

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Betuils	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	CANbus, SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	52KB (52K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sax-xc878c-13ffa-5v-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function			
P3		I/O		Port 3 Port 3 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, UART1, T2CCU, Timer 21, MultiCAN and External Bus Interface. Note: External Bus Interface is not available in XC874.			
P3.0	43/33		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1 T2CC0_1/ EXINT3_2	Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output		
P3.1	44/34		Hi-Z	CCPOS0_2 CC61_2 COUT60_0 TXD1_1	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare channel 0 UART1 Transmit Data Output/Clock Output		
P3.2	49/35		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0 T2CC1_1/ EXINT4_2	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1 External Interrupt Input 4/T2CCU Capture/Compare Channel 1		
P3.3	50/36		Hi-Z	COUT61_0 TXDC1_1 T2CC2_1/ EXINT5_2 A13	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Address Line 13 Output		

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function			
Ρ4		I/O		Port 4 Port 4 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, Timer 0, Timer 1, T2CCU, Timer 21 MultiCAN and External Bus Interface. Note: External Bus Interface is not available in XC874.			
P4.0	59/45		Hi-Z	RXDC0_3 CC60_1 T2CC0_0/ EXINT3_1 D0	MultiCAN Node 0 Receiver Input Output of Capture/Compare channel 0 External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Data Line 0 Input/Output		
P4.1	60/46		Hi-Z	TXDC0_3 COUT60_1 T2CC1_0/ EXINT4_1 D1	MultiCAN Node 0 Transmitter Output Output of Capture/Compare channel 0 External Interrupt Input 4/T2CCU Capture/Compare Channel 1 Data Line 1 Input/Output		
P4.2	61/47		PU	EXINT6_1 T21_0 D2	External Interrupt Input 6 Timer 21 Input Data Line 2 Input/Output		
P4.3	40/31		Hi-Z	T2EX_1 EXF21_1 COUT63_2 D3	Timer 2 External Trigger Input Timer 21 External Flag Output Output of Capture/Compare channel 3 Data Line 3 Input/Output		
P4.4	45/-		Hi-Z	CCPOS0_3 T0_0 CC61_4 T2CC2_0/ EXINT5_1 D4	CCU6 Hall Input 0 Timer 0 Input Output of Capture/Compare channel 1 External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Data Line 4 Input/Output		

3 Functional Description

Chapter 3 provides an overview of the XC87x functional description.

3.1 **Processor Architecture**

The XC87x is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the XC87x CPU uses a 2-clock machine cycle. This allows fast access to ROM or RAM memories without wait state. The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions.

The XC87x CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and Special Function Registers (SFRs).

Figure 6 shows the CPU functional blocks.

Figure 6 CPU Block Diagram

3.2 Memory Organization

The XC87x CPU operates in the following address spaces:

- 8 Kbytes of Boot ROM program memory
- 256 bytes of internal RAM data memory
- 3 Kbytes of XRAM memory (XRAM can be read/written as program memory or external data memory)
- A 128-byte Special Function Register area
- 64/52 Kbytes of Flash program memory (Flash devices)

Figure 7 and **Figure 8** illustrate the memory address spaces of the XC87x with 64Kbytes and 52Kbytes embedded Flash respectively.

Memory Map of XC87x with 64K Flash Memory in user mode

Table 8SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
в7 _Н	EXICON0 Reset: F0 _H	Bit Field	EXI	NT3	EXI	NT2	EXI	NT1	EXI	NT0
	External Interrupt Control Register 0	Туре	r	N	r	rw		w	r	w
ва _Н	EXICON1 Reset: 3F _H	Bit Field	()	EXINT6		EXINT5		EXINT4	
	External Interrupt Control Register 1	Туре	I	ſ	r	w	r	w	r	w
вв _Н	NMICON Reset: 00 _H NMI Control Register	Bit Field	0	NMI ECC	NMI VDDP	0	NMI OCDS	NMI FLASH	NMI PLL	NMI WDT
		Туре	r	rw	rw	r	rw	rw	rw	rw
вс _Н	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	0	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT
		Туре	r	rwh	rwh	r	rwh	rwh	rwh	rwh
вd _Н	BCON Reset: 20 _H Baud Rate Control Register	Bit Field	BG	SEL	NDOV EN	BRDIS		BRPRE		R
		Туре	n	N	rw	rw		rw		rw
ве _Н	BG Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer/Reload Register	Туре				rv	vh			
E9 _H	FDCON Reset: 00 _H Fractional Divider Control	Bit Field	BGS	SYNE N	ERRS YN	EOFS YN	BRK	NDOV	FDM	FDEN
	Register	Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw
EA _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP			
	Fractional Divider Reload Register	Туре				r	w			
EB _H	FDRES Reset: 00 _H	Bit Field	RESULT							
	Fractional Divider Result Register	Туре				r	h			
	0, PAGE 1									
вз _Н	ID Reset: 49 _H Identity Register	Bit Field			PRODID				VERID	
		Туре			r				r	
B4 _H	PMCON0 Reset: 80 _H Power Mode Control Register 0	Bit Field	VDDP WARN	WDT RST	WKRS	WK SEL	SD	PD	W	/S
		Туре	rh	rwh	rwh	rw	rw	rwh	r	w
в5 _Н	PMCON1 Reset: 00 _H Power Mode Control Register 1	Bit Field	0	CDC_ DIS	CAN_ DIS	MDU_ DIS	T2CC U_DIS	CCU_ DIS	SSC_ DIS	ADC_ DIS
		Туре	r	rw	rw	rw	rw	rw	rw	rw
в6 _Н	OSC_CON Reset: XX _H OSC Control Register	Bit Field	PLLRD RES	PLLBY P	PLLPD	0	XPD	OSC SS	EORD RES	EXTO SCR
		Туре	rwh	rwh	rw	r	rw	rwh	rwh	rh
в7 _Н	PLL_CON Reset: 18 _H PLL Control Register	Bit Field			NE	DIV			PLLR	PLL_L OCK
		Туре			r	w			rh	rh
βΑ _Η	CMCON Reset: 10 _H Clock Control Register	Bit Field	KE	ΟIV	0	FCCF G		CLK	REL	
		Туре	rw r rw rw							

3.2.4.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 1					•					
вв _Н	WDTCON Reset: 00 _H Watchdog Timer Control	Bit Field		0	WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N	
	Register	Туре		r	rw	rh	r	rw	rwh	rw	
вс _Н	WDTREL Reset: 00 _H	Bit Field	WDTREL								
	Watchdog Timer Reload Register	Туре	rw								
вd _Н	WDTWINB Reset: 00 _H	Bit Field	WDTWINB								
	Watchdog Window-Boundary Count Register	Туре	rw								
BE _H	WDTL Reset: 00 _H	Bit Field				W	DT				
	Watchdog Timer Register Low	Туре	rh								
bf _h	H WDTH Reset: 00 _H		WDT								
	Watchdog Timer Register High	Туре				r	h				

Table 9WDT Register Overview

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
B2 _H	PORT_PAGE Reset: 00 _H	Bit Field	Bit Field OP		ST	NR	0		PAGE	
	Page Register	Туре	Ņ	N	١	N	r		rwh	
RMAP =	= 0, PAGE 0	-								
80 _H	P0_DATA Reset: 00 _H P0 Data Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
86 _H	P0_DIR Reset: 00 _H P0 Direction Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
90 _H	P1_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
91 _H	P1_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
92 _H	P5_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
93 _H	P5_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 12T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	RMAP = 0, PAGE 4									
C2 _H	T2CCU_CCTDTCLReset: 00 _H	Bit Field				D	ГМ			
	T2CCU Capture/Compare Timer Dead-Time Control Register Low	Туре	rw							
C3 _H	T2CCU_CCTDTCHReset: 00 _H T2CCU Capture/Compare	Bit Field	DTRE S	DTR2	DTR1	DTR0	DTLEV	DTE2	DTE1	DTE0
	Timer Dead-Time Control Register High		rwh	rh	rh	rh	rw	rw	rw	rw

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13T21 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1	•								
c₀ _H	T21_T2CONReset: 00HTimer 2 Control Register	Bit Field	TF2	EXF2	(0		TR2	C/T2	CP/ RL2
		Туре	rwh	rwh	I	r	rw	rwh	rw	rw
C1 _H	T21_T2MODReset: 00HTimer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	T21_RC2L Reset: 00 _H	Bit Field	d RC2							
	Timer 2 Reload/Capture Register Low	Туре	rwh							
C3 _H	T21_RC2H Reset: 00 _H	Bit Field	RC2							
	Timer 2 Reload/Capture Register High	Туре	rwh							
C4 _H	T21_T2L Reset: 00 _H	Bit Field				T⊦	IL2			
	Timer 2 Register Low	Туре				rv	vh			
C5 _H	T21_T2H Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register High	Туре	rwh							
C6 _H	T21_T2CON1 Reset: 03 _H Timer 2 Control Register 1	Bit Field	0 TF2				TF2EN	EXF2E N		
		Туре				r			rw	rw

Table 20 and **Table 21** shows the Flash data retention and endurance targets for Industrial profile and Automotive profile respectively.

Table 20Flash Data Retention and Endurance for Industrial Profile
(Operating Conditions apply)

Retention	Endurance ¹⁾²⁾	Size	Remarks
Program Flash			
15 years	1000 cycles	up to 60 Kbytes	
Data Flash	I		
15 years	1000 cycles	4 Kbytes	
10 years	10,000 cycles	4 Kbytes	
5 years	30,000 cycles	4 Kbytes	
1 year	100,000 cycles	4 Kbytes	SAF and SAX variant
	80,000 cycles		SAK variant

1) In Program Flash, one cycle refers to the programming of all pages in the flash bank and a mass erase.

2) In Data Flash, one cycle refers to the programming of all wordlines in a page and a page erase.

Table 21Flash Data Retention and Endurance for Automotive Profile
(Operating Conditions apply)

Retention	Endurance ¹⁾²⁾	Size	Remarks
Program Flash	-		
15 years	1000 cycles	up to 60 Kbytes	
Data Flash			·
15 years	1000 cycles	4 Kbytes	
5 years	10,000 cycles	1 Kbytes	
2 years	15,000 cycles	512 Bytes	
2 years	30,000 cycles	256 Bytes	
1 year	100,000 cycles	128 Bytes	

1) In Program Flash, one cycle refers to the programming of all pages in the flash bank and a mass erase.

2) In Data Flash, one cycle refers to the programming of all wordlines in a page and a page erase.

3.4.3 Interrupt Priority

An interrupt that is currently being serviced can only be interrupted by a higher-priority interrupt, but not by another interrupt of the same or lower priority. Hence, an interrupt of the highest priority cannot be interrupted by any other interrupt request.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority are received simultaneously, then an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence shown in **Table 23**.

Table 23 Priority Structure within Interrupt Level								
Level								
(highest)								
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								

Table 23 Priority Structure within Interrupt Level

3.7 Reset Control

The XC87x has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the XC87x is first powered up, the status of certain pins (see **Table 25**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

The second type of reset in XC87x is the hardware reset. This reset function can be used <u>during</u> normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system.

Another type of reset that needs to be detected is a reset while the device is in power-down mode (wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode.

3.7.1 Module Reset Behavior

Table 24 lists the functions of the XC87x and the various reset types that affect these functions. The symbol "■" signifies that the particular function is reset to its default state.

Module/ Function	Wake-Up Reset	Watchdog Reset	Hardware Reset	Power-On Reset	Brownout Reset
CPU Core					
Peripherals					
On-Chip Static RAM	Not affected, Reliable	Not affected, Reliable	Not affected, Reliable	Affected, un- reliable	Affected, un- reliable
Oscillator, PLL		Not affected			
Port Pins					
EVR	The voltage regulator is switched on	Not affected	Not affected		
FLASH					
NMI	Disabled	Disabled			

Table 24Effect of Reset on Device Functions

not be bypassed for this PLL mode. The PLL mode is used during normal system operation.

(3.2)

$$f_{SYS} = f_{OSC} x \frac{NF}{NR x OD}$$

System Frequency Selection

For the XC87x, the value of NF, NR and OD can be selected by bits NDIV, PDIV and KDIV respectively for different oscillator inputs inorder to obtain the required fsys. But the combination of these factors must fulfill the following condition:

- 100 MHz < f_{VCO} < 175 MHz
- 800 KHz < f_{OSC} / (2 * NR) < 8 MHz

Table 26 provides examples on how the typical system frequency of fsys = 144 MHz and maximum frequency of 160 MHz (CPU clock = 26.67 MHz)can be obtained for the different oscillator sources.

Oscillator	fosc	Ν	Ρ	κ	fsys	
On-chip	4 MHz	72	2	1	144 MHz	
	4 MHz	80	2	1	160 MHz	
External	8 MHz	72	4	1	144 MHz	
	6 MHz	72	3	1	144 MHz	
	4 MHz	72	2	1	144 MHz	

Table 26System frequency (f_{svs} = 144 MHz)

3.8.1 Recommended External Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 2 MHz to 20 MHz. Additionally, it is necessary to have two load capacitances C_{X1} and C_{X2} , and depending on the crystal type, a series resistor R_{X2} , to limit the current. A test resistor R_Q may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. R_Q values are typically specified by the crystal vendor. An external feedback resistor R_f is also required in the external oscillator circuitry. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the crystal vendor using the negative

3.16 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features

- Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 28 shows the block diagram of the SSC.

3.23 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- Use the built-in debug functionality of the XC800 Core
- · Add a minimum of hardware overhead
- Provide support for most of the operations by a Monitor Program
- Use standard interfaces to communicate with the Host (a Debugger)

Features

- Set breakpoints on instruction address and on address range within the Program Memory
- Set breakpoints on internal RAM address range
- Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks via JTAG and upon activating a dedicated pin
- Step through the program code

The OCDS functional blocks are shown in **Figure 33**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals.

After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack).

The OCDS system is accessed through the JTAG¹⁾, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

Note: All the debug functionality described here can normally be used only after XC87x has been started in OCDS mode.

¹⁾ The pins of the JTAG port can be assigned to either the primary port (Port 0) or either of the secondary ports (Ports 1 and 2/Port 5).

User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.

Table 37	Chip Identification Number (cont'd)
----------	-------------------------------------

Product Variant	Chip Identification Number
	AC-step
XC874CM-13FV 5V	4B590402 _H
XC874LM-13FV 5V	4B510422 _H
XC874-13FV 5V	4B590462 _H

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC87x can be subjected to without permanent damage.

Parameter	Symbol	Limit Values		Unit	Notes	
		min.	max.			
Ambient temperature	T _A	-40	125	°C	under bias	
Storage temperature	T _{ST}	-65	150	°C		
Junction temperature	TJ	-40	140	°C	under bias	
Voltage on power supply pin with respect to V_{SS}	V _{DDP}	-0.5	6	V		
Voltage on any pin with respect to V_{SS}	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	Whatever is lower	
Input current on any pin during overload condition	I _{IN}	-10	10	mA		
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	-	50	mA		

Table 38	Absolute Maximum Rating Parameters
----------	------------------------------------

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Table 42ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol		Lir	nit Val	ues	Unit	Test Conditions/	
			min.	typ.	max.		Remarks	
Input resistance of the reference input	R _{AREF}	CC	-	1	2	kΩ	1)	
Input resistance of the selected analog channel	R _{AIN}	CC	_	1	3	kΩ	1)	

1) Not subjected to production test, verified by design/characterization.

2) This value includes the maximum oscillator deviation.

3) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.

4) The sampling capacity of the conversion C-Network is pre-charged to $V_{AREF}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{AREF}/2$.

Table 46Power Down Current¹⁾ (Operating Conditions apply; $V_{DDP} = 3.3V$
range)

Parameter	Symbol	Symbol Limit Values		Unit	Test Conditions	
		typ. ²⁾	max. ³⁾	1		
V_{DDP} = 3.3V Range	·					
Power-Down Mode	I _{PDP}	20	80	μA	$T_{A} = + 25 \ ^{\circ}C^{4)5)}$	
		-	250	μA	$T_{\rm A}$ = + 85 °C ⁵⁾⁶⁾	

1) The table is only applicable to SAF and SAX variants.

2) The typical I_{PDP} values are based on preliminary measurements and are to be used as reference only. These values are measured at V_{DDP} = 3.3 V.

3) The maximum $I_{\rm PDP}$ values are measured at $V_{\rm DDP}$ = 3.6 V.

4) I_{PDP} has a maximum value of 450 μ A at T_A = + 105 °C.

5) I_{PDP} is measured with: $\overline{RESET} = V_{DDP}$, $V_{AGND} = V_{SS}$, RXD/INT0 = V_{DDP} ; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

6) Not subjected to production test, verified by design/characterization.

4.3.7 JTAG Timing

 Table 53 provides the characteristics of the JTAG timing in the XC87x.

Table 53TCK Clock Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Sym	Symbol		nits	Unit	Test Conditions
			min	max		
TCK clock period	t _{TCK}	SR	50	-	ns	1)
TCK high time	<i>t</i> ₁	SR	20	-	ns	1)
TCK low time	<i>t</i> ₂	SR	20	-	ns	1)
TCK clock rise time	t ₃	SR	-	4	ns	1)
TCK clock fall time	<i>t</i> ₄	SR	-	4	ns	1)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Figure 44 TCK Clock Timing

Table 54JTAG Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Symbol		Lir	Limits		Test Conditions
			min	max		
TMS setup to TCK	t ₁	SR	8	-	ns	1)
TMS hold to TCK	<i>t</i> ₂	SR	0	-	ns	1)
TDI setup to TCK	t ₁	SR	8	-	ns	1)
TDI hold to TCK ∡	<i>t</i> ₂	SR	4	-	ns	1)
TDO valid output from TCK	<i>t</i> ₃	CC	-	24	ns	5V Device ¹⁾
			-	31	ns	3.3V Device ¹⁾

Package and Quality Declaration

Figure 48 PG-VQFN-48-22 Package Outline

Package and Quality Declaration

5.3 Quality Declaration

Table 57 shows the characteristics of the quality parameters in the XC87x.

Table 57	Quality Parameters
----------	--------------------

Parameter	Symbol	Limit V	alues	Unit	Notes	
		Min. Max.				
Operation Lifetime when	t _{OP1}	-	15000	hours	$T_{\rm J} = 110^{\circ}{\rm C}$	
the device is used at the two stated $T_J^{(1)}$		-	2000	hours	$T_{\rm J}$ = -40°C	
Operation Lifetime when	t _{OP2}	-	120	hours	$T_{\rm J} = 140^{\circ}{\rm C}$	
the device is used at the five stated $T_J^{(1)}$		-	960	hours	<i>T</i> _J = 135°C	
		-	7800	hours	$T_{\rm J} = 91^{\circ}{\rm C}$	
		-	2400	hours	$T_{\rm J} = 38^{\circ}{\rm C}$	
		-	720	hours	$T_{\rm J}$ = -25°C	
ESD susceptibility according to Human Body Model (HBM)	V _{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B	
ESD susceptibility according to Charged Device Model (CDM) pins	V _{CDM}	-	750	V	Conforming to JESD22-C101-C	

1) This lifetime refers only to the time when device is powered-on.