

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFL

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	CANbus, SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc878cm16ffi3v3acfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC87xCLM

General Device Information

Figure 5 XC874 Pin Configuration, PG-VQFN-48 Package (top view)

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function						
P1		I/O		Port 1 Port 1 is an 8-bit bidirectional general purpos I/O port. It can be used as alternate function for the JTAG, CCU6, UART, Timer 0, Timer T2CCU, Timer 21, MultiCAN, SSC and External Bus Interface. Note: External Bus Interface is not available XC874.						
P1.0	34/25		PU	RXD_0 T2EX_0 RXDC0_0 A8	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input Address Line 8 Output					
P1.1	35/26		PU	EXINT3_0 T0_1 TXD_0 TXDC0_0 A9	External Interrupt Input 3 Timer 0 Input UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output Address Line 9 Output					
P1.2	36/27		PU	SCK_0 A10	SSC Clock Input/Output Address Line 10 Output					
P1.3	37/28		PU	MTSR_0 SCK_2 TXDC1_3 A11	SSC Master Transmit Output/Slave Receive Input SSC Clock Input/Output MultiCAN Node 1 Transmitter Output Address Line 11 Output					
P1.4	38/29		PU	MRST_0 EXINT0_1 RXDC1_3 MTSR_2 A12	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input SSC Master Transmit Output/Slave Receive Input Address Line 12 Output					

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function						
P4		I/O		Port 4 Port 4 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, Timer 0, Timer 1, T2CCU, Timer 21, MultiCAN and External Bus Interface. Note: External Bus Interface is not available in XC874.						
P4.0	59/45		Hi-Z	RXDC0_3 CC60_1 T2CC0_0/ EXINT3_1 D0	MultiCAN Node 0 Receiver Input Output of Capture/Compare channel 0 External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Data Line 0 Input/Output					
P4.1	60/46		Hi-Z	TXDC0_3 COUT60_1 T2CC1_0/ EXINT4_1 D1	MultiCAN Node 0 Transmitter Output Output of Capture/Compare channel 0 External Interrupt Input 4/T2CCU Capture/Compare Channel 1 Data Line 1 Input/Output					
P4.2	61/47		PU	EXINT6_1 T21_0 D2	External Interrupt Input 6 Timer 21 Input Data Line 2 Input/Output					
P4.3	40/31		Hi-Z	T2EX_1 EXF21_1 COUT63_2 D3	Timer 2 External Trigger Input Timer 21 External Flag Output Output of Capture/Compare channel 3 Data Line 3 Input/Output					
P4.4	45/-		Hi-Z	CCPOS0_3 T0_0 CC61_4 T2CC2_0/ EXINT5_1 D4	CCU6 Hall Input 0 Timer 0 Input Output of Capture/Compare channel 1 External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Data Line 4 Input/Output					

 Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

Figure 11 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC87x supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

3.2.3.1 Password Register

PASSWD

Password	Register					Reset	Value: 07 _H
7	6	5	4	3	2	1	0
		PASS	I		PROTECT _S	МС	DE
		W			rh	r	W

Field	Bits	Туре	Description
MODE	[1:0]	rw	 Bit Protection Scheme Control Bits 00 Scheme disabled - direct access to the protected bits is allowed. 11 Scheme enabled - the bit field PASS has to be written with the passwords to open and close the access to protected bits. (default) Others:Scheme Enabled. These two bits cannot be written directly. To change the value between 11_B and 00_B, the bit field PASS must be written with 11000_B; only then, will the MODE[1:0] be registered.
PROTECT_S	2	rh	 Bit Protection Signal Status Bit This bit shows the status of the protection. 0 Software is able to write to all protected bits. 1 Software is unable to write to any protected bits.
PASS	[7:3]	W	Password BitsThe Bit Protection Scheme only recognizes threepatterns. 11000_B Enables writing of the bit field MODE. 10011_B Opens access to writing of all protected bits. 10101_B Closes access to writing of all protected bits

Table 5 CPU Registe	er Overview	(cont'd)
---------------------	-------------	----------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
97 _H	MEXSP Reset: 7F _H	Bit Field	0				MXSP				
	Memory Extension Stack Pointer Register	Туре	r				rwh				
98 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh	
99 _H	SBUF Reset: 00 _H	Bit Field				V	۹L				
	Serial Data Buffer Register	Туре				rv	vh				
A2 _H	EO Reset: 00 _H Extended Operation Register	Bit Field		0 TR E				0			
		Туре		r		rw		r		rw	
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0	
	Interrupt Enable Register 0	Туре	rw	r	rw	rw	rw	rw	rw	rw	
B8 _H	IP Reset: 00 _H	Bit Field	(0 PT2 PS PT1 PX1 PT0				PT0	PX0		
	Interrupt Priority Register	Туре		r	rw	rw	rw	rw	rw	rw	
в9 _Н	IPH Reset: 00 _H	Bit Field	()	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	
	Interrupt Priority High Register	Туре	r		rw	rw	rw	rw	rw	rw	
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р	
	Program Status Word Register	Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh	
E0 _H	ACC Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0	
	Accumulator Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC	
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
F0 _H	B Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0	
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC	
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H	
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	

3.2.4.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6MDU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	1									
B0 _H	MDUSTAT Reset: 00 _H	Bit Field			0			BSY	IERR	IRDY
	MDU Status Register	Туре			r			rh	rwh	rwh

3.2.4.8 Timer 2 Compare/Capture Unit Registers

The Timer 2 Compare/Capture Unit SFRs can be accessed in the standard memory area (RMAP = 0).

Table 12T2CCU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
C7 _H	T2_PAGE Reset: 00 _H	Bit Field	0	Р	ST	NR	0		PAGE	
	Page Register	Туре	V	v	V	V	r		rwh	
RMAP =	0, PAGE 0		•				•	•		
c₀ ^H	T2_T2CON Reset: 00 _H Timer 2 Control Register	Bit Field	TF2	EXF2	()	EXEN 2	TR2	C/T2	CP/ RL2
		Туре	rwh	rwh	1	r	rw	rwh	rw	rw
C1 _H	T2_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN
		Туре	rw	rw	rw	rw		rw		rw
C2 _H	T2_RC2L Reset: 00 _H	Bit Field				R	C2			
	Register Low	Туре	rwh							
C3 _H	T2_RC2H Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register High	Туре				rv	vh			
C4 _H	T2_T2L Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register Low	Туре				rv	vh			
C5 _H	T2_T2H Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register High	Туре				rv	vh			
C6 _H	T2_T2CON1Reset: 03 _H Timer 2 Control Register 1	Bit Field			()			TF2EN	EXF2E N
		Туре			l	r			rw	rw
RMAP =	0, PAGE 1				-					
C0 _H	T2CCU_CCEN Reset: 00 _H	Bit Field	CC	M3	CC	M2	CC	M1	CC	MO
	Enable Register	Туре	r	N	r	N	r	N	r	N
C1 _H	T2CCU_CCTBSELReset: 00 _H T2CCU Capture/Compare Time	Bit Field	CASC	CCTT OV	CCTB 5	CCTB 4	CCTB 3	CCTB 2	CCTB 1	CCTB 0
	Base Select Register	Туре	rw	rwh	rw	rw	rw	rw	rw	rw
C2 _H	T2CCU_CCTRELLReset: 00 _H	Bit Field				ССТ	REL			
	Timer Reload Register Low	Туре	rw							
C3 _H	T2CCU_CCTRELHReset: 00H	Bit Field	d CCTREL							
	Timer Reload Register High	Туре				r	w			
C4 _H	T2CCU_CCTL Reset: 00 _H	Bit Field				C	СТ			
	Timer Register Low	Туре				rv	vh			

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	5 4 3 2 1 0					
FD _H	CCU6_MODCTRH Reset: 00 _H Modulation Control Register High	Bit Field	ECT1 30	0			T13M	ODEN			
		Туре	rw	r			r	w			
Fe _H	CCU6_TRPCTRL Reset: 00 _H Trap Control Register Low	Bit Field			0			TRPM 2	TRPM 1	TRPM 0	
		Туре			r			rw	rw	rw	
FFH	CCU6_TRPCTRH Reset: 00 _H Trap Control Register High	Bit Field	TRPP EN	TRPE N13			TRI	PEN			
		Туре	rw	rw			r	w			
RMAP =	= 0, PAGE 3										
9A _H	CCU6_MCMOUTL Reset: 00 _H	Bit Field	0	R	МСМР						
	Low	Туре	r	rh	rh						
9B _H	CCU6_MCMOUTH Reset: 00 _H	Bit Field	(0	CURH E						
	High	Туре		r		rh			rh		
9CH	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12 PM	T12 OM	ICC62 F	ICC62 R	ICC61 F	ICC61 R	ICC60 F	ICC60 R	
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13 PM	T13 CM	
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	RP	ISC	C62	ISC	C61	ISC	C60	
	Port input Select Register 0 Low	Туре	r	w	r	w	r	W	rw		
9F _H	CCU6_PISEL0H Reset: 00 _H	Bit Field	IST1	2HR	ISP	OS2	ISP	OS1	ISPOS0		
		Туре	r	w	r	W	r	W	r	W	
A4 _H	CCU6_PISEL2 Reset: 00 _H	Bit Field)			IST1	3HR	
		Туре				r			r	W	
FA _H	CCU6_T12L Reset: 00 _H Timer T12 Counter Register Low	Bit Field				T12	CVL				
		Туре				rv	vh				
FBH	CCU6_T12H Reset: 00 _H Timer T12 Counter Register High	Bit Field				T12	CVH				
		Туре				rv	vh				
FCH	Timer T13 Counter Register Low	Bit Field				T13	CVL				
		Type				rv T40	vh				
FDН	Timer T13 Counter Register High	Bit Fleid				113					
Fe _H	CCU6_CMPSTATL Reset: 00 _H	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST	
		Туре	r	rh	rh	rh	rh	rh	rh	rh	
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS	
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE	
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh	
ac _h	SSC_TBL Reset: 00 _H	Bit Field	d TB_VALUE								
	I ransmitter Buffer Register Low	Туре	rw								
AD _H s	SSC_RBL Reset: 00 _H	Bit Field				RB_V	ALUE				
	Receiver Buffer Register Low	Туре		rh							
АЕ _Н	SSC_BRL Reset: 00 _H	Bit Field				BR_V	ALUE				
	Baud Rate Timer Reload Register Low	Туре				r	w				
AF _H	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE				
	Register High	Туре				r	w				

Table 16SSC Register Overview (cont'd)

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Table 17CAN Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0											
D8 _H	ADCON Reset: 00 _H	Bit Field	V3	V3 V2 V1 V0			AUAD		BSY	RWEN		
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	r	w	rh	rw		
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2		
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh		
da _h	ADH Reset: 00 _H	Bit Field		()		CA13	CA12	CA11	CA10		
	CAN Address Register High	Туре			r		rwh	rwh	rwh	rwh		
db _H	DATA0 Reset: 00 _H	Bit Field	CD									
	CAN Data Register 0	Туре	rwh									
dc _h	DATA1 Reset: 00 _H	Bit Field				C	D					
	CAN Data Register 1	Туре	rwh									
dd _H	DATA2 Reset: 00 _H	Bit Field				С	D					
	CAN Data Register 2	Туре				rv	vh					
de _H	DATA3 Reset: 00 _H	Bit Field				С	D					
	CAN Data Register 3	Туре				rv	vh					

3.2.4.14 OCDS Registers

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC87x interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 12 to **Figure 16** give a general overview of the interrupt sources and nodes, and their corresponding control and status flags.

Figure 12 Non-Maskable Interrupt Request Sources

Figure 15 Interrupt Request Sources (Part 3)

Figure 17 Interrupt Request Sources (Part 5)

3.7 Reset Control

The XC87x has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the XC87x is first powered up, the status of certain pins (see **Table 25**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

The second type of reset in XC87x is the hardware reset. This reset function can be used <u>during</u> normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system.

Another type of reset that needs to be detected is a reset while the device is in power-down mode (wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode.

3.7.1 Module Reset Behavior

Table 24 lists the functions of the XC87x and the various reset types that affect these functions. The symbol "■" signifies that the particular function is reset to its default state.

Module/ Function	Wake-Up Reset	Watchdog Hardware Reset Reset		Power-On Reset	Brownout Reset	
CPU Core						
Peripherals						
On-Chip Static RAM	Not affected, Reliable	Not affected, Reliable	cted, Not affected, Affecte Reliable reliable		Affected, un- reliable	
Oscillator, PLL		Not affected				
Port Pins						
EVR	The voltage regulator is switched on	Not affected	Not affected			
FLASH						
NMI	Disabled	Disabled				

Table 24Effect of Reset on Device Functions

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC87x. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features

- Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- Power-down mode support¹⁾

The CGU consists of an oscillator circuit and a PLL. In the XC87x, the oscillator can be from either of these two sources: the on-chip oscillator (4 MHz) or the external oscillator (2 MHz to 20 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

¹⁾ SAK product variant does not support power-down mode.

Figure 25 WDT Timing Diagram

Table 28 lists the possible watchdog time ranges that can be achieved using a certain module clock. Some numbers are rounded to 3 significant digits.

Table 28Watchdog Time Ranges

Reload value In WDTREL	Prescaler for f_{PCLK}	Prescaler for f_{PCLK}						
	2 (WDTIN = 0)	128 (WDTIN = 1)						
	24 MHz	24 MHz						
FF _H	21.3 μs	1.37 ms						
7F _H	2.75 ms	176 ms						
00 _H	5.46 ms	350 ms						

3.11 Multiplication/Division Unit

The Multiplication/Division Unit (MDU) provides fast 16-bit multiplication, 16-bit and 32-bit division as well as shift and normalize features. It has been integrated to support the XC87x Core in real-time control applications, which require fast mathematical computations.

Features

- Fast signed/unsigned 16-bit multiplication
- Fast signed/unsigned 32-bit divide by 16-bit and 16-bit divide by 16-bit operations
- 32-bit unsigned normalize operation
- 32-bit arithmetic/logical shift operations

Table 29 specifies the number of clock cycles used for calculation in various operations.

Operation	Result	Remainder	No. of Clock Cycles used for calculation
Signed 32-bit/16-bit	32-bit	16-bit	33
Signed 16-bit/16bit	16-bit	16-bit	17
Signed 16-bit x 16-bit	32-bit	-	16
Unsigned 32-bit/16-bit	32-bit	16-bit	32
Unsigned 16-bit/16-bit	16-bit	16-bit	16
Unsigned 16-bit x 16-bit	32-bit	-	16
32-bit normalize	-	-	No. of shifts + 1 (Max. 32)
32-bit shift L/R	-	-	No. of shifts + 1 (Max. 32)

 Table 29
 MDU Operation Characteristics

3.18 Timer 2 and Timer 21

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see **Table 34**. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

Table 34	Timer 2 Modes							
Mode	Description							
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition Reload event triggered by underflow condition 							
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event 							

Electrical Parameters

Table 42ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol		Limit Values			Unit	Test Conditions/
			min.	typ.	max.		Remarks
Input resistance of the reference input	R _{AREF}	CC	_	1	2	kΩ	1)
Input resistance of the selected analog channel	R _{AIN}	CC	_	1	3	kΩ	1)

1) Not subjected to production test, verified by design/characterization.

2) This value includes the maximum oscillator deviation.

3) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.

4) The sampling capacity of the conversion C-Network is pre-charged to $V_{AREF}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{AREF}/2$.

Electrical Parameters

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 36**, **Figure 37** and **Figure 38**.

Figure 36 Rise/Fall Time Parameters

Figure 37 Testing Waveform, Output Delay

Figure 38 Testing Waveform, Output High Impedance

Electrical Parameters

4.3.6 External Clock Drive XTAL1

Table 52 shows the parameters that define the external clock supply for XC87x. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Parameter	Symbo	Symbol		Limit Values		Test Conditions
			Min.	Max.		
Oscillator period	t _{osc}	SR	50	500	ns	1)2)
High time	<i>t</i> ₁	SR	15	-	ns	2)3)
Low time	<i>t</i> ₂	SR	15	-	ns	2)3)
Rise time	t ₃	SR	-	10	ns	2)3)
Fall time	t_4	SR	-	10	ns	2)3)

 Table 52
 External Clock Drive Characteristics (Operating Conditions apply)

1) The clock input signals with 45-55% duty cycle are used.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

Figure 43 External Clock Drive XTAL1