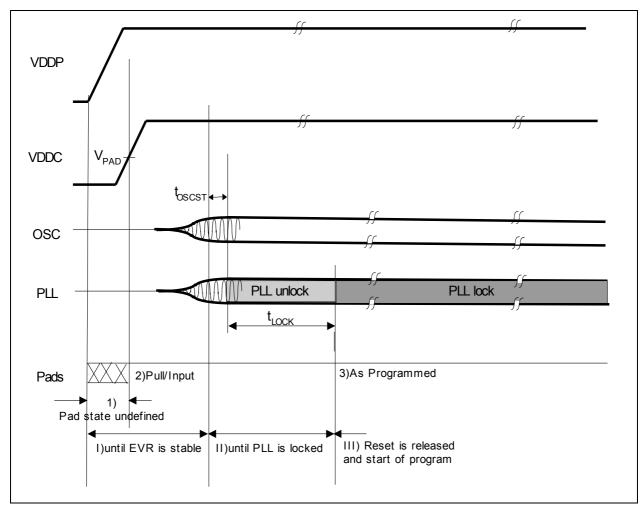


Figure 40 Power-on Reset Timing

Data Sheet 124 V1.5, 2011-03

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the XC87x package and reliability section.

5.1 Package Parameters

Table 56 provides the thermal characteristics of the package used in XC878 and XC874.

Table 56 Thermal Characteristics of the Packages

Parameter	Symbol		Limit Values		Unit	Notes
			Min.	Max.		
PG-LQFP-64-4 (XC878)				1	1	- 1
Thermal resistance junction case ¹⁾	R_{TJC}	CC	-	13.8	K/W	-
Thermal resistance junction lead ¹⁾	R_{TJL}	CC	-	34.6	K/W	-
PG-VQFN-48-22 (XC874)						
Thermal resistance junction case ¹⁾	R_{TJC}	CC	-	16.6	K/W	-
Thermal resistance junction lead ¹⁾	R_{TJL}	CC	-	30.7	K/W	-

¹⁾ The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

- a) simply adding only the two thermal resistances (junction lead and lead ambient), or
- b) by taking all four resistances into account, depending on the precision needed.

Data Sheet 133 V1.5, 2011-03

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by