

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Due durch Charture	
Product Status Ob	bsolete
Core Processor XC	C800
Core Size 8-I	Bit
Speed 27	7MHz
Connectivity SP	PI, SSI, UART/USART
Peripherals Bro	rown-out Detect/Reset, POR, PWM, WDT
Number of I/O 40	0
Program Memory Size 64	4KB (64K x 8)
Program Memory Type FL	LASH
EEPROM Size -	
RAM Size 3.2	.25K x 8
Voltage - Supply (Vcc/Vdd) 4.5	5V ~ 5.5V
Data Converters A/I	/D 8x10b
Oscillator Type Int	ternal
Operating Temperature -40	10°C ~ 125°C (TA)
Mounting Type Su	urface Mount
Package / Case 64	4-LQFP
Supplier Device Package PG	G-LQFP-64-4
Purchase URL htt	ttps://www.e-xfl.com/product-detail/infineon-technologies/xc87816ffa5vackxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit

XC87xCLM

8-Bit Single-Chip Microcontroller

Data Sheet V1.5 2011-03

Microcontrollers

XC87x Data Sheet

Revision History: V1.5 2011-03

Previous Versions: V1.4

PageSubjects (major changes since last revision)Changes from V1.4 2010-08 to V1.5 2011-03Page 3A new variant, SAF-XC874CM-13FVA 5V, has been added in Table 2.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

\sim	
$\langle \$	

Summary of Features

XC87x Variant Devices

The XC87x product family features devices with different configurations, program memory sizes, package options, power supply voltage, temperature and quality profiles (Automotive or Industrial), to offer cost-effective solutions for different application requirements.

The list of XC87x device configurations are summarized in **Table 1**. 2 types of packages are available :

- PG-LQFP-64, which is denoted by XC878 and;
- PG-VQFN-48, which is denoted by XC874

	•		
Device Name	CAN Module	LIN BSL Support	MDU Module
XC87x	No	No	No
XC87xM	No	No	Yes
XC87xCM	Yes	No	Yes
XC87xLM	No	Yes	Yes
XC87xCLM	Yes	Yes	Yes

Table 1Device Configuration

From these 5 different combinations of configuration, each are further made available in many sales types, which are grouped according to device type, program memory sizes, power supply voltage, temperature and quality profiles (Automotive or Industrial), as shown in Table 2.

Table 2Device Profile

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAF-XC878-13FFI 5V	Flash	52	5.0	-40 to 85	Industrial
SAF-XC878M-13FFI 5V	Flash	52	5.0	-40 to 85	Industrial
SAF-XC878CM-13FFI 5V	Flash	52	5.0	-40 to 85	Industrial
SAF-XC878-16FFI 5V	Flash	64	5.0	-40 to 85	Industrial
SAF-XC878M-16FFI 5V	Flash	64	5.0	-40 to 85	Industrial
SAF-XC878CM-16FFI 5V	Flash	64	5.0	-40 to 85	Industrial
SAF-XC878-13FFI 3V3	Flash	52	3.3	-40 to 85	Industrial
SAF-XC878M-13FFI 3V3	Flash	52	3.3	-40 to 85	Industrial

General Device Information

2.3 Pin Configuration

The pin configuration of the XC878, which is based on the PG-LQFP-64, is shown in **Figure 4**, while that of the XC874, which is based on the PG-VQFN-48 package, is shown in **Figure 5**.

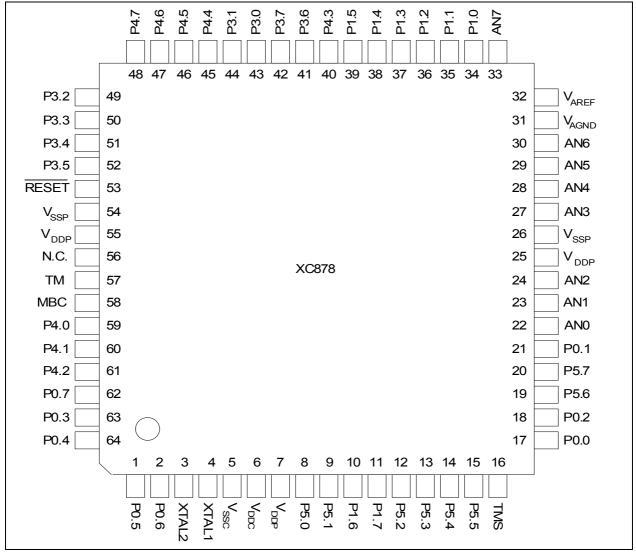


Figure 4 XC878 Pin Configuration, PG-LQFP-64 Package (top view)

XC87xCLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P0.3	63/1		Hi-Z	SCK_1 COUT63_1	SSC Clock Input/Output Output of Capture/Compare channel 3
				RXDO1_0 A17	UART1 Transmit Data Output Address Line 17 Output
P0.4	64/2		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input
				CC62_1	Input/Output of Capture/Compare channel 2
				TXD1_0	UART1 Transmit Data Output/Clock Output
				A18	Address Line 18 Output
P0.5	1/3		Hi-Z	MRST_1	SSC Master Receive Input/Slave Transmit Output
				EXINT0_0	External Interrupt Input 0
				T2EX1_1	Timer 21 External Trigger Input
				RXD1_0	UART1 Receive Data Input
				COUT62_1	Output of Capture/Compare channel 2
				A19	Address Line 19 Output
P0.6	2/4		PU	T2CC4_1 WR	Compare Output Channel 4 External Data Write Control Output
P0.7	62/48		PU	CLKOUT_1 T2CC5_1 RD	Clock Output Compare Output Channel 5 External Data Read Control Output

3.2.1 Memory Protection Strategy

The XC87x memory protection strategy includes:

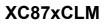
- Basic protection: The user is able to block any external access via the boot option to any memory
- Read-out protection: The user is able to protect the contents in the Flash
- Flash program and erase protection

These protection strategies are enabled by programming a valid password (16-bit nonone value) via Bootstrap Loader (BSL) mode 6.

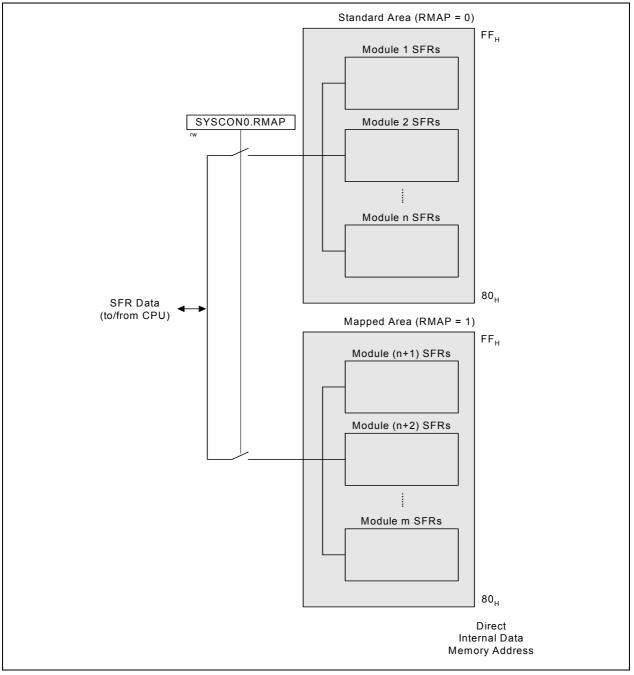
3.2.1.1 Flash Memory Protection

As long as a valid password is available, all external access to the device, including the Flash, will be blocked.

For additional security, the Flash hardware protection can be enabled to implement a second layer of read-out protection, as well as to enable program and erase protection.


Flash hardware protection is available only for Flash devices and comes in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- Mode 1: Both the P-Flash and D-Flash are protected


The selection of each protection mode and the restrictions imposed are summarized in **Table 4**.

Flash Protection	Without hardware protection	With hardware protection						
Hardware Protection Mode	-	0	1					
Activation Program a valid password via BSL mode 6								
Selection	Bit 13 of password = 0	Bit 13 of password = 1 MSB of password = 0	Bit 13 of password = 1 MSB of password = 1					
P-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash	Read instructions in the P-Flash or D-Flash					
External access to P- Flash	Not possible	Not possible	Not possible					

Table 4Flash Protection Modes

Address Extension by Mapping

3.2.4 XC87x Register Overview

The SFRs of the XC87x are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Chapter 3.2.4.1** to **Chapter 3.2.4.15**.

Note: The addresses of the bitaddressable SFRs appear in bold typeface.

3.2.4.1 CPU Registers

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0 or 1	1									
81 _H	SP Reset: 07 _H	Bit Field				S	P				
	Stack Pointer Register	Туре				r	W				
82 _H	DPL Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0	
	Data Pointer Register Low	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
83 _H	DPH Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0	
	Data Pointer Register High	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
87 _H	PCON Reset: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE	
	Power Control Register	Туре	rw		r		rw	rw	r	rw	
⁸⁸ H	TCON Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
	Timer Control Register	Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw	
89 _H TMOD Reset: 00 _H Timer Mode Register	Bit Field	GATE 1	T1S	T1M		GATE 0	TOS	OS TOM			
		Туре	Type rw rw rw			N	rw	rw	r	w	
8A _H	TL0 Reset: 00 _H	Bit Field VAL									
	Timer 0 Register Low	Туре				rv	vh				
8B _H	TL1 Reset: 00 _H	Bit Field	VAL								
	Timer 1 Register Low	Туре				rv	wh				
8C _H	TH0 Reset: 00 _H	Bit Field				V	AL				
	Timer 0 Register High	Туре				rv	vh				
8D _H	TH1 Reset: 00 _H	Bit Field				V	AL				
	Timer 1 Register High	Туре				rv	vh				
94 _H	MEX1 Reset: 00 _H	Bit Field		C	В			Ν	IB		
	Memory Extension Register 1	Туре	pe r i		r	w					
95 _H	MEX2 Reset: 00 _H	Bit Field	MCM MCB IB		В						
	Memory Extension Register 2	Туре	rw		rw			r	w		
96 _H	MEX3 Reset: 00 _H Memory Extension Register 3	Bit Field	MCB1 9			IXM MXB					
		Туре	rw		r	rw	rw		rw		

Table 5 CPU Register Overview

Table 6	MDU Register Overview	(cont'd)
---------	-----------------------	----------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
B1 _H	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE	IE IR RSEL STAR OPCODE T						I
		Туре	rw	rw	rw	rwh		r	N	
в2 _Н	MD0 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 0	Туре				r	W			
B2 _H	MR0 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 0	Туре				r	h			
вз _Н	MD1 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 1	Туре				r	w			
вз _Н	MR1 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 1	Туре				r	h			
B4 _H	³⁴ H MD2 Reset: 00_H MDU Operand Register 2	Bit Field				DA	TA			
		Туре	rw							
B4 _H	MR2 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 2	Туре	rh							
в5 _Н	MD3 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 3	Туре				r	w			
в5 _Н	MR3 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 3	Туре				r	h			
в6 _Н	MD4 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 4	Туре				r	W			
в6 _Н	MR4 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 4	Туре	ype rh							
в7 _Н	MD5 Reset: 00 _H	Bit Field				DA	ATA			
	MDU Operand Register 5	Туре				r	w			
в7 _Н	MR5 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 5	Туре				r	h			

3.2.4.3 CORDIC Registers

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 7 CORDIC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 1									
9A _H	CD_CORDXL Reset: 00 _H	Bit Field	Bit Field DATAL							
	CORDIC X Data Low Byte	Туре				r	W			
9B _H	CD_CORDXH Reset: 00 _H	Bit Field	Bit Field DATAH							
	CORDIC X Data High Byte	Туре				r	W			

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
cc ^H	ADC_CRMR1 Reset: 00 _H Conversion Request Mode	Bit Field	Rsv	LDEV	CLRP ND	SCAN	ENSI	ENTR	0	ENGT	
	Register 1	Туре	r	w	w	rw	rw	rw	r	rw	
CD _H	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field	CEV	TREV	FLUS H	CLRV	0	ENTR	0	ENGT	
		Туре	w	w	w	w	r	rw	r	rw	
Ceh	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPT Y	EV	(0		FILL	
		Туре	r	r	rh	rh		r	r	h	
CF _H	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२	
	Queue 0 Register 0	Туре	rh	rh	rh	rh	r		rh		
D2 _H	ADC_QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२	
	Queue Backup Register 0	Туре	rh	rh	rh	rh	r		rh		
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	()	F	REQCHN	٦	
	Queue Input Register 0	Туре	w	w	w		r		w		

Table 11ADC Register Overview (cont'd)

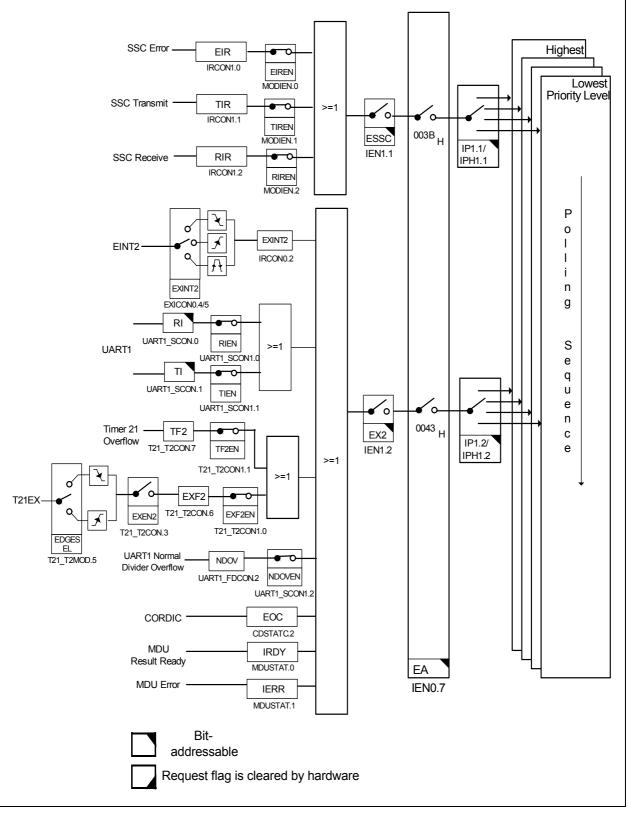
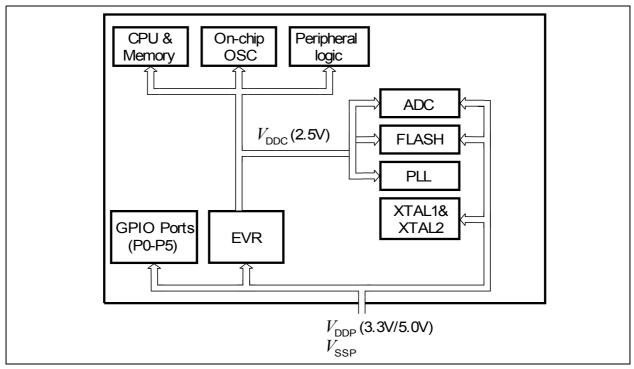


Figure 15 Interrupt Request Sources (Part 3)


3.6 Power Supply System with Embedded Voltage Regulator

The XC87x microcontroller requires two different levels of power supply:

- 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 19 shows the XC87x power supply system. A power supply of 3.3 V or 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design.

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode¹⁾, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

72

Figure 19 XC87x Power Supply System

EVR Features

- Input voltage (V_{DDP}): 3.3 V/5.0 V
- Output voltage (V_{DDC}): 2.5 V ± 7.5%
- Low power voltage regulator provided in power-down mode¹⁾
- V_{DDP} prewarning detection
- V_{DDC} brownout detection

¹⁾ SAK product variant does not support power-down mode.

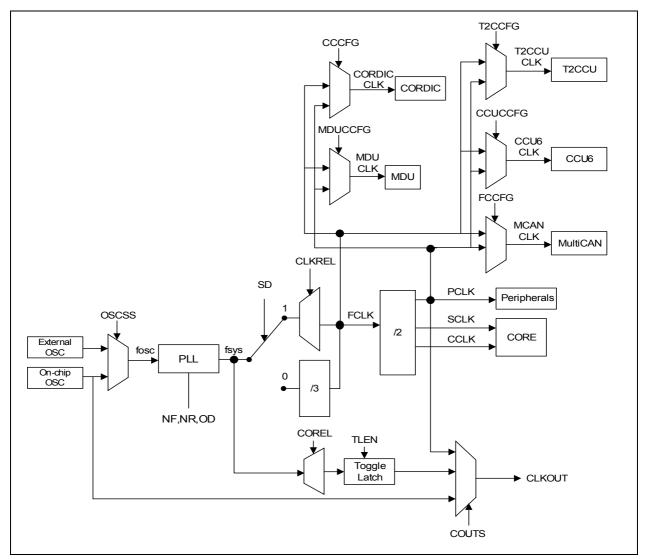


Figure 22 Clock Generation from f_{sys}

For power saving purposes, the clocks may be disabled or slowed down according to **Table 27**.

Table 27System frequency (f_{sys} = 144 MHz)

Power Saving Mode	Action						
Idle	Clock to the CPU is disabled.						
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.						
Power-down ¹⁾	Oscillator and PLL are switched off.						

1) SAK product variant does not support power-down mode.

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC87x system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC87x will be aborted in a user-specified time period.

In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of $f_{PCLK}/2$ or $f_{PCLK}/128$
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{PCLK}/2$ or $f_{PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. **Figure 24** shows the block diagram of the WDT unit.

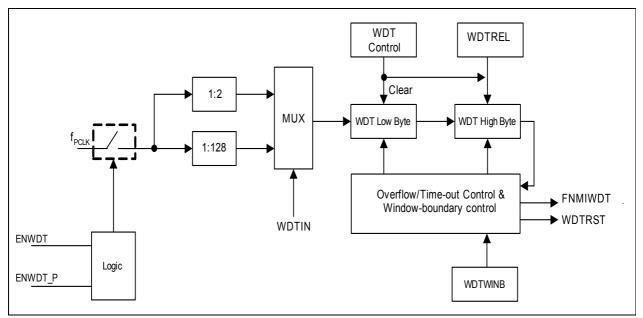


Figure 24 WDT Block Diagram

Table 32 Deviation Error for UART with Fractional Divider enabled					
f _{pclk}	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error	
24 MHz	1	6 (6 _H)	59 (3B _H)	+0.03 %	
12 MHz	1	3 (3 _H)	59 (3B _H)	+0.03 %	
8 MHz	1	2 (2 _H)	59 (3B _H)	+0.03 %	
6 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %	

Table 32 Deviation Error for UART with Fractional Divider enabled

3.13.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 baud rate=
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.6)

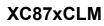
3.14 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 26**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.7)

needed for the handshaking between the master and slave tasks is provided by the master task through the header portion of the frame.


The header consists of a break and synch pattern followed by an identifier. Among these three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data. The break must contain a dominant value of 13 bits or more to ensure proper synchronization of slave nodes.

In the LIN communication, a slave task is required to be synchronized at the beginning of the protected identifier field of frame. For this purpose, every frame starts with a sequence consisting of a break field followed by a synch byte field. This sequence is unique and provides enough information for any slave task to detect the beginning of a new frame and be synchronized at the start of the identifier field.

Upon entering LIN communication, a connection is established and the transfer speed (baud rate) of the serial communication partner (host) is automatically synchronized in the following steps:

STEP 1: Initialize interface for reception and timer for baud rate measurement

- STEP 2: Wait for an incoming LIN frame from host
- STEP 3: Synchronize the baud rate to the host
- STEP 4: Enter for Master Request Frame or for Slave Response Frame
- Note: Re-synchronization and setup of baud rate are always done for **every** Master Request Header or Slave Response Header LIN frame.

Electrical Parameters

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC87x can be subjected to without permanent damage.

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
Ambient temperature	T _A	-40	125	°C	under bias
Storage temperature	T _{ST}	-65	150	°C	
Junction temperature	TJ	-40	140	°C	under bias
Voltage on power supply pin with respect to V_{SS}	V _{DDP}	-0.5	6	V	
Voltage on any pin with respect to V_{SS}	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	Whatever is lower
Input current on any pin during overload condition	I _{IN}	-10	10	mA	
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	-	50	mA	

Table 38	Absolute Maximum Rating Parameters
----------	------------------------------------

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Electrical Parameters

4.2 DC Parameters

The electrical characteristics of the DC Parameters are detailed in this section.

4.2.1 Input/Output Characteristics

Table 40 provides the characteristics of the input/output pins of the XC87x.

Table 40Input/Output Characteristics (Operating Conditions apply)	Table 40	Input/Output C	Characteristics	(Operating	Conditions apply)
---	----------	----------------	-----------------	------------	-------------------

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
V _{DDP} = 5 V Range							
Output low voltage	V _{OL}	CC	_	0.6	V	$I_{OL} = 9 \text{ mA} (DS = 0)^{1}$ $I_{OL} = 12 \text{ mA} (DS = 1)^{2}$	
Output high voltage	V _{OH}	CC	2.4	-	V	$I_{\rm OH}$ = -20 mA (DS = 0) ¹⁾ $I_{\rm OH}$ = -25 mA (DS = 1) ²⁾	
Input low voltage	$V_{\rm IL}$	SR	-0.3	0.8	V	CMOS Mode	
Input high voltage	$V_{\rm IH}$	SR	2.2	V_{DDP}	V	CMOS Mode	
Input Hysteresis	HYS	CC	0.35	-	V	CMOS Mode ³⁾⁷⁾	
Input low voltage at XTAL1	V _{ILX}	SR	-0.3	0.8	V		
Input high voltage at XTAL1	V _{IHX}	SR	3.4	V _{DDP}	V		
Pull-up current	$I_{\rm PU}$	SR	-	-20	μA	V _{IH,min}	
			-88	_	μA	V _{IL,max}	
Pull-down current	I_{PD}	SR	_	10	μA	V _{IL,max}	
			66	-	μA	V _{IH,min}	
Input leakage current	I _{OZ1}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 105^{\circ}C^{4)}$	
Overload current on any pin	I _{OV}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{OV} $	SR	-	25	mA	5)	
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	6)	

Package and Quality Declaration

5.2 Package Outline

Figure 47 shows the package outlines of the XC878.

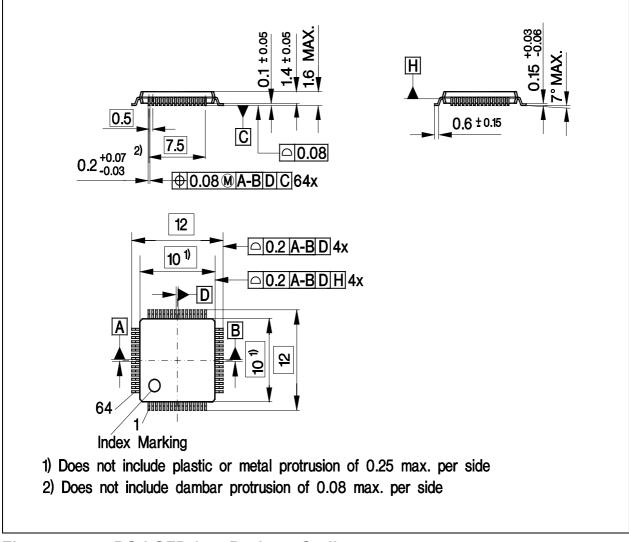


Figure 47 PG-LQFP-64-4 Package Outline