

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XE

| Product Status             | Obsolete                                                                          |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | XC800                                                                             |
| Core Size                  | 8-Bit                                                                             |
| Speed                      | 27MHz                                                                             |
| Connectivity               | LINbus, SPI, SSI, UART/USART                                                      |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                             |
| Number of I/O              | 40                                                                                |
| Program Memory Size        | 64KB (64K x 8)                                                                    |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 3.25K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                                       |
| Data Converters            | A/D 8x10b                                                                         |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 64-LQFP                                                                           |
| Supplier Device Package    | PG-LQFP-64-4                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/sax-xc878l-16ffa-5v-aa |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# 8-Bit

# XC87xCLM

8-Bit Single-Chip Microcontroller

Data Sheet V1.5 2011-03

## Microcontrollers



## Summary of Features

Features: (continued)

- Power-on reset generation
- Brownout detection for core logic supply
- On-chip OSC and PLL for clock generation
  - Loss-of-Clock detection
- Power saving modes
  - slow-down mode
  - idle mode
  - power-down mode with wake-up capability via RXD or EXINT0<sup>1)</sup>
  - clock gating control to each peripheral
  - Programmable 16-bit Watchdog Timer (WDT)
- Five ports

٠

- Up to 40 pins as digital I/O
- 8 dedicated analog inputs used as A/D converter input
- 8-channel, 10-bit ADC
- Four 16-bit timers
  - Timer 0 and Timer 1 (T0 and T1)
  - Timer 2 and Timer 21 (T2 and T21)
- Multiplication/Division Unit for arithmetic operations (MDU)
- CORDIC Coprocessor for computation of trigonometric, hyperbolic and linear functions
- MultiCAN with 2 nodes, 32 message objects
- Two Capture/compare units
  - Capture/compare unit 6 for PWM signal generation (CCU6)
  - Timer 2 Capture/compare unit for vaious digital signal generation (T2CCU)
- Two full-duplex serial interfaces (UART and UART1)
- Synchronous serial channel (SSC)
- On-chip debug support
  - 1 Kbyte of monitor ROM (part of the 8-Kbyte Boot ROM)
  - 64 bytes of monitor RAM
- Packages:
  - PG-LQFP-64
  - PG-VQFN-48
- Temperature range  $T_A$ :
  - SAF (-40 to 85 °C)
  - SAX (-40 to 105 °C)
  - SAK (-40 to 125 °C)

<sup>1)</sup> SAK product variant does not support power-down mode.



## **General Device Information**

| Symbol | Pin Number<br>(LQFP-64 /<br>VQFN-48) | Туре | Reset<br>State | Function            |                                                                  |
|--------|--------------------------------------|------|----------------|---------------------|------------------------------------------------------------------|
| P0.3   | 63/1                                 |      | Hi-Z           | SCK_1<br>COUT63_1   | SSC Clock Input/Output<br>Output of Capture/Compare<br>channel 3 |
|        |                                      |      |                | RXDO1_0<br>A17      | UART1 Transmit Data Output<br>Address Line 17 Output             |
| P0.4   | 64/2                                 |      | Hi-Z           | MTSR_1              | SSC Master Transmit Output/<br>Slave Receive Input               |
|        |                                      |      |                | CC62_1              | Input/Output of<br>Capture/Compare channel 2                     |
|        |                                      |      |                | TXD1_0              | UART1 Transmit Data<br>Output/Clock Output                       |
|        |                                      |      |                | A18                 | Address Line 18 Output                                           |
| P0.5   | 1/3                                  |      | Hi-Z           | MRST_1              | SSC Master Receive Input/Slave<br>Transmit Output                |
|        |                                      |      |                | EXINT0_0            | External Interrupt Input 0                                       |
|        |                                      |      |                | T2EX1_1             | Timer 21 External Trigger Input                                  |
|        |                                      |      |                | RXD1_0              | UART1 Receive Data Input                                         |
|        |                                      |      |                | 00102_1             | channel 2                                                        |
|        |                                      |      |                | A19                 | Address Line 19 Output                                           |
| P0.6   | 2/4                                  |      | PU             | T2CC4_1             | Compare Output Channel 4                                         |
|        |                                      |      |                | WR                  | External Data Write Control Output                               |
| P0.7   | 62/48                                |      | PU             | CLKOUT_1<br>T2CC5_1 | Clock Output<br>Compare Output Channel 5                         |
|        |                                      |      |                | KD                  | External Data Read Control<br>Output                             |



## **General Device Information**

| Symbol | Pin Number<br>(LQFP-64 /<br>VQFN-48) | Туре | Reset<br>State | Function                                                   |                                                                                                                                                                                     |
|--------|--------------------------------------|------|----------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P1.5   | 39/30                                |      | PU             | CCPOS0_1<br>EXINT5_0<br>T1_1<br>MRST_2<br>EXF2_0<br>RXDO_0 | CCU6 Hall Input 0<br>External Interrupt Input 5<br>Timer 1 Input<br>SSC Master Receive Input/<br>Slave Transmit Output<br>Timer 2 External Flag Output<br>UART Transmit Data Output |
| P1.6   | 10/9                                 |      | PU             | CCPOS1_1<br>T12HR_0<br>EXINT6_0<br>RXDC0_2<br>T21_1        | CCU6 Hall Input 1<br>CCU6 Timer 12 Hardware Run<br>Input<br>External Interrupt Input 6<br>MultiCAN Node 0 Receiver Input<br>Timer 21 Input                                          |
| P1.7   | 11/10                                |      | PU             | CCPOS2_1<br>T13HR_0<br>T2_1<br>TXDC0_2                     | CCU6 Hall Input 2<br>CCU6 Timer 13 Hardware Run<br>Input<br>Timer 2 Input<br>MultiCAN Node 0 Transmitter<br>Output                                                                  |
|        |                                      |      |                | P1.5 and P1. select output                                 | 6 can be used as a software chip for the SSC.                                                                                                                                       |



## **General Device Information**

| Symbol | Pin Number<br>(LQFP-64 /<br>VQFN-48) | Туре | Reset<br>State | Function                                                    |                                                                                                                                                                                                              |
|--------|--------------------------------------|------|----------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P3.4   | 51/37                                |      | Hi-Z           | CC62_0<br>RXDC0_1<br>T2EX1_0<br>T2CC3_1/<br>EXINT6_3<br>A14 | Input/Output of<br>Capture/Compare channel 2<br>MultiCAN Node 0 Receiver Input<br>Timer 21 External Trigger Input<br>External Interrupt Input 6/T2CCU<br>Capture/Compare Channel 3<br>Address Line 14 Output |
| P3.5   | 52/38                                |      | Hi-Z           | COUT62_0<br>EXF21_0<br>TXDC0_1<br>A15                       | Output of Capture/Compare<br>channel 2<br>Timer 21 External Flag Output<br>MultiCAN Node 0 Transmitter<br>Output<br>Address Line 15 Output                                                                   |
| P3.6   | 41/32                                |      | PU             | CTRAP_0                                                     | CCU6 Trap Input                                                                                                                                                                                              |
| P3.7   | 42/-                                 |      | Hi-Z           | EXINT4_0<br>COUT63_0<br>A16                                 | External Interrupt Input 4<br>Output of Capture/Compare<br>channel 3<br>Address Line 16 Output                                                                                                               |



## **General Device Information**

| Symbol | Pin Number<br>(LQFP-64 /<br>VQFN-48) | Туре | Reset<br>State | Function                   |                                                                                           |
|--------|--------------------------------------|------|----------------|----------------------------|-------------------------------------------------------------------------------------------|
| P4.5   | 46/-                                 |      | Hi-Z           | CCPOS1_3<br>T1_0           | CCU6 Hall Input 1<br>Timer 1 Input                                                        |
|        |                                      |      |                |                            | channel 1                                                                                 |
|        |                                      |      |                | T2CC3_0/<br>EXINT6_2<br>D5 | External Interrupt Input 6/T2CCU<br>Capture/Compare Channel 3<br>Data Line 5 Input/Output |
| P4.6   | 47/-                                 |      | Hi-Z           | CCPOS2_3                   | CCU6 Hall Input 2                                                                         |
|        |                                      |      |                | 12_0<br>CC62_2             | Output of Capture/Compare                                                                 |
|        |                                      |      |                | T2CC4_0<br>D6              | Compare Output Channel 4<br>Data Line 6 Input/Output                                      |
| P4.7   | 48/-                                 |      | Hi-Z           | CTRAP_3<br>COUT62_2        | CCU6 Trap Input<br>Output of Capture/Compare<br>channel 2                                 |
|        |                                      |      |                | T2CC5_0<br>D7              | Compare Output Channel 5<br>Data Line 7 Input/Output                                      |



## **3** Functional Description

**Chapter 3** provides an overview of the XC87x functional description.

## 3.1 **Processor Architecture**

The XC87x is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the XC87x CPU uses a 2-clock machine cycle. This allows fast access to ROM or RAM memories without wait state. The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions.

The XC87x CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and Special Function Registers (SFRs).

Figure 6 shows the CPU functional blocks.



Figure 6 CPU Block Diagram









Address Extension by Mapping



| Table 5 CPU Registe | er Overview | (cont'd) |
|---------------------|-------------|----------|
|---------------------|-------------|----------|

| Addr            | Register Name                                                                   | Bit       | 7           | 6           | 5           | 4           | 3    | 2    | 1         | 0          |  |  |
|-----------------|---------------------------------------------------------------------------------|-----------|-------------|-------------|-------------|-------------|------|------|-----------|------------|--|--|
| 97 <sub>H</sub> | MEXSP Reset: 7F <sub>H</sub>                                                    | Bit Field | 0           |             |             |             | MXSP |      |           |            |  |  |
|                 | Memory Extension Stack<br>Pointer Register                                      | Туре      | r           |             |             |             | rwh  |      |           |            |  |  |
| 98 <sub>H</sub> | SCON Reset: 00 <sub>H</sub>                                                     | Bit Field | SM0         | SM1         | SM2         | REN         | TB8  | RB8  | TI        | RI         |  |  |
|                 | Serial Channel Control Register                                                 | Туре      | rw          | rw          | rw          | rw          | rw   | rwh  | rwh       | rwh        |  |  |
| 99 <sub>H</sub> | SBUF Reset: 00 <sub>H</sub>                                                     | Bit Field |             | VAL         |             |             |      |      |           |            |  |  |
|                 | Serial Data Buffer Register                                                     | Туре      |             |             |             | rv          | vh   |      |           |            |  |  |
| A2 <sub>H</sub> | <sup>12</sup> H <b>EO Reset: 00</b> <sub>H</sub><br>Extended Operation Register |           |             | 0           |             | TRAP_<br>EN |      | 0    |           | DPSE<br>L0 |  |  |
|                 |                                                                                 | Туре      |             | r           |             | rw          |      | r    |           | rw         |  |  |
| A8 <sub>H</sub> | IEN0 Reset: 00 <sub>H</sub>                                                     | Bit Field | EA          | 0           | ET2         | ES          | ET1  | EX1  | ET0       | EX0        |  |  |
|                 | Interrupt Enable Register 0                                                     | Туре      | rw          | r           | rw          | rw          | rw   | rw   | rw        | rw         |  |  |
| B8 <sub>H</sub> | IP Reset: 00 <sub>H</sub>                                                       | Bit Field | 0           |             | PT2         | PS          | PT1  | PX1  | PT0       | PX0        |  |  |
|                 | Interrupt Priority Register                                                     | Туре      |             | r           | rw          | rw          | rw   | rw   | rw        | rw         |  |  |
| в9 <sub>Н</sub> | 9 <sub>H</sub> IPH Reset: 00 <sub>H</sub>                                       | Bit Field | (           | )           | PT2H        | PSH         | PT1H | PX1H | PT0H      | PX0H       |  |  |
|                 | Interrupt Priority High Register                                                | Туре      |             | r           | rw          | rw          | rw   | rw   | rw        | rw         |  |  |
| D0 <sub>H</sub> | PSW Reset: 00 <sub>H</sub>                                                      | Bit Field | CY          | AC          | F0          | RS1         | RS0  | OV   | F1        | Р          |  |  |
|                 | Program Status Word Register                                                    | Туре      | rwh         | rwh         | rw          | rw          | rw   | rwh  | rw        | rh         |  |  |
| E0 <sub>H</sub> | ACC Reset: 00 <sub>H</sub>                                                      | Bit Field | ACC7        | ACC6        | ACC5        | ACC4        | ACC3 | ACC2 | ACC1      | ACC0       |  |  |
|                 | Accumulator Register                                                            | Туре      | rw          | rw          | rw          | rw          | rw   | rw   | rw        | rw         |  |  |
| E8 <sub>H</sub> | IEN1 Reset: 00 <sub>H</sub><br>Interrupt Enable Register 1                      | Bit Field | ECCIP<br>3  | ECCIP<br>2  | ECCIP<br>1  | ECCIP<br>0  | EXM  | EX2  | ESSC      | EADC       |  |  |
|                 |                                                                                 | Туре      | rw          | rw          | rw          | rw          | rw   | rw   | rw        | rw         |  |  |
| F0 <sub>H</sub> | B Reset: 00 <sub>H</sub>                                                        | Bit Field | B7          | B6          | B5          | B4          | B3   | B2   | B1        | B0         |  |  |
|                 | B Register                                                                      | Туре      | rw          | rw          | rw          | rw          | rw   | rw   | rw        | rw         |  |  |
| F8 <sub>H</sub> | IP1 Reset: 00 <sub>H</sub><br>Interrupt Priority 1 Register                     | Bit Field | PCCIP<br>3  | PCCIP<br>2  | PCCIP<br>1  | PCCIP<br>0  | PXM  | PX2  | PSSC      | PADC       |  |  |
|                 |                                                                                 | Туре      | rw          | rw          | rw          | rw          | rw   | rw   | rw        | rw         |  |  |
| F9 <sub>H</sub> | IPH1 Reset: 00 <sub>H</sub><br>Interrupt Priority 1 High Register               | Bit Field | PCCIP<br>3H | PCCIP<br>2H | PCCIP<br>1H | PCCIP<br>0H | PXMH | PX2H | PSSC<br>H | PADC<br>H  |  |  |
|                 |                                                                                 | Туре      | rw          | rw          | rw          | rw          | rw   | rw   | rw        | rw         |  |  |

## 3.2.4.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

#### Table 6MDU Register Overview

| Addr                | Register Name                  | Bit       | 7 | 6 | 5 | 4 | 3  | 2   | 1    | 0    |
|---------------------|--------------------------------|-----------|---|---|---|---|----|-----|------|------|
| RMAP = 1            |                                |           |   |   |   |   |    |     |      |      |
| во <sub>Н</sub>     | MDUSTAT Reset: 00 <sub>H</sub> | Bit Field |   |   | 0 |   |    | BSY | IERR | IRDY |
| MDU Status Register |                                | Туре      |   |   | r |   | rh | rwh | rwh  |      |



#### Table 12T2CCU Register Overview (cont'd)

| Addr                                                                                          | Register Name                                                | Bit       | 7            | 6    | 5    | 4    | 3     | 2    | 1    | 0    |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|--------------|------|------|------|-------|------|------|------|--|
| RMAP =                                                                                        | 0, PAGE 4                                                    |           |              |      |      |      |       |      |      |      |  |
| C2 <sub>H</sub> T2C0<br>T2C0<br>Time<br>Regis                                                 | T2CCU_CCTDTCLReset: 00 <sub>H</sub>                          | Bit Field | it Field DTM |      |      |      |       |      |      |      |  |
|                                                                                               | Timer Dead-Time Control<br>Register Low                      | Туре      | rw           |      |      |      |       |      |      |      |  |
| C3 <sub>H</sub><br>T2CCU_CCTDTCHR<br>T2CCU Capture/Com<br>Timer Dead-Time Co<br>Register High | T2CCU_CCTDTCHReset: 00 <sub>H</sub><br>T2CCU Capture/Compare | Bit Field | DTRE<br>S    | DTR2 | DTR1 | DTR0 | DTLEV | DTE2 | DTE1 | DTE0 |  |
|                                                                                               | Timer Dead-Time Control<br>Register High                     | Туре      | rwh          | rh   | rh   | rh   | rw    | rw   | rw   | rw   |  |

## 3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

#### Table 13T21 Register Overview

| Addr                                 | Register Name                                                        | Bit       | 7          | 6          | 5           | 4         | 3   | 2     | 1          | 0    |  |
|--------------------------------------|----------------------------------------------------------------------|-----------|------------|------------|-------------|-----------|-----|-------|------------|------|--|
| RMAP =                               | : 1                                                                  |           |            |            |             |           |     |       |            |      |  |
| c₀ <sub>H</sub>                      | T21_T2CON         Reset: 00 <sub>H</sub> Timer 2 Control Register    | Bit Field | TF2        | TF2 EXF2 0 |             | EXEN<br>2 | TR2 | C/T2  | CP/<br>RL2 |      |  |
|                                      |                                                                      | Туре      | rwh        | rwh        | l           | ſ         | rw  | rwh   | rw         | rw   |  |
| C1 <sub>H</sub>                      | T21_T2MOD Reset: 00 <sub>H</sub><br>Timer 2 Mode Register            | Bit Field | T2RE<br>GS | T2RH<br>EN | EDGE<br>SEL | PREN      |     | T2PRE |            | DCEN |  |
|                                      |                                                                      | Туре      | rw         | rw         | rw          | rw        | rw  | rw    | rw         | rw   |  |
| C2 <sub>H</sub>                      | C2 <sub>H</sub> T21_RC2L Reset: 00 <sub>H</sub>                      | Bit Field | RC2        |            |             |           |     |       |            |      |  |
| Timer 2 Reload/Captu<br>Register Low | Timer 2 Reload/Capture<br>Register Low                               | Туре      | rwh        |            |             |           |     |       |            |      |  |
| C3 <sub>H</sub>                      | T21_RC2H Reset: 00 <sub>H</sub>                                      | Bit Field | RC2        |            |             |           |     |       |            |      |  |
|                                      | Timer 2 Reload/Capture<br>Register High                              | Туре      | rwh        |            |             |           |     |       |            |      |  |
| C4 <sub>H</sub>                      | T21_T2L Reset: 00 <sub>H</sub>                                       | Bit Field |            |            |             | TH        | L2  |       |            |      |  |
|                                      | Timer 2 Register Low                                                 | Туре      | rwh        |            |             |           |     |       |            |      |  |
| C5 <sub>H</sub>                      | T21_T2H Reset: 00 <sub>H</sub>                                       | Bit Field |            |            |             | TH        | L2  |       |            |      |  |
|                                      | Timer 2 Register High                                                | Туре      | rwh        |            |             |           |     |       |            |      |  |
| C6 <sub>H</sub>                      | T21_T2CON1         Reset: 03 <sub>H</sub> Timer 2 Control Register 1 | Bit Field | 1 0 TF2EN  |            |             |           |     | TF2EN | EXF2E<br>N |      |  |
|                                      |                                                                      | Туре      |            |            |             | r         |     |       | rw         | rw   |  |



## 3.2.4.15 Flash Registers

The Flash SFRs can be accessed in the mapped memory area (RMAP = 1).

| Addr                         | Register Name                                            | Bit       | 7          | 6         | 5    | 4 | 3          | 2          | 1         | 0           |
|------------------------------|----------------------------------------------------------|-----------|------------|-----------|------|---|------------|------------|-----------|-------------|
| RMAP =                       | = 1                                                      |           |            |           |      |   |            |            |           |             |
| D1 <sub>H</sub>              | FCON Reset: 10 <sub>H</sub><br>P-Flash Control Register  | Bit Field | 0          | FBSY      | YE   | 1 | NVST<br>R  | MAS1       | ERAS<br>E | PROG        |
|                              |                                                          | Туре      | r          | rh        | rwh  | r | rw         | rw         | rw        | rw          |
| D2 <sub>H</sub>              | EECON Reset: 10 <sub>H</sub><br>D-Flash Control Register | Bit Field | 0          | EEBS<br>Y | YE   | 1 | NVST<br>R  | MAS1       | ERAS<br>E | PROG        |
|                              |                                                          | Туре      | r          | rh        | rwh  | r | rw         | rw         | rw        | rw          |
| D3 <sub>H</sub> FCS<br>Flash | FCS Reset: 80 <sub>H</sub><br>Flash Control and Status   | Bit Field | 1          | SBEIE     | FTEN | 0 | EEDE<br>RR | EESE<br>RR | FDER<br>R | FSER<br>R   |
|                              | Register                                                 | Туре      | r          | rw        | rwh  | r | rwh        | rwh        | rwh       | rwh         |
| D4 <sub>H</sub>              | FEAL Reset: 00 <sub>H</sub>                              | Bit Field | d ECCEADDR |           |      |   |            |            |           |             |
|                              | Flash Error Address Register,<br>Low Byte                | Туре      | rh         |           |      |   |            |            |           |             |
| D5 <sub>H</sub>              | FEAH Reset: 00 <sub>H</sub>                              | Bit Field | ECCEADDR   |           |      |   |            |            |           |             |
|                              | Flash Error Address Register,<br>High Byte               | Туре      | rh         |           |      |   |            |            |           |             |
| D6 <sub>H</sub>              | FTVAL Reset: 78 <sub>H</sub>                             | Bit Field | MODE       |           |      |   | OFVAL      |            |           |             |
|                              | Flash Timer Value Register                               | Туре      | rw         |           |      |   | rw         |            |           |             |
| dd <sub>H</sub>              | FCS1 Reset: 00 <sub>H</sub><br>Flash Control and Status  | Bit Field |            |           |      | 0 |            |            |           | EEAB<br>ORT |
|                              | Register 1                                               | Туре      |            |           |      | r |            |            |           | rwh         |

## Table 19Flash Register Overview





Figure 17 Interrupt Request Sources (Part 5)



## 3.9 Power Saving Modes

The power saving modes of the XC87x provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 23**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- Idle mode
- Slow-down mode
- Power-down mode



## Figure 23 Transition between Power Saving Modes

Note: SAK product variant does not support power-down mode.



## 3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC87x system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC87x will be aborted in a user-specified time period.

In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

### Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of  $f_{PCLK}/2$  or  $f_{PCLK}/128$
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of  $f_{\rm PCLK}/2$  or  $f_{\rm PCLK}/128$ . This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. **Figure 24** shows the block diagram of the WDT unit.



Figure 24 WDT Block Diagram



## 3.11 Multiplication/Division Unit

The Multiplication/Division Unit (MDU) provides fast 16-bit multiplication, 16-bit and 32-bit division as well as shift and normalize features. It has been integrated to support the XC87x Core in real-time control applications, which require fast mathematical computations.

#### Features

- Fast signed/unsigned 16-bit multiplication
- Fast signed/unsigned 32-bit divide by 16-bit and 16-bit divide by 16-bit operations
- 32-bit unsigned normalize operation
- 32-bit arithmetic/logical shift operations

Table 29 specifies the number of clock cycles used for calculation in various operations.

| Operation                | Result | Remainder | No. of Clock Cycles<br>used for calculation |
|--------------------------|--------|-----------|---------------------------------------------|
| Signed 32-bit/16-bit     | 32-bit | 16-bit    | 33                                          |
| Signed 16-bit/16bit      | 16-bit | 16-bit    | 17                                          |
| Signed 16-bit x 16-bit   | 32-bit | -         | 16                                          |
| Unsigned 32-bit/16-bit   | 32-bit | 16-bit    | 32                                          |
| Unsigned 16-bit/16-bit   | 16-bit | 16-bit    | 16                                          |
| Unsigned 16-bit x 16-bit | 32-bit | -         | 16                                          |
| 32-bit normalize         | -      | -         | No. of shifts + 1 (Max. 32)                 |
| 32-bit shift L/R         | -      | -         | No. of shifts + 1 (Max. 32)                 |

 Table 29
 MDU Operation Characteristics



## 3.19 Timer 2 Capture/Compare Unit

The T2CCU (Timer 2 Capture/Compare Unit) consists of the standard Timer 2 unit and a Capture/compare unit (CCU). The Capture/Compare Timer (CCT) is part of the CCU. Control is available in the T2CCU to select individually for each of its 16-bit capture/compare channel, either the Timer 2 or the Capture/Compare Timer (CCT) as the time base. Both timers have a resolution of 16 bits.The clock frequency of T2CCU,  $f_{T2CCU}$ , could be set at PCLK frequency or 2 times the PCLK frequency.

The T2CCU can be used for various digital signal generation and event capturing like pulse generation, pulse width modulation, pulse width measuring etc. Target applications include various automotive control as well as industrial (frequency generation, digital-to-analog conversion, process control etc.).

### T2CCU Features

- Option to select individually for each channel, either Timer 2 or Capture/Compare Timer as time base
- Extremely flexible Capture/Compare Timer count rate by cascading with Timer 2
- Capture/Compare Timer may be 'reset' immediately by triggering overflow event
- 16-bit resolution
- Six compare channels in total
- Four capture channels multiplexed with the compare channels, in total
- · Shadow register for each compare register
  - Transfer via software control or on timer overflow.
- Compare Mode 0: Compare output signal changes from the inactive level to active level on compare match. Returns to inactive level on timer overflow.
  - Active level can be defined by register bit for channel groups A and B.
  - Support of 0% to 100% duty cycle in compare mode 0.
- Compare Mode 1: Full control of the software on the compare output signal level, for the next compare match.
- Concurrent Compare Mode with channel 0
- Capture Mode 0: Capture on any external event (rising/falling/both edge) at the 4 pins T2CC0 to T2CC3.
- Capture Mode 1: Capture upon writing to the low byte of the corresponding channel capture register.
- Capture mode 0 or 1 can be established independently on the 4 capture channels.



#### **Electrical Parameters**

## 4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case, the analog parameters may show a reduced performance. All ground pins ( $V_{\rm SS}$ ) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

| Parameter                                                    | Symbol              |    | Lir                                 | nit Valı  | ues                        | Unit | Test Conditions/                                            |
|--------------------------------------------------------------|---------------------|----|-------------------------------------|-----------|----------------------------|------|-------------------------------------------------------------|
|                                                              |                     |    | min.                                | typ.      | max.                       |      | Remarks                                                     |
| Analog reference voltage                                     | V <sub>AREF</sub>   | SR | V <sub>AGND</sub><br>+ 1            | $V_{DDP}$ | V <sub>DDP</sub><br>+ 0.05 | V    | 1)                                                          |
| Analog reference ground                                      | $V_{AGND}$          | SR | V <sub>SS</sub> -<br>0.05           | $V_{SS}$  | V <sub>AREF</sub><br>- 1   | V    | 1)                                                          |
| Analog input<br>voltage range                                | $V_{AIN}$           | SR | $V_{AGND}$                          | Ι         | $V_{AREF}$                 | V    |                                                             |
| ADC clocks                                                   | $f_{\sf ADC}$       |    | -                                   | 24        | -                          | MHz  | module clock <sup>1)</sup>                                  |
|                                                              | f <sub>adci</sub>   |    | _                                   | -         | 14 <sup>2)</sup>           | MHz  | internal analog clock <sup>1)</sup><br>See <b>Figure 31</b> |
| Sample time                                                  | t <sub>S</sub>      | СС | (2 + IN<br><i>t</i> <sub>ADCI</sub> | PCR0.     | STC) ×                     | μS   | 1)                                                          |
| Conversion time                                              | t <sub>C</sub>      | CC | See Section 4.2.3.1                 |           |                            | μS   | 1)                                                          |
| Differential<br>Nonlinearity                                 | $ EA_{DNL} $        | CC | _                                   | _         | 1.5                        | LSB  | 10-bit conversion                                           |
| Integral<br>Nonlinearity                                     | $ EA_{INL} $        | CC | _                                   | _         | 2                          | LSB  | 10-bit conversion                                           |
| Offset                                                       | $ EA_{OFF} $        | CC | -                                   | -         | 3                          | LSB  | 10-bit conversion                                           |
| Gain                                                         | $ EA_{GAIN} $       | CC | -                                   | -         | 2.5                        | LSB  | 10-bit conversion                                           |
| Switched<br>capacitance at the<br>reference voltage<br>input | C <sub>AREFSW</sub> | CC | _                                   | 10        | 14                         | pF   | 1)3)                                                        |
| Switched<br>capacitance at the<br>analog voltage<br>inputs   | C <sub>AINSW</sub>  | CC | -                                   | 4         | 5                          | pF   | 1)4)                                                        |

#### Table 42ADC Characteristics (Operating Conditions apply; $V_{DDP}$ = 5V Range)



#### **Electrical Parameters**

## 4.2.4 **Power Supply Current**

**Table 43**, **Table 44**, **Table 45** and **Table 46** provide the characteristics of the power supply current in the XC87x.

## Table 43Power Supply Current Parameters (Operating Conditions apply; $V_{\text{DDP}}$ = 5V range)

|                          | Symbol           | Limit              | Values             | Unit | Tost Conditions                    |  |
|--------------------------|------------------|--------------------|--------------------|------|------------------------------------|--|
| Falameter                | Symbol           | Liiiit             | values             | Unit | Test conditions                    |  |
|                          |                  | typ. <sup>1)</sup> | max. <sup>2)</sup> |      |                                    |  |
| $V_{\rm DDP}$ = 5V Range |                  |                    |                    |      |                                    |  |
| Active Mode              | I <sub>DDP</sub> | 37.5               | 45                 | mA   | <sup>3)</sup> SAF and SAX variants |  |
|                          |                  | 40.5               | 48                 | mA   | <sup>3)</sup> SAK variant          |  |
| Idle Mode                | I <sub>DDP</sub> | 29.2               | 35                 | mA   | <sup>4)</sup> SAF and SAX variants |  |
|                          |                  | 32.2               | 38                 | mA   | <sup>4)</sup> SAK variant          |  |
| Active Mode with slow-   | I <sub>DDP</sub> | 10                 | 15                 | mA   | <sup>5)</sup> SAF and SAX variants |  |
| down enabled             |                  | 13                 | 18                 | mA   | <sup>5)</sup> SAK variant          |  |
| Idle Mode with slow-     | I <sub>DDP</sub> | 9.2                | 14                 | mA   | <sup>6)</sup> SAF and SAX variants |  |
| down enabled             |                  | 12.2               | 17                 | mA   | 6) SAK variant                     |  |

1) The typical  $I_{\text{DDP}}$  values are based on preliminary measurements and are to be used as reference only. These values are periodically measured at  $T_{\text{A}}$  = + 25 °C and  $V_{\text{DDP}}$  = 5.0 V.

2) The maximum  $I_{\text{DDP}}$  values are measured under worst case conditions ( $T_{\text{A}}$  = + 105 °C and  $V_{\text{DDP}}$  = 5.5 V).

3)  $I_{\text{DDP}}$  (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz with onchip oscillator of 4 MHz, RESET =  $V_{\text{DDP}}$ ; all other pins are disconnected, no load on ports.

4)  $I_{\text{DDP}}$  (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET =  $V_{\text{DDP}}$ ; all other pins are disconnected, no load on ports.

5)  $I_{\text{DDP}}$  (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 1 MHz by setting CLKREL in CMCON to  $1000_{\text{B}}$ ,  $\overline{\text{RESET}} = V_{\text{DDP}}$ ; all other pins are disconnected, no load on ports.

6)  $I_{\text{DDP}}$  (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 1 MHz by setting CLKREL in CMCON to 1000<sub>B</sub>, RESET =  $V_{\text{DDP}}$ ; all other pins are disconnected, no load on ports.



#### **Electrical Parameters**

## 4.3.8 SSC Master Mode Timing

Table 55 provides the characteristics of the SSC timing in the XC87x.

| Table 55 | SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF) |
|----------|-----------------------------------------------------------------|
|----------|-----------------------------------------------------------------|

| Parameter            | Syn                   | nbol | Limit              | Values | Unit | Test Conditions |
|----------------------|-----------------------|------|--------------------|--------|------|-----------------|
|                      |                       |      | min.               | max.   |      |                 |
| SCLK clock period    | <i>t</i> <sub>0</sub> | CC   | 2*T <sub>SSC</sub> | _      | ns   | 1)2)            |
| MTSR delay from SCLK | <i>t</i> <sub>1</sub> | CC   | 0                  | 5      | ns   | 2)              |
| MRST setup to SCLK   | <i>t</i> <sub>2</sub> | SR   | 13                 | -      | ns   | 2)              |
| MRST hold from SCLK  | <i>t</i> <sub>3</sub> | SR   | 0                  | -      | ns   | 2)              |

1)  $T_{SSCmin} = T_{CPU} = 1/f_{CPU}$ . When  $f_{CPU} = 24$  MHz,  $t_0 = 83.3$  ns.  $T_{CPU}$  is the CPU clock period.

2) 1Not all parameters are 100% tested, but are verified by design/characterization and test correlation.



Figure 46 SSC Master Mode Timing



### Package and Quality Declaration

## 5 Package and Quality Declaration

Chapter 5 provides the information of the XC87x package and reliability section.

## 5.1 Package Parameters

Table 56 provides the thermal characteristics of the package used in XC878 and XC874.

| Table 50 Thermal Cha                           | lacterist        | 163 | UT LITE F | achayes    |      |       |
|------------------------------------------------|------------------|-----|-----------|------------|------|-------|
| Parameter                                      | Symbol           |     | Lin       | nit Values | Unit | Notes |
|                                                |                  |     | Min. Max. |            |      |       |
| PG-LQFP-64-4 (XC878)                           |                  |     |           |            | L    |       |
| Thermal resistance junction case <sup>1)</sup> | R <sub>TJC</sub> | СС  | -         | 13.8       | K/W  | -     |
| Thermal resistance junction lead <sup>1)</sup> | $R_{\rm TJL}$ (  | СС  | -         | 34.6       | K/W  | -     |
| PG-VQFN-48-22 (XC874)                          |                  |     |           |            |      |       |
| Thermal resistance junction case <sup>1)</sup> | R <sub>TJC</sub> | СС  | -         | 16.6       | K/W  | -     |
| Thermal resistance junction lead <sup>1)</sup> | $R_{\rm TJL}$ (  | СС  | -         | 30.7       | K/W  | -     |
|                                                |                  |     |           |            |      |       |

#### Table 56 Thermal Characteristics of the Packages

1) The thermal resistances between the case and the ambient  $(R_{TCA})$ , the lead and the ambient  $(R_{TLA})$  are to be combined with the thermal resistances between the junction and the case  $(R_{TJC})$ , the junction and the lead  $(R_{TJL})$  given above, in order to calculate the total thermal resistance between the junction and the ambient  $(R_{TJA})$ . The thermal resistances between the case and the ambient  $(R_{TCA})$ , the lead and the ambient  $(R_{TLA})$ . The thermal resistances between the case and the ambient  $(R_{TCA})$ , the lead and the ambient  $(R_{TLA})$  depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation:  $T_J = T_A + R_{TJA} \times P_D$ , where the  $R_{TJA}$  is the total thermal resistance between the junction and the ambient. This total junction ambient resistance  $R_{TJA}$  can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.