

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	52KB (52K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sax-xc878-13ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit

XC87xCLM

8-Bit Single-Chip Microcontroller

Data Sheet V1.5 2011-03

Microcontrollers

Summary of Features

Features: (continued)

- Power-on reset generation
- Brownout detection for core logic supply
- On-chip OSC and PLL for clock generation
 - Loss-of-Clock detection
- Power saving modes
 - slow-down mode
 - idle mode
 - power-down mode with wake-up capability via RXD or EXINT0¹⁾
 - clock gating control to each peripheral
 - Programmable 16-bit Watchdog Timer (WDT)
- Five ports

٠

- Up to 40 pins as digital I/O
- 8 dedicated analog inputs used as A/D converter input
- 8-channel, 10-bit ADC
- Four 16-bit timers
 - Timer 0 and Timer 1 (T0 and T1)
 - Timer 2 and Timer 21 (T2 and T21)
- Multiplication/Division Unit for arithmetic operations (MDU)
- CORDIC Coprocessor for computation of trigonometric, hyperbolic and linear functions
- MultiCAN with 2 nodes, 32 message objects
- Two Capture/compare units
 - Capture/compare unit 6 for PWM signal generation (CCU6)
 - Timer 2 Capture/compare unit for vaious digital signal generation (T2CCU)
- Two full-duplex serial interfaces (UART and UART1)
- Synchronous serial channel (SSC)
- On-chip debug support
 - 1 Kbyte of monitor ROM (part of the 8-Kbyte Boot ROM)
 - 64 bytes of monitor RAM
- Packages:
 - PG-LQFP-64
 - PG-VQFN-48
- Temperature range T_A :
 - SAF (-40 to 85 °C)
 - SAX (-40 to 105 °C)
 - SAK (-40 to 125 °C)

¹⁾ SAK product variant does not support power-down mode.

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function				
P1		I/O		Port 1Port 1 is an 8-bit bidirectional general purI/O port. It can be used as alternate functfor the JTAG, CCU6, UART, Timer 0, TimT2CCU, Timer 21, MultiCAN, SSC andExternal Bus Interface.Note: External Bus Interface is not availaXC874.				
P1.0	34/25		PU	RXD_0 T2EX_0 RXDC0_0 A8	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input Address Line 8 Output			
P1.1	35/26		PU	EXINT3_0 T0_1 TXD_0 TXDC0_0 A9	External Interrupt Input 3 Timer 0 Input UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output Address Line 9 Output			
P1.2	36/27		PU	SCK_0 A10	SSC Clock Input/Output Address Line 10 Output			
P1.3	37/28		PU	MTSR_0 SCK_2 TXDC1_3 A11	SSC Master Transmit Output/Slave Receive Input SSC Clock Input/Output MultiCAN Node 1 Transmitter Output Address Line 11 Output			
P1.4	38/29		PU	MRST_0 EXINT0_1 RXDC1_3 MTSR_2 A12	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input SSC Master Transmit Output/Slave Receive Input Address Line 12 Output			

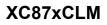

Flash Protection	Without hardware protection	With hardware protect	tion		
P-Flash program and erase	Possible	Possible only on the condition that MSB - 1 of password is set to 1	Possible only on the condition that MSB - 1 of password is set to 1		
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash		
External access to D- Flash	Not possible	Not possible	Not possible		
D-Flash program	Possible	Possible	Possible, on the condition that MSB - 1 of password is set to 1		
D-Flash erase	Possible	 Possible, on these conditions: MISC_CON.DFLASH EN bit is set to 1 prior to each erase operation; or the MSB - 1 of password is set to 1 	Possible, on the condition that MSB - 1 of password is set to 1		

Table 4Flash Protection Modes (cont'd)

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. To disable the flash protection, a password match is required. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. With a valid password, the Flash hardware protection is then enabled or disabled upon next reset. For the other protection strategies, no reset is necessary.

Although no protection scheme can be considered infallible, the XC87x memory protection strategy provides a very high level of protection for a general purpose microcontroller.

Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents.

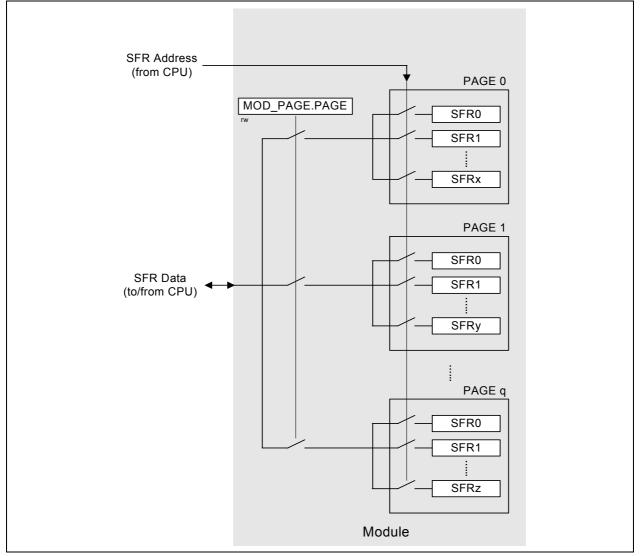


Figure 10 Address Extension by Paging

In order to access a register located in a page different from the actual one, the current page must be exited. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

• Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or

Table 6	MDU Register Overview	(cont'd)
---------	-----------------------	----------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
B1 _H	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE IR RSEL STAR OPCODE T					I		
		Туре	rw	rw	rw	rwh		r	N	
в2 _Н	MD0 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 0	Туре				r	W			
B2 _H	MR0 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 0	Туре				r	h			
вз _Н	MD1 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 1	Туре				r	w			
вз _Н	MR1 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 1	Туре		rh						
B4 _H	MD2 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 2	Туре	rw							
B4 _H	MR2 Reset: 00 _H	Bit Field	DATA							
	MDU Result Register 2	Туре	rh							
в5 _Н	MD3 Reset: 00 _H	Bit Field	DATA							
	MDU Operand Register 3	Туре	rw							
в5 _Н	MR3 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 3	Туре				r	h			
в6 _Н	MD4 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 4	Туре	rw							
в6 _Н	MR4 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 4	Туре	rh							
в7 _Н	MD5 Reset: 00 _H	Bit Field				DA	ATA			
	MDU Operand Register 5	Туре				r	W			
в7 _Н	MR5 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 5	Туре				r	h			

3.2.4.3 CORDIC Registers

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 7 CORDIC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP = 1										
9A _H	CD_CORDXL Reset: 00 _H	Bit Field	it Field DATAL							
	CORDIC X Data Low Byte		rw							
9B _H	CD_CORDXH Reset: 00 _H	Bit Field	DATAH							
	CORDIC X Data High Byte		rw							

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
во _Н	P3_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register	Туре	rwh							
в1 _Н	P3_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Register	Туре	rw							
C8 _H	P4_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register	Туре	rwh							
C9 _H	P4_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Register	Туре	rw							
RMAP =	0, PAGE 1									
80 _H	P0_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Select Register	Туре	rw							
86 _H	P0 PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw							
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw							
91 _H	P1_PUDEN Reset: FF _H P1 Pull-Up/Pull-Down Enable Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
92 _H	⊣ P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw							
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
во _Н	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
в1 _Н	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8 _H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	0, PAGE 2				•	•			•	
80 _H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 1 Register	Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Alternate Select 0 Register	Туре	rw							

Table 12T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
C5 _H	T2CCU_CCTH Reset: 00 _H	Bit Field		Ι	Ι	C	СТ			1
	T2CCU Capture/Compare Timer Register High	Туре				rv	vh			
C6 _H	T2CCU_CCTCON Reset: 00 _H T2CCU CaptureCcompare	Bit Field	Field CCTPRE				CCTO VF	CCTO VEN	TIMSY N	CCTS T
	Timer Control Register	Туре		r	W		rwh	rw	rw	rw
RMAP =	0, PAGE 2									
C0 _H	T2CCU_COSHDWReset: 00_H T2CCU Capture/compare Enable Register	Bit Field	ENSH DW	TXOV	COOU T5	COOU T4	COOU T3	COOU T2	COOU T1	COOU T0
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
C1 _H	T2CCU_CC0L Reset: 00 _H T2CCU Capture/Compare	Bit Field				CC/	/ALL			
	Register 0 Low	Туре	rwh							
C2 _H	T2CCU_CC0H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 0 High	Туре				rv	vh			
C3 _H	T2CCU_CC1L Reset: 00 _H	Bit Field	CCVALL							
	T2CCU Capture/compare Register 1 Low	Туре				rv	vh			
C4 _H	T2CCU_CC1H Reset: 00 _H	Bit Field	CCVALH							
	T2CCU Capture/compare Register 1 High	Туре	rwh							
C5 _H	T2CCU_CC2L Reset: 00 _H	Bit Field	CCVALL							
	T2CCU Capture/compare Register 2 Low	Туре	rwh							
C6 _H	T2CCU_CC2H Reset: 00 _H	Bit Field	CCVALH							
	T2CCU Capture/compare Register 2 High	Туре				rv	vh			
RMAP =	0, PAGE 3									
C0 _H	T2CCU_COCON Reset: 00 _H T2CCU Compare Control	Bit Field	CCM5	CCM4	CM5F	CM4F	POLB	POLA	CON	NOD
	Register	Туре	rw	rw	rwh	rwh	rw	rw	r	W
C1 _H	T2CCU_CC3L Reset: 00 _H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 3 Low	Туре				rv	vh			
C2 _H	T2CCU_CC3H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 3 High	Туре	rwh							
C3 _H	T2CCU_CC4L Reset: 00 _H	Bit Field	CCVALL							
	T2CCU Capture/compare Register 4 Low	Туре	rwh							
C4 _H	T2CCU_CC4H Reset: 00 _H	Bit Field	CCVALH							
	T2CCU Capture/compare Register 4 High	Туре	rwh							
C5 _H	T2CCU_CC5L Reset: 00 _H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 5 Low	Туре				rv	vh			
C6 _H	T2CCU_CC5H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 5 High	Туре				rv	vh			

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FD _H	CCU6_CC61RH Reset: 00 _H	Bit Field		1	1	CC6	61VH	1	1	•
	Capture/Compare Register for Channel CC61 High	Туре		I			h			
Fe _H	CCU6_CC62RL Reset: 00 _H	Bit Field	CC62VL							
	Capture/Compare Register for Channel CC62 Low	Туре		rh						
FF _H	CCU6_CC62RH Reset: 00 _H	Bit Field		CC62VH						
	Capture/Compare Register for Channel CC62 High	Туре				r	'n			
RMAP =	0, PAGE 2									
9A _H	CCU6_T12MSELL Reset: 00 _H T12 Capture/Compare Mode Select	Bit Field		MS	EL61			MSE	EL60	
	Register Low	Туре		r	w			r	w	
9B _H	CCU6_T12MSELH Reset: 00 _H T12 Capture/Compare Mode Select	Bit Field	DBYP		HSYNC			MSE	EL62	
	Register High	Туре	rw		rw			r	w	
9CH	CCU6_IENL Reset: 00 _H Capture/Compare Interrupt Enable Register Low	Bit Field	ENT1 2 PM	ENT1 2 OM	ENCC 62F	ENCC 62R	ENCC 61F	ENCC 61R	ENCC 60F	ENCC 60R
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM
	Register High	Туре	rw	rw	rw	rw	r	rw	rw	rw
9E _H	CCU6_INPL Reset: 40 _H	Bit Field	INP	CHE	INPO	CC62	INPO	CC61	INPO	CC60
	Capture/Compare Interrupt Node Pointer Register Low	Туре	r	w	r	w	rw		r	w
9F _H	CCU6_INPH Reset: 39 _H	Bit Field	(C	INPT13		INPT12		INPERR	
	Capture/Compare Interrupt Node Pointer Register High	Туре		r	rw		rw		rw	
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R
	Set Register Low	Туре	w	w	w	w	w	w	w	w
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM
	Set Register High	Туре	w	w	w	w	w	w	w	w
A6 _H	CCU6_PSLR Reset: 00 _H	Bit Field	PSL63	0			P	SL		
	Passive State Level Register	Туре	rwh	r			n	vh		
A7 _H	CCU6_MCMCTR Reset: 00 _H	Bit Field	(0	SW	SYN	0		SWSEL	
	Multi-Channel Mode Control Register	Туре		r	r	w	r		rw	
FA _H	CCU6_TCTR2LReset: 00HTimer Control Register 2 Low	Bit Field	0	T13	TED		T13TEC		T13 SSC	T12 SSC
		Туре	r	r	W		rw		rw	rw
FB _H	CCU6_TCTR2H Reset: 00 _H	Bit Field			0		T13F	RSEL	T12	RSEL
	Timer Control Register 2 High	Туре			r		r	w	r	w
FC _H	CCU6_MODCTRL Reset: 00 _H Modulation Control Register Low	Bit Field	MCM EN	0			T12M	ODEN		
		Туре	rw	r			r	w		

Interrupt	Vector	Assignment for XC87x	Enable Bit	SFR
Source	Address			
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1
		ADC[1:0]		
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
		T21		
		CORDIC		
		UART1		
		UART1 Fractional Divider (Normal Divider Overflow)		
		MDU[1:0]		
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4		
		External Interrupt 5		
		External Interrupt 6		
		T2CCU		
		MultiCAN Node 3		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
		MultiCAN Node 4		
XINTR11	005B _H	CCU6 INP1	ECCIP1	
		MultiCAN Node 5		
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
		MultiCAN Node 6		
XINTR13	006B _H	CCU6 INP3	ECCIP3	
		MultiCAN Node 7		

3.6 Power Supply System with Embedded Voltage Regulator

The XC87x microcontroller requires two different levels of power supply:

- 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 19 shows the XC87x power supply system. A power supply of 3.3 V or 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design.

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode¹⁾, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

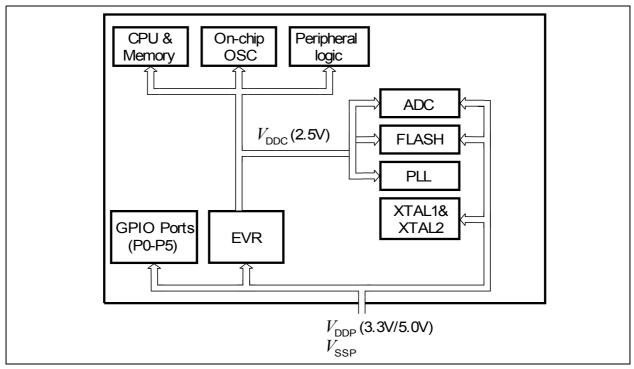


Figure 19 XC87x Power Supply System

EVR Features

- Input voltage (V_{DDP}): 3.3 V/5.0 V
- Output voltage (V_{DDC}): 2.5 V ± 7.5%
- Low power voltage regulator provided in power-down mode¹⁾
- V_{DDP} prewarning detection
- V_{DDC} brownout detection

¹⁾ SAK product variant does not support power-down mode.

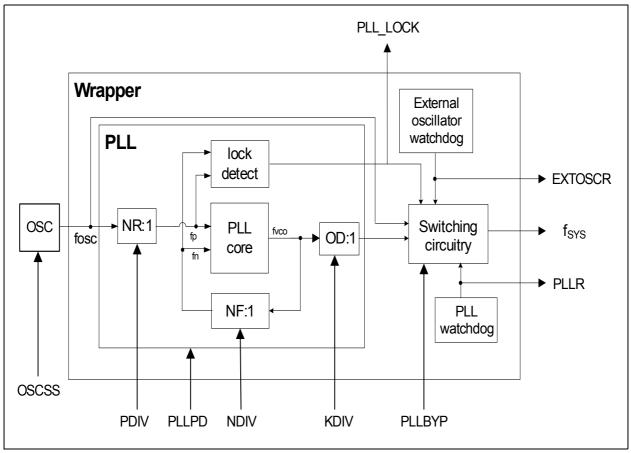


Figure 20 CGU Block Diagram

Direct Drive (PLL Bypass Operation)

During PLL bypass operation, the system clock has the same frequency as the external clock source.

(3.1)

$$f_{SYS} = f_{OSC}$$

PLL Mode

The CPU clock is derived from the oscillator clock, divided by the NR factor (PDIV), multiplied by the NF factor (NDIV), and divided by the OD factor (KDIV). PLL output must

Table 32 Deviation Error for UART with Fractional Divider enabled								
f _{pclk}	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error				
24 MHz	1	6 (6 _H)	59 (3B _H)	+0.03 %				
12 MHz	1	3 (3 _H)	59 (3B _H)	+0.03 %				
8 MHz	1	2 (2 _H)	59 (3B _H)	+0.03 %				
6 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %				

Table 32 Deviation Error for UART with Fractional Divider enabled

3.13.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 baud rate=
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.6)

3.14 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 26**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.7)

XC87xCLM

Functional Description

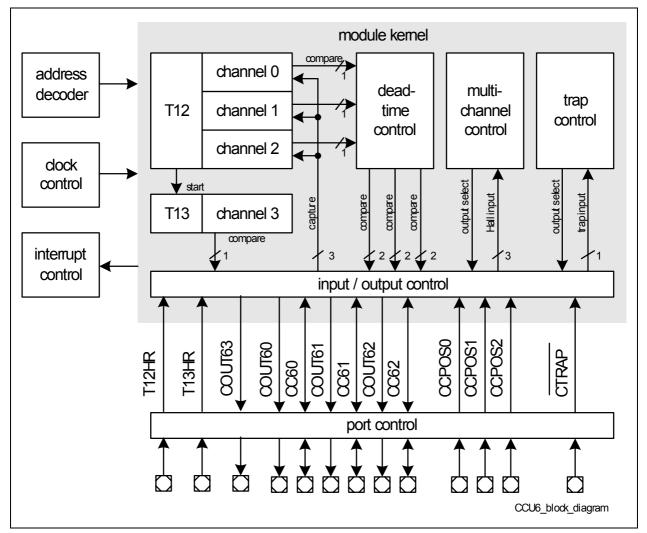


Figure 29 CCU6 Block Diagram

- CAN functionality according to CAN specification V2.0 B active.
- Dedicated control registers are provided for each CAN node.
- A data transfer rate up to 1 MBaud is supported.
- Flexible and powerful message transfer control and error handling capabilities are implemented.
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter.
- Full-CAN functionality: A set of 32 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.
 - Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based.
- Advanced Interrupt Handling:
 - Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines.
 - Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits.

3.23 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- Use the built-in debug functionality of the XC800 Core
- · Add a minimum of hardware overhead
- Provide support for most of the operations by a Monitor Program
- Use standard interfaces to communicate with the Host (a Debugger)

Features

- Set breakpoints on instruction address and on address range within the Program Memory
- Set breakpoints on internal RAM address range
- Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks via JTAG and upon activating a dedicated pin
- Step through the program code

The OCDS functional blocks are shown in **Figure 33**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals.

After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack).

The OCDS system is accessed through the JTAG¹⁾, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

Note: All the debug functionality described here can normally be used only after XC87x has been started in OCDS mode.

¹⁾ The pins of the JTAG port can be assigned to either the primary port (Port 0) or either of the secondary ports (Ports 1 and 2/Port 5).

User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.

Electrical Parameters

4.3.4 On-Chip Oscillator Characteristics

Table 49 provides the characteristics of the on-chip oscillator in the XC87x.

Table 49	On-chip Oscillator Characteristics (Operating Conditions apply)
----------	---

Parameter	Symbol		Limit Values			Unit	Test Conditions
			min.	typ.	max.		
Nominal frequency	f _{nom}	CC	3.88	4	4.12	MHz	under nominal conditions ¹⁾ after IFX-backend trimming
Long term frequency deviation	Δf _{LT}	CC	-5	_	5	%	with respect to f_{NOM} , over lifetime and temperature (-40°C to 105°C), for one given device after trimming
Short term frequency deviation	$\Delta f_{\rm ST}$	CC	-1.0	-	1.0	%	within one LIN message (<10 ms 100 ms)

1) Nominal condition: V_{DDC} = 2.5 V, T_{A} = + 25°C.

Electrical Parameters

4.3.5 External Data Memory Characteristics

 Table 50 shows the timing of the external data memory read cycle.

Table 50	External Data Memory Read Timing ¹⁾ (Operating Conditions apply)
----------	---

Parameter	Symbol	Limit	Values	Unit	Test
		Min.	Max.		Conditions
RD pulse width	t_1 CC	2* <i>f</i> _{CCLK} - 17	-	ns	2)
Address valid to RD	t ₂ CC	<i>f</i> _{сськ} - 12	-	ns	2)
RD to valid data in	t_3 SR	-	1.5* $f_{\rm CCLK}$ - 27	ns	2)
Address to valid data in	t_4 SR	-	3* <i>f</i> _{CCLK} - 7	ns	2)
Data hold after RD	t_5 SR	0.5* <i>f</i> _{CCLK} -17	-	ns	2)

1) External Bus Interface is not available in XC874.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

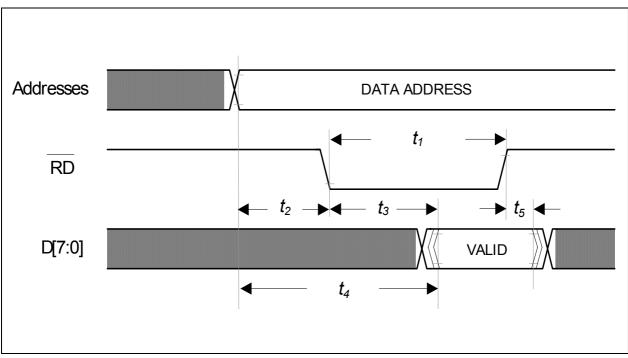


Figure 41

External Data Memory Read Cycle

Package and Quality Declaration

5.2 Package Outline

Figure 47 shows the package outlines of the XC878.

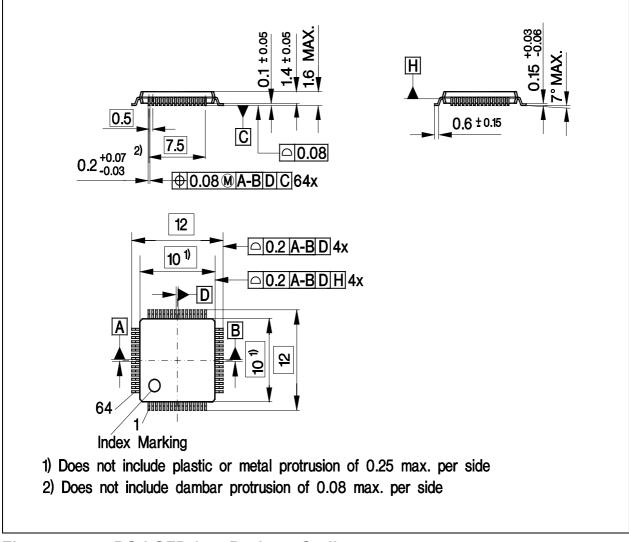


Figure 47 PG-LQFP-64-4 Package Outline

Package and Quality Declaration

5.3 Quality Declaration

Table 57 shows the characteristics of the quality parameters in the XC87x.

Table 57	Quality Parameters
----------	--------------------

Parameter	Symbol	Limit V	alues	Unit	Notes
		Min.	Max.		
Operation Lifetime when	t _{OP1}	-	15000	hours	$T_{\rm J} = 110^{\circ}{\rm C}$
the device is used at the two stated $T_{J}^{(1)}$		-	2000	hours	$T_{\rm J}$ = -40°C
Operation Lifetime when the device is used at the five stated $T_J^{(1)}$	t _{OP2}	-	120	hours	$T_{\rm J} = 140^{\circ}{\rm C}$
		-	960	hours	<i>T</i> _J = 135°C
		-	7800	hours	$T_{\rm J} = 91^{\circ}{\rm C}$
		-	2400	hours	$T_{\rm J} = 38^{\circ}{\rm C}$
		-	720	hours	$T_{\rm J}$ = -25°C
ESD susceptibility according to Human Body Model (HBM)	V _{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM) pins	V _{CDM}	-	750	V	Conforming to JESD22-C101-C

1) This lifetime refers only to the time when device is powered-on.