

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-48-22
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc874lm16fva5vackxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit

XC87xCLM

8-Bit Single-Chip Microcontroller

Data Sheet V1.5 2011-03

Microcontrollers

XC87x Data Sheet

Revision History: V1.5 2011-03

Previous Versions: V1.4

Subjects (major changes since last revision) Page

Changes from V1.4 2010-08 to V1.5 2011-03

A new variant, SAF-XC874CM-13FVA 5V, has been added in Table 2. Page 3

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Data Sheet V1.5, 2011-03

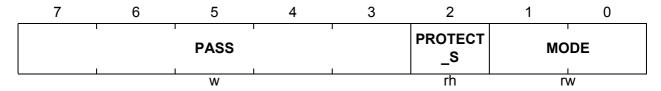
Table 4 Flash Protection Modes (cont'd)

Flash Protection	Without hardware protection	With hardware protect	tion
P-Flash program and erase	Possible	Possible only on the condition that MSB - 1 of password is set to 1	Possible only on the condition that MSB - 1 of password is set to 1
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash
External access to D-Flash	Not possible	Not possible	Not possible
D-Flash program	Possible	Possible	Possible, on the condition that MSB - 1 of password is set to 1
D-Flash erase	Possible	Possible, on these conditions: • MISC_CON.DFLASH EN bit is set to 1 prior to each erase operation; or • the MSB - 1 of password is set to 1	Possible, on the condition that MSB - 1 of password is set to 1

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. To disable the flash protection, a password match is required. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. With a valid password, the Flash hardware protection is then enabled or disabled upon next reset. For the other protection strategies, no reset is necessary.

Although no protection scheme can be considered infallible, the XC87x memory protection strategy provides a very high level of protection for a general purpose microcontroller.

Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents.


Data Sheet 25 V1.5, 2011-03

3.2.3.1 Password Register

PASSWD

Password Register Reset Value: 07_H

Field	Bits	Type	Description
MODE	[1:0] rw		Bit Protection Scheme Control Bits O Scheme disabled - direct access to the protected bits is allowed. 11 Scheme enabled - the bit field PASS has to be written with the passwords to open and close the access to protected bits. (default) Others:Scheme Enabled. These two bits cannot be written directly. To change the value between 11 _B and 00 _B , the bit field PASS must be written with 11000 _B ; only then, will the MODE[1:0] be registered.
PROTECT_S	2	rh	Bit Protection Signal Status Bit This bit shows the status of the protection. O Software is able to write to all protected bits. Software is unable to write to any protected bits.
PASS	[7:3]	W	Password Bits The Bit Protection Scheme only recognizes three patterns. 11000 _B Enables writing of the bit field MODE. 10011 _B Opens access to writing of all protected bits. 10101 _B Closes access to writing of all protected bits

3.2.4 XC87x Register Overview

The SFRs of the XC87x are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Chapter 3.2.4.1** to **Chapter 3.2.4.15**.

Note: The addresses of the bitaddressable SFRs appear in bold typeface.

3.2.4.1 CPU Registers

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Table 5 CPU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0 or 1	1	ı	I.	I.	I.	I.	Į.	Į.	
81 _H	SP Reset: 07 _H	Bit Field				S	Р			
	Stack Pointer Register	Туре				r	w			
82 _H	DPL Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0
	Data Pointer Register Low	Туре	rw	rw	rw	rw	rw	rw	rw	rw
83 _H	DPH Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0
	Data Pointer Register High	Туре	rw	rw	rw	rw	rw	rw	rw	rw
87 _H	PCON Reset: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE
	Power Control Register	Туре	rw		r		rw	rw	r	rw
88 _H	TCON Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
	Timer Control Register	Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw
89 _H	TMOD Reset: 00 _H Timer Mode Register	Bit Field	GATE 1	T1S	T1	IM	GATE 0	T0S	TO	OM
		Туре	rw	rw	r	W	rw	rw rv		w
8A _H	TL0 Reset: 00 _H	Bit Field				V	٩L			
	Timer 0 Register Low	Туре				rv	vh			
8B _H	TL1 Reset: 00 _H	Bit Field				V	٩L			
	Timer 1 Register Low	Туре				rv	vh			
8C _H	THO Reset: 00 _H	Bit Field				V	٩L			
	Timer 0 Register High	Туре				rv	vh			
8D _H	TH1 Reset: 00 _H	Bit Field				V	٩L			
	Timer 1 Register High	Туре				rv	vh			
94 _H	MEX1 Reset: 00 _H	Bit Field		С	В			N	IB	
	Memory Extension Register 1	Туре			r			r	W	
95 _H	MEX2 Reset: 00 _H	Bit Field	ield MCM MCB IB							
	Memory Extension Register 2	Туре	rw		rw		rw			
96 _H	MEX3 Reset: 00 _H Memory Extension Register 3	Bit Field	Field MCB1 0 MXB1 MXM MXB 9							
		Туре	rw		r	rw	rw		rw	

Table 5 CPU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
97 _H	MEXSP Reset: 7FH	Bit Field	0			•	MXSP	•			
	Memory Extension Stack Pointer Register	Туре	ŗ	r rwh							
98 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh	
99 _H	SBUF Reset: 00 _H	Bit Field				V	AL				
	Serial Data Buffer Register	Туре				rv	vh	h			
A2 _H	EO Reset: 00 _H Extended Operation Register	Bit Field		0		TRAP_ EN		0		DPSE L0	
		Туре		r		rw		r		rw	
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0	
	Interrupt Enable Register 0	Туре	rw	r	rw	rw	rw	rw	rw	rw	
B8 _H	IP Reset: 00 _H	Bit Field	()	PT2	PS	PT1	PX1	PT0	PX0	
	Interrupt Priority Register	Туре	1	ſ	rw	rw	rw	rw	rw	rw	
в9 _Н	IPH Reset: 00 _H	Bit Field	d 0		PT2H	PSH	PT1H	PX1H	PT0H	PX0H	
	Interrupt Priority High Register	Туре	l	ſ	rw	rw	rw	rw	rw	rw	
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р	
	Program Status Word Register	Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh	
E0 _H	ACC Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0	
	Accumulator Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC	
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
F0 _H	B Reset: 00 _H	Bit Field	B7	B6	B5	B4	В3	B2	B1	В0	
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC	
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H	
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	

3.2.4.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6 MDU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	1									
во _Н	MDUSTAT Reset: 00 _H	Bit Field			0			BSY	IERR	IRDY
	MDU Status Register	Туре			r			rh	rwh	rwh

 Table 10
 Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
во _Н	P3_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register	Туре	rwh							
B1 _H	P3_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Register	Туре	rw							
C8 _H	P4_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register	Туре	rwh							
C9H	P4_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Register	Туре	rw							
RMAP =	= 0, PAGE 1			_		_				
80 _H	P0_PUDSEL Reset: FF _H P0 Pull-Up/Pull-Down Select	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	Register	Туре	rw							
86 _H	P0_PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw							
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw							
91 _H	P1_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Enable Register	Туре	rw							
92 _H	P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw							
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
B0 _H	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
B1 _H	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	= 0, PAGE 2									
80 _H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
"	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 1 Register	Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
1	P1 Alternate Select 0 Register	Туре	rw							

Table 14 CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FD _H	CCU6_MODCTRH Reset: 00 _H Modulation Control Register High	Bit Field	ECT1 3O	0			T13M	ODEN		
		Туре	rw	r			r	W		
FE _H	CCU6_TRPCTRL Reset: 00 _H Trap Control Register Low	Bit Field			0 TRPM TRPI 2 1					TRPM 0
		Туре			r			rw	rw	rw
FF _H	CCU6_TRPCTRH Reset: 00 _H Trap Control Register High	Bit Field	TRPP EN	TRPE N13			TRI	PEN		
		Туре	rw	rw			r	W		
RMAP =	= 0, PAGE 3									
9A _H	CCU6_MCMOUTL Reset: 00H	Bit Field	0	R			MC	MP		
	Multi-Channel Mode Output Register Low	Туре	r	rh			r	h		
9B _H	CCU6_MCMOUTH Reset: 00H	Bit Field	()		CURH			EXPH	
	Multi-Channel Mode Output Register High	Туре		r		rh			rh	
9CH	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12 PM	T12 OM	ICC62 F	ICC62 R	ICC61 F	ICC61 R	ICC60 F	ICC60 R
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13 PM	T13 CM
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9E _H	CCU6_PISEL0L Reset: 00H	Bit Field	IST	RP	ISC	C62	ISC	C61	ISCC60	
	Port Input Select Register 0 Low	Туре	r	W	r	W	r	W	r	W
9F _H	CCU6_PISEL0H Reset: 00H	Bit Field	IST1	2HR	ISP	OS2	ISP	OS1	ISPOS0	
	Port Input Select Register 0 High	Туре	r	rw rw		rw rw		r	w	
A4 _H	CCU6_PISEL2 Reset: 00H	Bit Field)			IST1	3HR
	Port Input Select Register 2	Туре				r			r	W
FA _H	CCU6_T12L Reset: 00H	Bit Field				T12	CVL			
	Timer T12 Counter Register Low	Туре				rv	vh			
FB _H	CCU6_T12H Reset: 00H	Bit Field				T12	CVH			
	Timer T12 Counter Register High	Туре				rv	vh			
FC _H	CCU6_T13L Reset: 00 _H Timer T13 Counter Register Low	Bit Field				T13	CVL			
	Timer 113 Counter Register Low	Туре				rv	vh			
FD _H	CCU6_T13H Reset: 00 _H Timer T13 Counter Register High	Bit Field	ld T13CVH							
	Timer 113 Counter Register High	Туре			rwh					
FE _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 UART1 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1			JI.	I.	ı	l.	I.		l .
C8H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh
C9 _H	SBUF Reset: 00 _H	Bit Field				V	AL			
	Serial Data Buffer Register	Туре				rv	vh			
CA _H	BCON Reset: 00 _H	Bit Field		()			BRPRE		R
	Baud Rate Control Register	Туре		r rw						rw
СВН	BG Reset: 00 _H	Bit Field		BR_VALUE						
	Baud Rate Timer/Reload Register	Туре				rv	vh			
ССН	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN
	Fractional Divider Control Register	Туре			r			rwh	rw	rw
CDH	FDSTEP Reset: 00 _H	Bit Field				ST	EP			
	Fractional Divider Reload Register	Туре				r	W			
CEH	FDRES Reset: 00 _H	Bit Field				RES	SULT			
	Fractional Divider Result Register	Туре	rh							
CF _H	SCON1 Reset: 07 _H Serial Channel Control Register	Bit Field			0			NDOV EN	TIEN	RIEN
	1	Туре			r			rw	rw	rw

3.2.4.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 16 SSC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0			•							
A9 _H	SSC_PISEL Reset: 00H	Bit Field			0			CIS	SIS	MIS	
	Port Input Select Register	Туре			r			rw	rw	rw	
AA_H	SSC_CONL Reset: 00H	Bit Field	LB	РО	PH	НВ		BM rw			
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw					
AA _H	SSC_CONL Reset: 00H	Bit Field		()			В	C		
	Control Register Low Operating Mode	Туре			r			rh			
AB _H	SSC_CONH Reset: 00H	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN	
	Control Register High Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw	

 Table 16
 SSC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
AB _H	SSC_CONH Reset: 00H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh
AC _H	SSC_TBL Reset: 00H	Bit Field	TB_VALUE							
	Transmitter Buffer Register Lov	Туре	rw							
AD_H	SSC_RBL Reset: 00H	Bit Field		RB_VALUE						
	Receiver Buffer Register Low	Туре				rh				
AE _H	SSC_BRL Reset: 00H	Bit Field				BR_V	ALUE			
	Baud Rate Timer Reload Register Low	Туре	rw							
AF _H	SSC_BRH Reset: 00H	Bit Field	ld BR_VALUE							
Baud Rate Timer Reload Register High		Туре			•	r	W	•		•

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Table 17 CAN Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0			•	•	•				
D8 _H	ADCON Reset: 00 _H	Bit Field	V3	V2	V1	V0	AUAD		BSY	RWEN
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	rw		rh	rw
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
DA _H	ADH Reset: 00 _H	Bit Field		()		CA13	CA12	CA11	CA10
	CAN Address Register High	Туре			r		rwh	rwh	rwh	rwh
DBH	DATA0 Reset: 00 _H	Bit Field				С	D			
	CAN Data Register 0	Туре				rv	vh			
DCH	DATA1 Reset: 00 _H	Bit Field				C	D			
	CAN Data Register 1	Туре				rv	vh			
DDH	DATA2 Reset: 00 _H	Bit Field				С	D			
	CAN Data Register 2	Туре	rwh							
DEH	DATA3 Reset: 00 _H	Bit Field	Sit Field CD							
	CAN Data Register 3	Туре	rwh							

3.2.4.14 OCDS Registers

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

3.2.4.15 Flash Registers

The Flash SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 19 Flash Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	RMAP = 1									
D1 _H	FCON Reset: 10 _H P-Flash Control Register	Bit Field	0	FBSY	YE	1	NVST R	MAS1	ERAS E	PROG
		Туре	r	rh	rwh	r	rw	rw	rw	rw
D2 _H	EECON Reset: 10 _H D-Flash Control Register	Bit Field	0	EEBS Y	YE	1	NVST R	MAS1	ERAS E	PROG
		Туре	r	rh	rwh	r	rw	rw	rw	rw
D3 _H FCS Re Flash Control and Sta Register	Flash Control and Status	Bit Field	1	SBEIE	FTEN	0	EEDE RR	EESE RR	FDER R	FSER R
	Register	Туре	r	rw	rwh	r	rwh	rwh	rwh	rwh
D4 _H	FEAL Reset: 00 _H	Bit Field	ECCEADDR							
	Flash Error Address Register, Low Byte		rh							
D5 _H	FEAH Reset: 00 _H	Bit Field	ECCEADDR							
	Flash Error Address Register, High Byte	Туре	rh							
D6 _H	FTVAL Reset: 78 _H	Bit Field	MODE	DE OFVAL						
	Flash Timer Value Register	Туре	rw rw							
_{DD} H	FCS1 Reset: 00 _H Flash Control and Status	Bit Field	0					EEAB ORT		
	Register 1	Туре	r						rwh	

Table 20 and Table 21 shows the Flash data retention and endurance targets for Industrial profile and Automotive profile respectively.

Table 20 Flash Data Retention and Endurance for Industrial Profile (Operating Conditions apply)

Retention	Endurance ¹⁾²⁾	Size	Remarks		
Program Flash	·				
15 years	1000 cycles	up to 60 Kbytes			
Data Flash		•			
15 years	1000 cycles	4 Kbytes			
10 years	10,000 cycles	4 Kbytes			
5 years	30,000 cycles	4 Kbytes			
1 year	100,000 cycles	4 Kbytes	SAF and SAX variant		
	80,000 cycles		SAK variant		

¹⁾ In Program Flash, one cycle refers to the programming of all pages in the flash bank and a mass erase.

Table 21 Flash Data Retention and Endurance for Automotive Profile (Operating Conditions apply)

Retention	Endurance ¹⁾²⁾	Size	Remarks
Program Flash			
15 years 1000 cycles		up to 60 Kbytes	
Data Flash	·	·	•
15 years	1000 cycles	4 Kbytes	
5 years	10,000 cycles	1 Kbytes	
2 years	15,000 cycles	512 Bytes	
2 years	30,000 cycles	256 Bytes	
1 year	100,000 cycles	128 Bytes	

¹⁾ In Program Flash, one cycle refers to the programming of all pages in the flash bank and a mass erase.

Data Sheet 59 V1.5, 2011-03

²⁾ In Data Flash, one cycle refers to the programming of all wordlines in a page and a page erase.

²⁾ In Data Flash, one cycle refers to the programming of all wordlines in a page and a page erase.

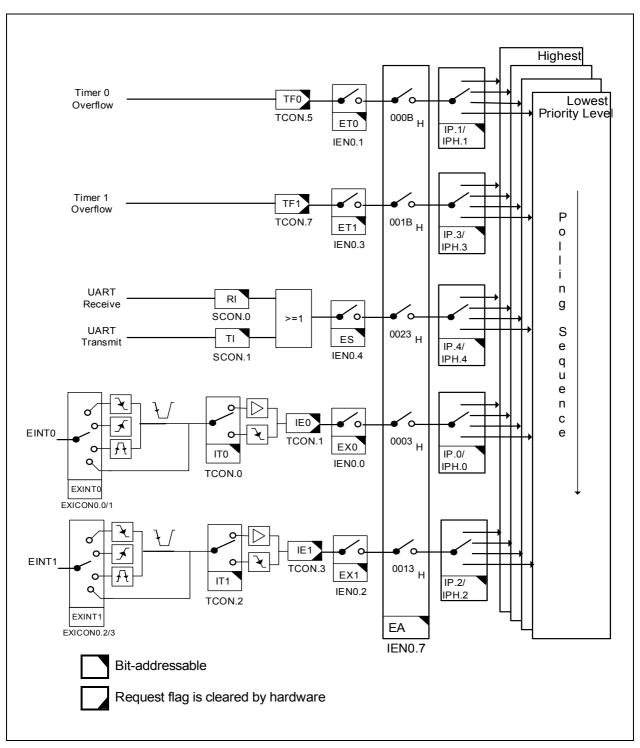


Figure 13 Interrupt Request Sources (Part 1)

3.4.2 Interrupt Source and Vector

Each interrupt event source has an associated interrupt vector address for the interrupt node it belongs to. This vector is accessed to service the corresponding interrupt node request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the XC87x interrupt sources to the interrupt vector address and the corresponding interrupt node enable bits are summarized in Table 22.

Table 22 Interrupt Vector Addresses

Interrupt Source	Vector Address	Assignment for XC87x	Enable Bit	SFR
NMI	0073 _H	Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	
		Flash Timer NMI	NMIFLASH	
		V _{DDP} Prewarning NMI	NMIVDDP	
		Flash ECC NMI	NMIECC	
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	
XINTR5	002B _H	T2CCU	ET2	
		UART Fractional Divider (Normal Divider Overflow)		
		MultiCAN Node 0		
		LIN		

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC87x. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features

- Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- Power-down mode support¹⁾

The CGU consists of an oscillator circuit and a PLL. In the XC87x, the oscillator can be from either of these two sources: the on-chip oscillator (4 MHz) or the external oscillator (2 MHz to 20 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

Data Sheet 75 V1.5, 2011-03

¹⁾ SAK product variant does not support power-down mode.

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert FNMIWDT) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value (<WDTREL> * 2⁸). The time period for an overflow of the WDT is programmable in two ways:

- The input frequency to the WDT can be selected to be either $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$
- The reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, $P_{\rm WDT}$, between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} \, = \, \frac{2^{(1 \, + \, WDTIN \, \times \, 6)} \, \times \, (2^{16} - WDTREL \, \times \, 2^8)}{f_{PCLK}}$$

(3.3)

If the Window-Boundary Refresh feature of the WDT is enabled, the period $P_{\rm WDT}$ between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 25**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB cannot be smaller than WDTREL.

Data Sheet 84 V1.5, 2011-03

3.21 Controller Area Network (MultiCAN)

The MultiCAN module contains two Full-CAN nodes operating independently or exchanging data and remote frames via a gateway function. Transmission and reception of CAN frames is handled in accordance to CAN specification V2.0 B active. Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

Both CAN nodes share a common set of message objects, where each message object may be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects may be combined to build gateways between the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double chained lists, where each CAN node has it's own list of message objects. A CAN node stores frames only into message objects that are allocated to the list of the CAN node. It only transmits messages from objects of this list. A powerful, command driven list controller performs all list operations.

The bit timings for the CAN nodes are derived from the peripheral clock (f_{CAN}) and are programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connects each CAN node to a bus transceiver.

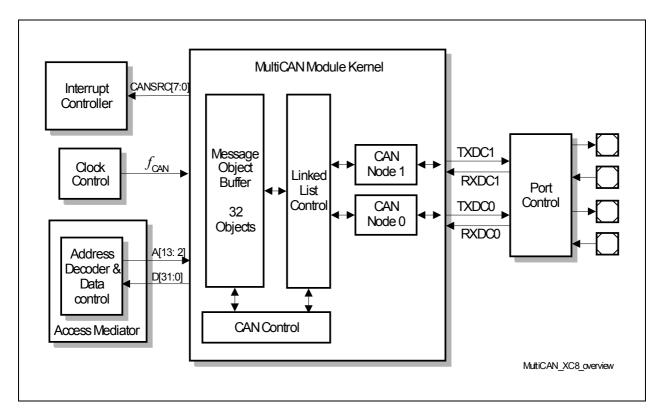


Figure 30 Overview of the MultiCAN

Features

Compliant to ISO 11898.

- Synchronization phase (t_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (t_{WR})

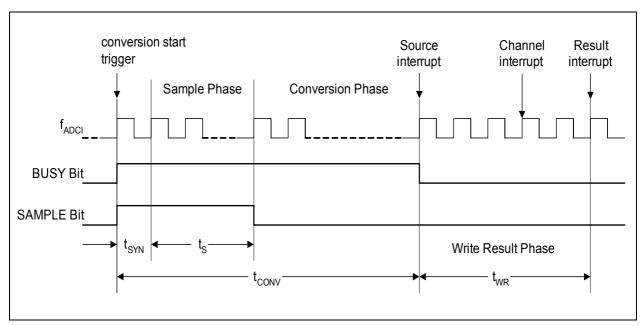


Figure 32 ADC Conversion Timing

Electrical Parameters

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC87x.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 4.2** and **Section 4.3**.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC87x and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

· cc

These parameters indicate Controller Characteristics, which are distinctive features of the XC87x and must be regarded for a system design.

SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the XC87x is designed in.

Data Sheet 108 V1.5, 2011-03

Electrical Parameters

4.3.6 External Clock Drive XTAL1

Table 52 shows the parameters that define the external clock supply for XC87x. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Table 52 External Clock Drive Characteristics (Operating Conditions apply)

Parameter	Symbo	Symbol		Limit Values		Test Conditions	
			Min.	Max.			
Oscillator period	$t_{\rm osc}$	SR	50	500	ns	1)2)	
High time	<i>t</i> ₁	SR	15	-	ns	2)3)	
Low time	t_2	SR	15	-	ns	2)3)	
Rise time	t_3	SR	-	10	ns	2)3)	
Fall time	t_4	SR	-	10	ns	2)3)	

- 1) The clock input signals with 45-55% duty cycle are used.
- 2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.
- 3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

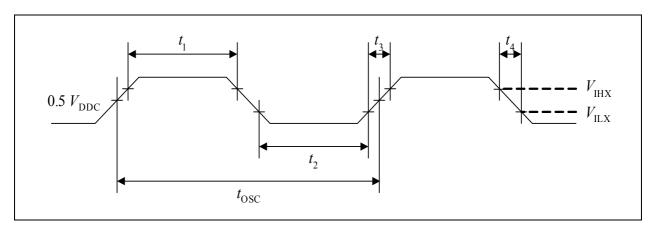


Figure 43 External Clock Drive XTAL1