

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	LINbus, SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sax-xc878lm-16ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2011-03 Published by Infineon Technologies AG 81726 Munich, Germany © 2011 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Table of Contents

Table of Contents

1	Summary of Features	1
2 2.1 2.2 2.3 2.4	General Device Information Block Diagram Logic Symbol Pin Configuration Pin Definitions and Functions	6 6 7 8
3	Functional Description	21
3.1	Processor Architecture	21
3.2	Memory Organization	22
3.2.1	Memory Protection Strategy 2	<u>2</u> 4
3.2.1.1	Flash Memory Protection	<u>2</u> 4
3.2.2	Special Function Register	26
3.2.2.1	Address Extension by Mapping 2	26
3.2.2.2	Address Extension by Paging 2	28
3.2.3	Bit Protection Scheme	32
3.2.3.1	Password Register	33
3.2.4	XC87x Register Overview	34
3.2.4.1	CPU Registers	34
3.2.4.2	MDU Registers	35
3.2.4.3	CORDIC Registers	36
3.2.4.4	System Control Registers 3	37
3.2.4.5	WDT Registers 4	10
3.2.4.6	Port Registers 4	10
3.2.4.7	ADC Registers 4	13
3.2.4.8	Timer 2 Compare/Capture Unit Registers 4	17
3.2.4.9	Timer 21 Registers 4	19
3.2.4.10	CCU6 Registers 5	50
3.2.4.11	UART1 Registers	54
3.2.4.12	SSC Registers 5	54
3.2.4.13	MultiCAN Registers 5	55
3.2.4.14	OCDS Registers 5	55
3.2.4.15	Flash Registers 5	57
3.3	Flash Memory	58
3.3.1	Flash Bank Pagination 6	30
3.4	Interrupt System	51
3.4.1	Interrupt Source	51
3.4.2	Interrupt Source and Vector 6	ک ر
3.4.3	Interrupt Priority	;9
3.5	Parallel Ports	'0
3.6	Power Supply System with Embedded Voltage Regulator	'2

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P4		I/O		Port 4 Port 4 is an 8 I/O port. It ca for CCU6, Tin MultiCAN an Note: Extern XC874	B-bit bidirectional general purpose an be used as alternate functions mer 0, Timer 1, T2CCU, Timer 21, d External Bus Interface. al Bus Interface is not available in 4.
P4.0	59/45		Hi-Z	RXDC0_3 CC60_1 T2CC0_0/ EXINT3_1 D0	MultiCAN Node 0 Receiver Input Output of Capture/Compare channel 0 External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Data Line 0 Input/Output
P4.1	60/46		Hi-Z	TXDC0_3 COUT60_1 T2CC1_0/ EXINT4_1 D1	MultiCAN Node 0 Transmitter Output Output of Capture/Compare channel 0 External Interrupt Input 4/T2CCU Capture/Compare Channel 1 Data Line 1 Input/Output
P4.2	61/47		PU	EXINT6_1 T21_0 D2	External Interrupt Input 6 Timer 21 Input Data Line 2 Input/Output
P4.3	40/31		Hi-Z	T2EX_1 EXF21_1 COUT63_2 D3	Timer 2 External Trigger Input Timer 21 External Flag Output Output of Capture/Compare channel 3 Data Line 3 Input/Output
P4.4	45/-		Hi-Z	CCPOS0_3 T0_0 CC61_4 T2CC2_0/ EXINT5_1 D4	CCU6 Hall Input 0 Timer 0 Input Output of Capture/Compare channel 1 External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Data Line 4 Input/Output

Flash Protection	Without hardware protection	With hardware protect	tion
P-Flash program and erase	Possible	Possible only on the condition that MSB - 1 of password is set to 1	Possible only on the condition that MSB - 1 of password is set to 1
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash
External access to D- Flash	Not possible	Not possible	Not possible
D-Flash program	Possible	Possible	Possible, on the condition that MSB - 1 of password is set to 1
D-Flash erase	Possible	 Possible, on these conditions: MISC_CON.DFLASH EN bit is set to 1 prior to each erase operation; or the MSB - 1 of password is set to 1 	Possible, on the condition that MSB - 1 of password is set to 1

Table 4Flash Protection Modes (cont'd)

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. To disable the flash protection, a password match is required. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. With a valid password, the Flash hardware protection is then enabled or disabled upon next reset. For the other protection strategies, no reset is necessary.

Although no protection scheme can be considered infallible, the XC87x memory protection strategy provides a very high level of protection for a general purpose microcontroller.

Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents.

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable The access to the standard SFR area is enabled The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions. The rest bits of SYSCON0 should not be modified.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC87x has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 10**.

3.2.3.1 Password Register

PASSWD

Password	Register					Reset	Value: 07 _H
7	6	5	4	3	2	1	0
		PASS	I		PROTECT _S	МС	DE
		W			rh	r	W

Field	Bits	Туре	Description					
MODE	[1:0]	o] rw Bit 00 11 Oth The the mu MC	 Scheme disabled - direct access to the protected bits is allowed. Scheme enabled - the bit field PASS has to be written with the passwords to open and close the access to protected bits. (default) Others:Scheme Enabled. These two bits cannot be written directly. To change the value between 11_B and 00_B, the bit field PASS must be written with 11000_B; only then, will the MODE[1:0] be registered. 					
PROTECT_S	2	rh	 Bit Protection Signal Status Bit This bit shows the status of the protection. 0 Software is able to write to all protected bits. 1 Software is unable to write to any protected bits. 					
PASS	[7:3]	W	Password BitsThe Bit Protection Scheme only recognizes threepatterns. 11000_B Enables writing of the bit field MODE. 10011_B Opens access to writing of all protected bits. 10101_B Closes access to writing of all protected bits					

Table 6	MDU Register Overview	(cont'd)
---------	-----------------------	----------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
B1 _H	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE	IE IR RSEL STAR OPCODE T							
		Туре	rw	rw	rw	rwh		rw			
B2 _H	MD0 Reset: 00 _H	Bit Field				DA	TA	Ą			
	MDU Operand Register 0	Туре				r	w				
B2 _H	MR0 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 0	Туре				r	h				
вз _Н	MD1 Reset: 00 _H	Bit Field				DA	TA				
	MDU Operand Register 1	Туре				r	W				
вз _Н	MR1 Reset: 00 _H	Bit Field				DA	ATA				
	MDU Result Register 1	Туре				r	h				
B4 _H	MD2 Reset: 00 _H MDU Operand Register 2	Bit Field		DATA							
		Туре				r	w				
B4 _H	MR2 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 2	Туре	rh								
в5 _Н	MD3 Reset: 00 _H	Bit Field	DATA								
	MDU Operand Register 3	Туре				r	W				
в5 _Н	MR3 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 3	Туре				r	h				
в6 _Н	MD4 Reset: 00 _H	Bit Field				DA	TA				
	MDU Operand Register 4	Туре	rw								
в6 _Н	MR4 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 4	Туре				r	h				
в7 _Н	MD5 Reset: 00 _H	Bit Field				DA	TA				
	MDU Operand Register 5	Туре				r	w				
в7 _Н	MR5 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 5	Туре				r	h				

3.2.4.3 CORDIC Registers

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 7 CORDIC Register Overview

Addr	Register Name	Bit	7 6 5 4 3				2	1	0	
RMAP =	: 1									
9A _H	CD_CORDXL Reset: 00 _H	Bit Field	DATAL							
	CORDIC X Data Low Byte	Туре		rw						
98 _H	CD_CORDXH Reset: 00 _H	Bit Field	DATAH							
	CORDIC X Data High Byte	Туре	rw							

3.2.4.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

	5											
Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 1	-										
BB _H WDTCC Watchdo Register	WDTCON Reset: 00 _H Watchdog Timer Control	Bit Field	0		WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N		
	Register	Туре	r		rw	rh	r	rw	rwh	rw		
вс _Н	C _H WDTREL Reset: 00 _H Watchdog Timer Reload Register			WDTREL								
			rw									
вd _Н	WDTWINB Reset: 00 _H	Bit Field	WDTWINB									
	Watchdog Window-Boundary Count Register	Туре	rw									
be _H	WDTL Reset: 00 _H	Bit Field				W	DT					
	Watchdog Timer Register Low	Туре	rh									
bf _H	WDTH Reset: 00 _H	Bit Field	WDT									
	Watchdog Timer Register High	Туре				r	h					

Table 9WDT Register Overview

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Nar	ne	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0										
B2 _H	PORT_PAGE	Reset: 00 _H	Bit Field	0	P	ST	NR	0		PAGE	
	Page Register		Туре	v	V	v	V	r		rwh	
RMAP =	= 0, PAGE 0										
80 _H	P0_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register		Туре	rwh	rwh						
86 _H	P0_DIR	Reset: 00_H Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Regis		Туре	rw	rw						
90 _H	P1_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register		Туре	rwh	rwh						
91 _H	P1_DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Regis	Direction Register	Туре	rw	rw						
92 _H	P5_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register		Туре	rwh	rwh						
93 _H	P5_DIR	IR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
P5	P5 Direction Regis	P5 Direction Register		rw	rw						

Table 12T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
C5 _H	T2CCU_CCTH Reset: 00 _H	Bit Field	ССТ								
	T2CCU Capture/Compare Timer Register High	Туре	rwh								
C6 _H	T2CCU_CCTCON Reset: 00 _H T2CCU CaptureCcompare	Bit Field		ССТ	PRE		CCTO VF	CCTO VEN	TIMSY N	CCTS T	
	Timer Control Register	Туре		r	w		rwh	rw	rw	rw	
RMAP =	= 0, PAGE 2		· · · · · · ·								
C0 _H	T2CCU_COSHDWReset: 00 _H T2CCU Capture/compare	Bit Field	ENSH DW	TXOV	COOU T5	COOU T4	COOU T3	COOU T2	COOU T1	COOU T0	
	Enable Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
C1 _H	T2CCU_CC0L Reset: 00 _H	Bit Field	CCVALL								
	Register 0 Low	Туре	rwh								
C2 _H	T2CCU_CC0H Reset: 00 _H	Bit Field	CCVALH								
	Register 0 High	Туре	rwh								
C3 _H	T2CCU_CC1L Reset: 00 _H T2CCU Capture/compare Register 1 Low	Bit Field	CCVALL								
		Туре		rwh							
C4 _H	T2CCU_CC1H Reset: 00 _H T2CCU Capture/compare Register 1 High	Bit Field	CCVALH								
		Туре	rwh								
C5 _H	T2CCU_CC2L Reset: 00 _H T2CCU Capture/compare Register 2 Low	Bit Field	CCVALL								
		Туре	rwh								
C6 _H	T2CCU_CC2H Reset: 00 _H	Bit Field	CCVALH								
	Register 2 High	Туре	rwh								
RMAP =	= 0, PAGE 3			-	-		-	-	-		
C0 _H	T2CCU_COCON Reset: 00 _H T2CCU Compare Control Register	Bit Field	CCM5	CCM4	CM5F	CM4F	POLB	POLA	CON	<i>I</i> OD	
		Туре	rw	rw	rwh	rwh	rw	rw	n	N	
C1 _H	T2CCU_CC3L Reset: 00 _H T2CCU Capture/compare Register 3 Low	Bit Field	CCVALL								
		Туре	rwh								
C2 _H	T2CCU_CC3H Reset: 00 _H T2CCU Capture/compare Register 3 High	Bit Field	CCVALH								
		Туре	rwh								
C3 _H	T2CCU_CC4L Reset: 00 _H T2CCU Capture/compare Register 4 Low	Bit Field	CCVALL								
		Туре	rwh								
C4 _H	T2CCU_CC4H Reset: 00 _H T2CCU Capture/compare Register 4 High	Bit Field	CCVALH								
		Туре	rwh								
C5 _H	T2CCU_CC5L Reset: 00 _H T2CCU Capture/compare Register 5 Low	Bit Field	CCVALL								
		Туре	rwh								
C6 _H	T2CCU_CC5H Reset: 00 _H T2CCU Capture/compare Register 5 High	Bit Field	CCVALH								
		Туре	rwh								

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
FD _H	CCU6_MODCTRH Reset: 00 _H Modulation Control Register High	Bit Field	ECT1 30	0	T13MODEN						
		Туре	rw	r	rw						
Fe _H	CCU6_TRPCTRL Reset: 00 _H Trap Control Register Low	Bit Field			0 TRPI 2				TRPM 1	TRPM 0	
		Туре	r					rw	rw	rw	
FFH	CCU6_TRPCTRH Reset: 00 _H Trap Control Register High	Bit Field	TRPP EN	TRPE N13	TRPEN						
		Туре	rw	rw	rw						
RMAP =	= 0, PAGE 3										
9A _H	CCU6_MCMOUTL Reset: 00 _H	Bit Field	0	R	MCMP						
	Multi-Channel Mode Output Register	Туре	r	rh	rh						
9B _H	CCU6_MCMOUTH Reset: 00 _H Multi-Channel Mode Output Register High	Bit Field	(0	CURH				EXPH		
		Туре		r	rh			rh			
9CH	9C _H CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status Register Low	Bit Field	T12 PM	T12 OM	ICC62 F	ICC62 R	ICC61 F	ICC61 R	ICC60 F	ICC60 R	
		Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status Register High	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13 PM	T13 CM	
		Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9E _H	CCU6_PISEL0L Reset: 00 _H Port Input Select Register 0 Low	Bit Field	IST	ISTRP ISCC62 ISC			C61	C61 ISCC60			
		Туре	rw rw			rw		rw			
9F _H	CCU6_PISEL0H Reset: 00 _H Port Input Select Register 0 High	Bit Field	IST1	2HR	ISPOS2 ISP		ISP	OS1	ISP	OS0	
		Туре	rw rw rw				w	rw			
A4 _H	CCU6_PISEL2 Reset: 00 _H Port Input Select Register 2	Bit Field	0 IST13HR						3HR		
		Туре	r rw							W	
FA _H	CCU6_T12L Reset: 00 _H Timer T12 Counter Register Low	Bit Field	T12CVL								
		Туре	rwh								
FBH	CCU6_T12H Reset: 00 _H Timer T12 Counter Register High	Bit Field	T12CVH								
		Туре	rwh								
FCH	CCU6_T13L Reset: 00 _H Timer T13 Counter Register Low	Bit Field	T13CVL								
		Type	rwh								
FDН	CCU6_T13H Reset: 00 _H Timer T13 Counter Register High	Bit Fleid	I 13CVH								
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63	CC POS2	CC POS1	CC	CC62 ST	CC61 ST	CC60 ST	
		Туре	r	rh	rh	rh	rh	rh	rh	rh	
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS	
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	

3.3.1 Flash Bank Pagination

The XC87x product family offers Flash devices with either 64 Kbytes or 52 Kbytes of embedded Flash memory. Each Flash device consists of a Program Flash (P-Flash) and a single Data Flash (D-Flash) bank. P-Flash has 120 pages of 8 wordlines per page with 64 bytes per wordline. D-Flash has 64 pages of 2 wordlines per page with 32 bytes per wordline. Both types can be used for code and data storage. The label "Data" neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different page width and wordline of each Flash bank.

The internal structure of each Flash bank represents a page architecture for flexible erase capability. The minimum erase width is always a complete page. The D-Flash bank is divided into smaller size for extended erasing and reprogramming capability; even numbers for each page size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

Figure 16 Interrupt Request Sources (Part 4)

For power saving purposes, the clocks may be disabled or slowed down according to **Table 27**.

Table 27System frequency (f_{sys} = 144 MHz)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down ¹⁾	Oscillator and PLL are switched off.

1) SAK product variant does not support power-down mode.

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 26**.

Figure 26Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

3.17 Timer 0 and Timer 1

Timer 0 and Timer 1 can function as both timers or counters. When functioning as a timer, Timer 0 and Timer 1 are incremented every machine cycle, i.e. every 2 input clocks (or 2 PCLKs). When functioning as a counter, Timer 0 and Timer 1 are incremented in response to a 1-to-0 transition (falling edge) at their respective external input pins, T0 or T1.

Timer 0 and 1 are fully compatible and can be configured in four different operating modes for use in a variety of applications, see **Table 33**. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Mode	Operation					
0	13-bit timer The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.					
1	16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter.					
2	8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.					
3	Timer 0 operates as two 8-bit timersThe timer registers, TL0 and TH0, operate as two separate 8-bit counters.Timer 1 is halted and retains its count even if enabled.					

Table 33Timer 0 and Timer 1 Modes

3.19 Timer 2 Capture/Compare Unit

The T2CCU (Timer 2 Capture/Compare Unit) consists of the standard Timer 2 unit and a Capture/compare unit (CCU). The Capture/Compare Timer (CCT) is part of the CCU. Control is available in the T2CCU to select individually for each of its 16-bit capture/compare channel, either the Timer 2 or the Capture/Compare Timer (CCT) as the time base. Both timers have a resolution of 16 bits.The clock frequency of T2CCU, f_{T2CCU} , could be set at PCLK frequency or 2 times the PCLK frequency.

The T2CCU can be used for various digital signal generation and event capturing like pulse generation, pulse width modulation, pulse width measuring etc. Target applications include various automotive control as well as industrial (frequency generation, digital-to-analog conversion, process control etc.).

T2CCU Features

- Option to select individually for each channel, either Timer 2 or Capture/Compare Timer as time base
- Extremely flexible Capture/Compare Timer count rate by cascading with Timer 2
- Capture/Compare Timer may be 'reset' immediately by triggering overflow event
- 16-bit resolution
- Six compare channels in total
- Four capture channels multiplexed with the compare channels, in total
- · Shadow register for each compare register
 - Transfer via software control or on timer overflow.
- Compare Mode 0: Compare output signal changes from the inactive level to active level on compare match. Returns to inactive level on timer overflow.
 - Active level can be defined by register bit for channel groups A and B.
 - Support of 0% to 100% duty cycle in compare mode 0.
- Compare Mode 1: Full control of the software on the compare output signal level, for the next compare match.
- Concurrent Compare Mode with channel 0
- Capture Mode 0: Capture on any external event (rising/falling/both edge) at the 4 pins T2CC0 to T2CC3.
- Capture Mode 1: Capture upon writing to the low byte of the corresponding channel capture register.
- Capture mode 0 or 1 can be established independently on the 4 capture channels.

- CAN functionality according to CAN specification V2.0 B active.
- Dedicated control registers are provided for each CAN node.
- A data transfer rate up to 1 MBaud is supported.
- Flexible and powerful message transfer control and error handling capabilities are implemented.
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter.
- Full-CAN functionality: A set of 32 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.
 - Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based.
- Advanced Interrupt Handling:
 - Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines.
 - Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits.

3.24 Chip Identification Number

The XC87x identity (ID) register is located at Page 1 of address $B3_{H}$. The value of ID register is 49_{H} . However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product, variant type and device step information.

Two methods are provided to read a device's chip identification number:

- In-application subroutine, GET_CHIP_INFO
- Bootstrap loader (BSL) mode A

Table 37 lists the chip identification numbers of available XC87x Flash device variants.

Product Variant	Chip Identification Number					
	AC-step					
Flash Devices						
XC878-16FF 5V	4B580063 _H					
XC878M-16FF 5V	4B580023 _H					
XC878CM-16FF 5V	4B580003 _H					
XC878LM-16FF 5V	4B500023 _H					
XC878CLM-16FF 5V	4B500003 _H					
XC878-13FF 5V	4B590463 _H					
XC878M-13FF 5V	4B590423 _H					
XC878CM-13FF 5V	4B590403 _H					
XC878LM-13FF 5V	4B510423 _H					
XC878CLM-13FF 5V	4B510403 _H					
XC878-16FF 3V3	4B180063 _H					
XC878M-16FF 3V3	4B180023 _H					
XC878CM-16FF 3V3	4B180003 _H					
XC878-13FF 3V3	4B190463 _H					
XC878M-13FF 3V3	4B190423 _H					
XC878CM-13FF 3V3	4B190403 _H					
XC874CM-16FV 5V	4B580002 _H					
XC874LM-16FV 5V	4B500022 _H					
XC874-16FV 5V	4B580062 _H					

 Table 37
 Chip Identification Number

Electrical Parameters

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 36**, **Figure 37** and **Figure 38**.

Figure 36 Rise/Fall Time Parameters

Figure 37 Testing Waveform, Output Delay

Figure 38 Testing Waveform, Output High Impedance

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the XC87x package and reliability section.

5.1 Package Parameters

Table 56 provides the thermal characteristics of the package used in XC878 and XC874.

Table 50 Thermal Cha	lacterist	163	UT LITE F	achayes		
Parameter	Symbol		Lin	nit Values	Unit	Notes
			Min.	/lin. Max.		
PG-LQFP-64-4 (XC878)					L	
Thermal resistance junction case ¹⁾	R _{TJC}	СС	-	13.8	K/W	-
Thermal resistance junction lead ¹⁾	$R_{\rm TJL}$ (СС	-	34.6	K/W	-
PG-VQFN-48-22 (XC874)						
Thermal resistance junction case ¹⁾	R _{TJC}	СС	-	16.6	K/W	-
Thermal resistance junction lead ¹⁾	$R_{\rm TJL}$ (СС	-	30.7	K/W	-

Table 56 Thermal Characteristics of the Packages

1) The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.