

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	<u> </u>
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc87816ffi5vacfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Table of Contents

1	Summary of Features	1
2 2.1 2.2 2.3 2.4	General Device Information Block Diagram Logic Symbol Pin Configuration Pin Definitions and Functions	6 7 8
3	Functional Description	21
3.1	Processor Architecture	21
3.2	Memory Organization	22
3.2.1	Memory Protection Strategy 2	
3.2.1.1	Flash Memory Protection	
3.2.2	Special Function Register	
3.2.2.1	Address Extension by Mapping 2	
3.2.2.2	Address Extension by Paging 2	
3.2.3	Bit Protection Scheme	
3.2.3.1	Password Register	33
3.2.4	XC87x Register Overview	
3.2.4.1	CPU Registers	34
3.2.4.2	MDU Registers	35
3.2.4.3	CORDIC Registers	36
3.2.4.4	System Control Registers 3	37
3.2.4.5	WDT Registers	10
3.2.4.6	Port Registers 4	10
3.2.4.7	ADC Registers 4	13
3.2.4.8	Timer 2 Compare/Capture Unit Registers 4	17
3.2.4.9	Timer 21 Registers 4	19
3.2.4.10	CCU6 Registers 5	50
3.2.4.11	UART1 Registers	54
3.2.4.12	SSC Registers 5	54
3.2.4.13	MultiCAN Registers 5	55
3.2.4.14	OCDS Registers 5	55
3.2.4.15	Flash Registers 5	57
3.3	Flash Memory	58
3.3.1	0	60
3.4		51
3.4.1		51
3.4.2		67
3.4.3		<u>5</u> 9
3.5		70
3.6	Power Supply System with Embedded Voltage Regulator	'2

Summary of Features

Table 2Device Profile (cont'd)

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAF-XC878CM-13FFI 3V3	Flash	52	3.3	-40 to 85	Industrial
SAF-XC878-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAF-XC878M-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAF-XC878CM-16FFI 3V3	Flash	64	3.3	-40 to 85	Industrial
SAF-XC878-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878CM-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878LM-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878CLM-13FFA 5V	Flash	52	5.0	-40 to 85	Automotive
SAF-XC878-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAF-XC878CM-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAF-XC878LM-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAF-XC878CLM-16FFA 5V	Flash	64	5.0	-40 to 85	Automotive
SAX-XC878-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878CM-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878LM-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878CLM-13FFA 5V	Flash	52	5.0	-40 to 105	Automotive
SAX-XC878-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878CM-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878LM-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAX-XC878CLM-16FFA 5V	Flash	64	5.0	-40 to 105	Automotive
SAK-XC878-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878CM-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878LM-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878CLM-13FFA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC878-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC878CM-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC878LM-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC878CLM-16FFA 5V	Flash	64	5.0	-40 to 125	Automotive
SAF-XC874LM-16FVA 5V	Flash	64	5.0	-40 to 85	Automotive

Summary of Features

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAF-XC874CM-16FVA 5V	Flash	64	5.0	-40 to 85	Automotive
SAF-XC874CM-13FVA 5V	Flash	52	5.0	-40 to 85	Automotive
SAK-XC874LM-16FVA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC874CM-16FVA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC874-16FVA 5V	Flash	64	5.0	-40 to 125	Automotive
SAK-XC874LM-13FVA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC874CM-13FVA 5V	Flash	52	5.0	-40 to 125	Automotive
SAK-XC874-13FVA 5V	Flash	52	5.0	-40 to 125	Automotive

As this document refers to all the derivatives, some description may not apply to a specific product. For simplicity, all versions are referred to by the term XC87x throughout this document.

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- The package and the type of delivery

For the available ordering codes for the XC87x, please refer to your responsible sales representative or your local distributor.

General Device Information

2.4 Pin Definitions and Functions

The functions and default states of the XC87x external pins are provided in Table 3.

Table S					
Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P0		I/O		I/O port. It ca for the JTAG Timer 21, Mu Interface.	B-bit bidirectional general purpose an be used as alternate functions 6, CCU6, UART, UART1, T2CCU, ultiCAN, SSC and External Bus al Bus Interface is not available in 4.
P0.0	17/12		Hi-Z	TCK_0 T12HR_1 CC61_1 CLKOUT_0 RXDO_1	•
P0.1	21/14		Hi-Z	TDI_0 T13HR_1 RXD_1 RXDC1_0 COUT61_1 EXF2_1	JTAG Serial Data Input CCU6 Timer 13 Hardware Run Input UART Receive Data Input MultiCAN Node 1 Receiver Input Output of Capture/Compare channel 1 Timer 2 External Flag Output
P0.2	18/13		PU	CTRAP_2 TDO_0 TXD_1 TXDC1_0	CCU6 Trap Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 1 Transmitter Output

Table 3Pin Definitions and Functions

3.2.3.1 Password Register

PASSWD

Password	Register					Reset	Value: 07 _H
7	6	5	4	3	2	1	0
	1	PASS		1	PROTECT _S	МС	DDE
L		W	I	I	rh	r	W

Field	Bits	Туре	Description
MODE	[1:0]	rw	 Bit Protection Scheme Control Bits 00 Scheme disabled - direct access to the protected bits is allowed. 11 Scheme enabled - the bit field PASS has to be written with the passwords to open and close the access to protected bits. (default) Others:Scheme Enabled. These two bits cannot be written directly. To change the value between 11_B and 00_B, the bit field PASS must be written with 11000_B; only then, will the MODE[1:0] be registered.
PROTECT_S	2	rh	 Bit Protection Signal Status Bit This bit shows the status of the protection. 0 Software is able to write to all protected bits. 1 Software is unable to write to any protected bits.
PASS	[7:3]	w	Password BitsThe Bit Protection Scheme only recognizes threepatterns. 11000_B Enables writing of the bit field MODE. 10011_B Opens access to writing of all protected bits. 10101_B Closes access to writing of all protected bits

Table 12T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
C5 _H	T2CCU_CCTH Reset: 00 _H	Bit Field		Ι	Ι	C	СТ			1
	T2CCU Capture/Compare Timer Register High	Туре				rv	vh			
C6 _H	T2CCU_CCTCON Reset: 00 _H T2CCU CaptureCcompare	Bit Field		ССТ	PRE		CCTO VF	CCTO VEN	TIMSY N	CCTS T
	Timer Control Register	Туре		r	W		rwh	rw	rw	rw
RMAP =	0, PAGE 2									
C0 _H	T2CCU_COSHDWReset: 00_H T2CCU Capture/compare Enable Register	Bit Field	ENSH DW	TXOV	COOU T5	COOU T4	COOU T3	COOU T2	COOU T1	COOU T0
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
C1 _H	T2CCU_CC0L Reset: 00 _H T2CCU Capture/Compare	Bit Field				CC/	/ALL			
	Register 0 Low	Туре				rv	vh			
C2 _H	T2CCU_CC0H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 0 High	Туре				rv	vh			
C3 _H	T2CCU_CC1L Reset: 00 _H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 1 Low	Туре				rv	vh			
C4 _H	T2CCU_CC1H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 1 High	Туре				rv	vh			
C5 _H	T2CCU_CC2L Reset: 00 _H	Bit Field	CCVALL							
	T2CCU Capture/compare Register 2 Low	Туре	rwh							
C6 _H	T2CCU_CC2H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 2 High	Туре				rv	vh			
RMAP =	0, PAGE 3									
C0 _H	T2CCU_COCON Reset: 00 _H T2CCU Compare Control	Bit Field	CCM5	CCM4	CM5F	CM4F	POLB	POLA	CON	NOD
	Register	Туре	rw	rw	rwh	rwh	rw	rw	r	W
C1 _H	T2CCU_CC3L Reset: 00 _H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 3 Low	Туре				rv	vh			
C2 _H	T2CCU_CC3H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 3 High	Туре				rv	vh			
C3 _H	T2CCU_CC4L Reset: 00 _H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 4 Low	Туре				rv	vh			
C4 _H	T2CCU_CC4H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 4 High	Туре				rv	vh			
C5 _H	T2CCU_CC5L Reset: 00 _H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 5 Low	Туре				rv	vh			
C6 _H	T2CCU_CC5H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 5 High	Туре				rv	vh			

3.2.4.10 CCU6 Registers

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 14 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0		1		1	1						
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE			
	Page Register	Туре	\ \	w w r rwh								
RMAP =	= 0, PAGE 0											
9A _H	CCU6_CC63SRL Reset: 00 _H	Bit Field				CC6	3SL					
	Capture/Compare Shadow Register for Channel CC63 Low	Туре	rw									
9B _H	CCU6_CC63SRH Reset: 00 _H	Bit Field				CC6	3SH					
	Capture/Compare Shadow Register for Channel CC63 High	Туре				r	w					
9CH	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR		0	DT RES	T12 RES	T12R S	T12R R		
		Туре	w	w		r	w	w	w	w		
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR		0		T13 RES	T13R S	T13R R		
		Туре	w	w		r		w	w	w		
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRM CM	0	MCMPS							
	Register Low	Туре	w	r	rw							
9F _H	CCU6_MCMOUTSH Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRH P	0		CURHS		EXPHS				
	Register High	Туре	w	r	rw		rw					
A4 _H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RT12 PM	RT12 OM	RCC6 2F	RCC6 2R	RCC6 1F	RCC6 1R	RCC6 0F	RCC6 0R		
	Reset Register Low	Туре	w	w	w	w	w	w	w	w		
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RSTR	RIDLE	RWH E	RCHE	0	RTRP F	RT13 PM	RT13 CM		
	Reset Register High	Туре	w	w	w	w	r	w	w	w		
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3S		0		MCC6 2S	MCC6 1S	MCC6 0S		
	Low	Туре	r	w		r		w	w	w		
а7 _Н	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3R		0		MCC6 2R	MCC6 1R	MCC6 0R		
	High	Туре	r	w		r		w	w	w		
FA _H	CCU6_CC60SRL Reset: 00 _H	Bit Field				CC6	60SL					
	Capture/Compare Shadow Register for Channel CC60 Low	Туре				rv	vh					
FB _H	CCU6_CC60SRH Reset: 00 _H	Bit Field				CC6	0SH					
	Capture/Compare Shadow Register for Channel CC60 High	Туре				rv	vh					

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1									
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh
C9 _H	SBUF Reset: 00 _H	Bit Field				V	AL	•		•
	Serial Data Buffer Register	Туре				rv	vh			
CA _H	BCON Reset: 00 _H	Bit Field		(C			BRPRE	R	
	Baud Rate Control Register	Туре			r			rw		rw
св _Н	BG Reset: 00 _H	Bit Field				BR_VALUE				
	Baud Rate Timer/Reload Register	Туре	rwh							
сс _Н	Register FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN
	Fractional Divider Control Register	Туре			r			rwh	rwh	rw
CD _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP			
	Fractional Divider Reload Register	Туре				r	w			
CeH	FDRES Reset: 00 _H	Bit Field				RES	SULT			
	Fractional Divider Result Register	Туре				r	h			
CF _H	SCON1 Reset: 07 _H Serial Channel Control Register	Bit Field			0			NDOV EN	TIEN	RIEN
	1	Туре	r rw					rw	rw	

Table 15 UART1 Register Overview

3.2.4.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 16SSC Register Overview

	_									
Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0									
A9 _H	SSC_PISEL Reset: 00 _H	Bit Field		0					SIS	MIS
	Port Input Select Register	Туре			r			rw	rw	rw
AA _H	A _H SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	M	
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw		r	w	
AA _H	SSC_CONL Reset: 00 _H	Bit Field		()			В	С	
	Control Register Low Operating Mode	Туре			r		r	h		
ab _h	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN
	Control Register High Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw

Table 20 and **Table 21** shows the Flash data retention and endurance targets for Industrial profile and Automotive profile respectively.

Table 20Flash Data Retention and Endurance for Industrial Profile
(Operating Conditions apply)

Retention Endurance ¹⁾²⁾		Size	Remarks		
Program Flash					
15 years	1000 cycles	up to 60 Kbytes			
Data Flash	I				
15 years	1000 cycles	4 Kbytes			
10 years	10,000 cycles	4 Kbytes			
5 years	30,000 cycles	4 Kbytes			
1 year	100,000 cycles	4 Kbytes	SAF and SAX variant		
	80,000 cycles		SAK variant		

1) In Program Flash, one cycle refers to the programming of all pages in the flash bank and a mass erase.

2) In Data Flash, one cycle refers to the programming of all wordlines in a page and a page erase.

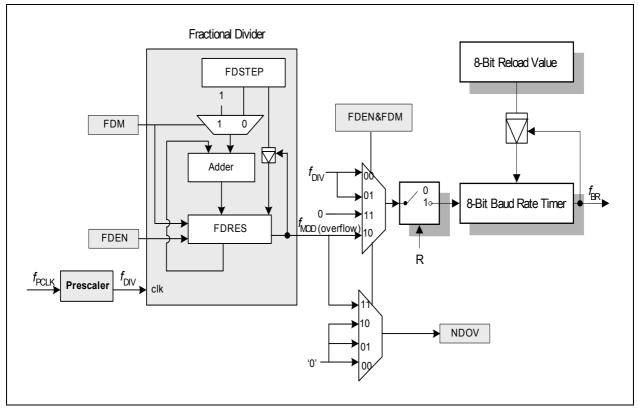
Table 21Flash Data Retention and Endurance for Automotive Profile
(Operating Conditions apply)

Retention	Endurance ¹⁾²⁾	Size	Remarks
Program Flash	-		
15 years	1000 cycles	up to 60 Kbytes	
Data Flash			
15 years	1000 cycles	4 Kbytes	
5 years	10,000 cycles	1 Kbytes	
2 years	15,000 cycles	512 Bytes	
2 years	30,000 cycles	256 Bytes	
1 year	100,000 cycles	128 Bytes	

1) In Program Flash, one cycle refers to the programming of all pages in the flash bank and a mass erase.

2) In Data Flash, one cycle refers to the programming of all wordlines in a page and a page erase.

3.12 CORDIC Coprocessor


The CORDIC Coprocessor provides CPU with hardware support for the solving of circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions.

Features

- Modes of operation
 - Supports all CORDIC operating modes for solving circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions
 - Integrated look-up tables (LUTs) for all operating modes
- Circular vectoring mode: Extended support for values of initial X and Y data up to full range of [-2¹⁵,(2¹⁵-1)] for solving angle and magnitude
- Circular rotation mode: Extended support for values of initial Z data up to full range of $[-2^{15},(2^{15}-1)]$, representing angles in the range $[-\pi,((2^{15}-1)/2^{15})\pi]$ for solving trigonometry
- Implementation-dependent operational frequency of up to 80 MHz
- Gated clock input to support disabling of module
- 16-bit accessible data width
 - 24-bit kernel data width plus 2 overflow bits for X and Y each
 - 20-bit kernel data width plus 1 overflow bit for Z
 - With KEEP bit to retain the last value in the kernel register for a new calculation
- 16 iterations per calculation: Approximately 41 clock-cycles or less, from set of start (ST) bit to set of end-of-calculation flag, excluding time taken for write and read access of data bytes.
- Twos complement data processing
- Only exception: X result data with user selectable option for unsigned result
- X and Y data generally accepted as integer or rational number; X and Y must be of the same data form
- Entries of LUTs are 20-bit signed integers
 - Entries of atan and atanh LUTs are integer representations (S19) of angles with the scaling such that $[-2^{15},(2^{15}-1)]$ represents the range $[-\pi,((2^{15}-1)/2^{15})\pi]$
 - Accessible Z result data for circular and hyperbolic functions is integer in data form of S15
- Emulated LUT for linear function
 - Data form is 1 integer bit and 15-bit fractional part (1.15)
 - Accessible Z result data for linear function is rational number with fixed data form of S4.11 (signed 4Q16)
- Truncation Error
 - The result of a CORDIC calculation may return an approximation due to truncation of LSBs
 - Good accuracy of the CORDIC calculated result data, especially in circular mode
- Interrupt
 - On completion of a calculation

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 26**.

Figure 26Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

Table 32 Deviation Error for UART with Fractional Divider enabled								
f _{pclk}	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error				
24 MHz	1	6 (6 _H)	59 (3B _H)	+0.03 %				
12 MHz	1	3 (3 _H)	59 (3B _H)	+0.03 %				
8 MHz	1	2 (2 _H)	59 (3B _H)	+0.03 %				
6 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %				

Table 32 Deviation Error for UART with Fractional Divider enabled

3.13.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 baud rate=
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.6)

3.14 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 26**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.7)

XC87xCLM

Functional Description

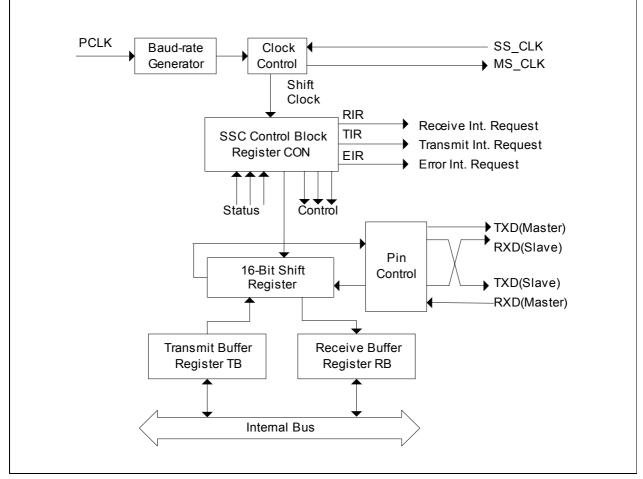


Figure 28 SSC Block Diagram

3.21 Controller Area Network (MultiCAN)

The MultiCAN module contains two Full-CAN nodes operating independently or exchanging data and remote frames via a gateway function. Transmission and reception of CAN frames is handled in accordance to CAN specification V2.0 B active. Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

Both CAN nodes share a common set of message objects, where each message object may be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects may be combined to build gateways between the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double chained lists, where each CAN node has it's own list of message objects. A CAN node stores frames only into message objects that are allocated to the list of the CAN node. It only transmits messages from objects of this list. A powerful, command driven list controller performs all list operations.

The bit timings for the CAN nodes are derived from the peripheral clock (f_{CAN}) and are programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connects each CAN node to a bus transceiver.

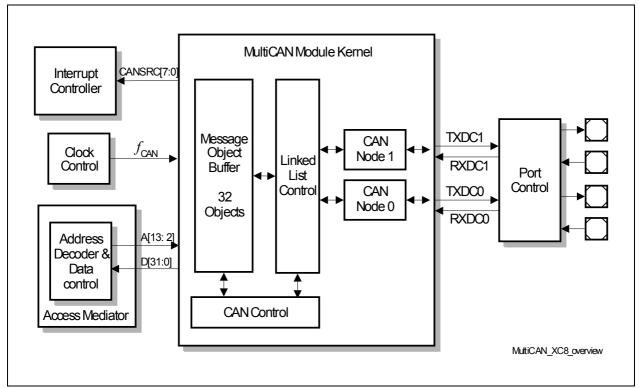


Figure 30 Overview of the MultiCAN

Features

Compliant to ISO 11898.

- CAN functionality according to CAN specification V2.0 B active.
- Dedicated control registers are provided for each CAN node.
- A data transfer rate up to 1 MBaud is supported.
- Flexible and powerful message transfer control and error handling capabilities are implemented.
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter.
- Full-CAN functionality: A set of 32 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.
 - Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based.
- Advanced Interrupt Handling:
 - Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines.
 - Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits.

Table 40 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	6)	
Maximum current per pin (excluding V_{DDP} and V_{SS})	$I_{\rm M}{ m SR}$	SR	_	8	mA		
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	_	150	mA		
Maximum current into V_{DDP}	I _{mvddp}	SR	-	200	mA	5)	
Maximum current out of V_{SS}	I _{MVSS}	SR	-	200	mA	5)	

1) DS = 0 refers to the pin having a weak drive strength which is programmable via Px_DS register.

2) DS = 1 refers to the pin having a strong drive strength which is programmable via Px_DS register.

3) Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

4) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. TMS pin and RESET pin have internal pull devices and are not included in the input leakage current characteristic.

5) Not subjected to production test, verified by design/characterization.

6) Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

7) P0.1 has a minimum input hysteresis of 0.25V.

Table 42ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol		Limit Values			Unit	Test Conditions/
			min.	typ.	max.		Remarks
Input resistance of the reference input	R _{AREF}	CC	-	1	2	kΩ	1)
Input resistance of the selected analog channel	R _{AIN}	CC	_	1	3	kΩ	1)

1) Not subjected to production test, verified by design/characterization.

2) This value includes the maximum oscillator deviation.

3) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.

4) The sampling capacity of the conversion C-Network is pre-charged to $V_{AREF}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{AREF}/2$.

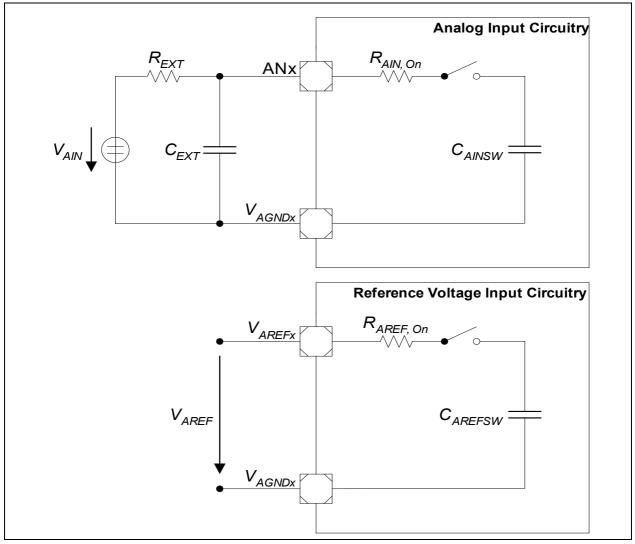


Figure 35 ADC Input Circuits

4.2.3.1 ADC Conversion Timing

Conversion time, $t_{\rm C} = t_{\rm ADC} \times (1 + r \times (3 + n + STC))$, where r = CTC + 2 for CTC = $00_{\rm B}$, $01_{\rm B}$ or $10_{\rm B}$, r = 32 for CTC = $11_{\rm B}$, CTC = Conversion Time Control (GLOBCTR.CTC), STC = Sample Time Control (INPCR0.STC), n = 8 or 10 (for 8-bit and 10-bit conversion respectively), $t_{\rm ADC} = 1 / f_{\rm ADC}$

Electrical Parameters

Table 44	Power Down Current ¹⁾ (Operating Conditions apply; V_{DDP} = 5V range)						
Parameter	ter Symbol Limit Values		Values	Unit	Test Conditions		
			typ. ²⁾	max. ³⁾	1		
$V_{\rm DDP}$ = 5V F	Range					·	
Power-Dowr	n Mode	I _{PDP}	20	80	μA	$T_{\rm A}$ = + 25 °C ⁴⁾⁵⁾	
			-	250	μA	$T_{\rm A}$ = + 85 °C ⁵⁾⁶⁾	

1) The table is only applicable to SAF and SAX variants. SAK variant does not support power-down mode

2) The typical I_{PDP} values are based on preliminary measurements and are to be used as reference only. These values are measured at V_{DDP} = 5.0 V.

3) The maximum I_{PDP} values are measured at V_{DDP} = 5.5 V.

4) I_{PDP} has a maximum value of 450 μ A at T_A = + 105 °C.

5) I_{PDP} is measured with: RESET = V_{DDP} , V_{AGND} = V_{SS} , RXD/INT0 = V_{DDP} ; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

6) Not subjected to production test, verified by design/characterization.

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 36**, **Figure 37** and **Figure 38**.

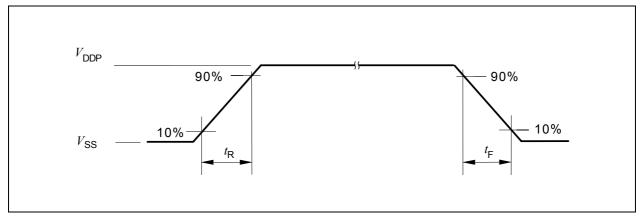


Figure 36 Rise/Fall Time Parameters

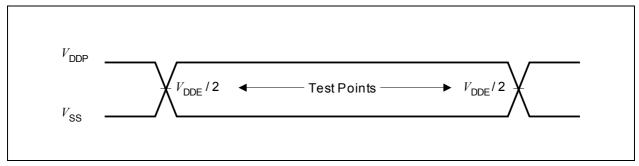


Figure 37 Testing Waveform, Output Delay

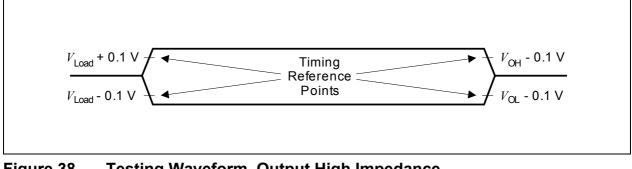


Figure 38 Testing Waveform, Output High Impedance