

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	CANbus, SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc878cm16ffi5vacfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2 General Device Information

Chapter 2 contains the block diagram, pin configurations, definitions and functions of the XC87x.

2.1 Block Diagram

The block diagram of the XC87x is shown in Figure 2.

Figure 2 XC87x Block Diagram

General Device Information

2.3 Pin Configuration

The pin configuration of the XC878, which is based on the PG-LQFP-64, is shown in **Figure 4**, while that of the XC874, which is based on the PG-VQFN-48 package, is shown in **Figure 5**.

Figure 4 XC878 Pin Configuration, PG-LQFP-64 Package (top view)

XC87xCLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P4.5	46/-		Hi-Z	CCPOS1_3 T1_0	CCU6 Hall Input 1 Timer 1 Input
					channel 1
				T2CC3_0/ EXINT6_2 D5	External Interrupt Input 6/T2CCU Capture/Compare Channel 3 Data Line 5 Input/Output
P4.6	47/-		Hi-Z	CCPOS2_3	CCU6 Hall Input 2
				12_0 CC62_2	Output of Capture/Compare
				T2CC4_0 D6	Compare Output Channel 4 Data Line 6 Input/Output
P4.7	48/-		Hi-Z	CTRAP_3 COUT62_2	CCU6 Trap Input Output of Capture/Compare channel 2
				T2CC5_0 D7	Compare Output Channel 5 Data Line 7 Input/Output

3.2.4.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

	5									
Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1	-		-						
BB _H WDTCON Watchdog Timer Register	WDTCON Reset: 00 _H Watchdog Timer Control	Bit Field		0	WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N
	Register	Туре		r	rw	rh	r	rw	rwh	rw
вс _Н	^{3C} H WDTREL Reset: 00 _H Watchdog Timer Reload Register					WDT	REL			
			rw							
вd _Н	WDTWINB Reset: 00 _H	Bit Field	WDTWINB							
	Watchdog Window-Boundary Count Register	Туре	rw							
be _H	WDTL Reset: 00 _H	Bit Field				W	DT			
	Watchdog Timer Register Low					r	h			
bf _H	WDTH Reset: 00 _H	Bit Field				W	DT			
	Watchdog Timer Register High					r	h			

Table 9WDT Register Overview

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Nar	ne	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0										
B2 _H	PORT_PAGE	Reset: 00 _H	Bit Field	0	P	ST	NR	0		PAGE	
	Page Register		Туре	v	V	v	V	r		rwh	
RMAP =	= 0, PAGE 0										
80 _H	P0_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register		Туре	rwh	rwh						
86 _H	H P0_DIR Reset: 00 _H P0 Direction Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0	
		ster	Туре	rw	rw						
90 _H	P1_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register		Туре	rwh	rwh						
91 _H	P1_DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Regis	ster	Туре	rw	rw						
92 _H	P5_DATA	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register		Туре	rwh	rwh						
93 _H	P5_DIR	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Register		Туре	rw	rw						

Table 12T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	RMAP = 0, PAGE 4										
C2 _H T2CCU_CCTDTCLReset: 00 _H		Bit Field	DTM								
	T2CCU Capture/Compare Timer Dead-Time Control Register Low					r	w				
C3 _H	C ³ H T2CCU_CCTDTCHReset: 00_H T2CCU Capture/Compare Timer Dead-Time Control Register High		DTRE S	DTR2	DTR1	DTR0	DTLEV	DTE2	DTE1	DTE0	
			rwh	rh	rh	rh	rw	rw	rw	rw	

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13T21 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	RMAP = 1									
c₀ _H	T21_T2CON Reset: 00 _H Timer 2 Control Register		TF2	TF2 EXF2 0		EXEN 2	TR2	C/T2	CP/ RL2	
		Туре	rwh	rwh	l	ſ	rw	rwh	rw	rw
C1 _H	T21_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	C2 _H T21_RC2L Reset: 00 _H Timer 2 Reload/Capture Register Low		RC2							
			rwh							
C3 _H	T21_RC2H Reset: 00 _H	Bit Field	RC2							
	Timer 2 Reload/Capture Register High	Туре	rwh							
C4 _H	T21_T2L Reset: 00 _H	Bit Field				TH	L2			
	Timer 2 Register Low	Туре	rwh							
C5 _H	T21_T2H Reset: 00 _H	Bit Field				TH	L2			
	Timer 2 Register High	Туре				rv	/h			
C6 _H	C6 _H T21_T2CON1 Reset: 03 _H Timer 2 Control Register 1				()			TF2EN	EXF2E N
		Туре				r			rw	rw

3.3 Flash Memory

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The pagination of the Flash memory allows each page to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width
- of 1-byte for D-Flash and 2-bytes for P-Flash
- 1-page minimum erase width
- 1-byte read access
- Flash is delivered in erased state (read all ones)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: $1 \times t_{CCLK} = 38 \text{ ns}^{1}$
- Program time for 1 wordline: 1.6 ms²⁾
- Page erase time: 20 ms
- Mass erase time: 200 ms

¹⁾ Values shown here are typical values. f_{sys} = 144 MHz ± 7.5% (f_{CCLK} = 24 MHz ± 7.5%) is the maximum frequency range for Flash read access.

²⁾ Values shown here are typical values. f_{sys} = 144 MHz ± 7.5% (f_{CCLK} = 24 MHz ± 7.5%) is the typical frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC87x interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 12 to **Figure 16** give a general overview of the interrupt sources and nodes, and their corresponding control and status flags.

Figure 12 Non-Maskable Interrupt Request Sources

Interrupt Source	Vector Address	Assignment for XC87x	Enable Bit	SFR
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1
		ADC[1:0]		
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
		T21	_	
		CORDIC		
		UART1		
		UART1 Fractional Divider (Normal Divider Overflow)		
		MDU[1:0]	_	
XINTR9 004B _H		External Interrupt 3	EXM	
		External Interrupt 4		
		External Interrupt 5		
		External Interrupt 6		
		T2CCU		
		MultiCAN Node 3		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
		MultiCAN Node 4		
XINTR11	005B _H	CCU6 INP1	ECCIP1	
		MultiCAN Node 5		
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
		MultiCAN Node 6		
XINTR13	006B _H	CCU6 INP3	ECCIP3	
		MultiCAN Node 7		

resistance method. Oscillation measurement with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected).

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor. **Figure 21** shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode.

Figure 21 External Oscillator Circuitry

Note: For crystal operation, it is strongly recommended to measure the negative resistance in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the minimum and maximum values of the negative resistance specified by the crystal supplier.

For power saving purposes, the clocks may be disabled or slowed down according to **Table 27**.

Table 27System frequency (f_{sys} = 144 MHz)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down ¹⁾	Oscillator and PLL are switched off.

1) SAK product variant does not support power-down mode.

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC87x system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC87x will be aborted in a user-specified time period.

In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of $f_{PCLK}/2$ or $f_{PCLK}/128$
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. **Figure 24** shows the block diagram of the WDT unit.

Figure 24 WDT Block Diagram

f _{pclk}	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error						
24 MHz	1	6 (6 _H)	59 (3B _H)	+0.03 %						
12 MHz	1	3 (3 _H)	59 (3B _H)	+0.03 %						
8 MHz	1	2 (2 _H)	59 (3B _H)	+0.03 %						
6 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %						

Table 32Deviation Error for UART with Fractional Divider enabled

3.13.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 baud rate=
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.6)

3.14 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 26**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.7)

3.18 Timer 2 and Timer 21

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see **Table 34**. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

Table 34	Timer 2 Modes
Mode	Description
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition Reload event triggered by underflow condition
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event

3.20 Capture/Compare Unit 6

The Capture/Compare Unit 6 (CCU6) provides two independent timers (T12, T13), which can be used for Pulse Width Modulation (PWM) generation, especially for AC-motor control. The CCU6 also supports special control modes for block commutation and multi-phase machines.

The timer T12 can function in capture and/or compare mode for its three channels. The timer T13 can work in compare mode only.

The multi-channel control unit generates output patterns, which can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal modulation.

Timer T12 Features

- Three capture/compare channels, each channel can be used either as a capture or as a compare channel
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and lowside switches)
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- Dead-time control for each channel to avoid short-circuits in the power stage
- Concurrent update of the required T12/13 registers
- · Generation of center-aligned and edge-aligned PWM
- Supports single-shot mode
- Supports many interrupt request sources
- Hysteresis-like control mode

Timer T13 Features

- One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- Can be synchronized to T12
- Interrupt generation at period-match and compare-match
- Supports single-shot mode

Additional Features

- Implements block commutation for Brushless DC-drives
- Position detection via Hall-sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- · Control modes for multi-channel AC-drives
- Output levels can be selected and adapted to the power stage

The block diagram of the CCU6 module is shown in **Figure 29**.

4.1.3 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the XC87x. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

Table 39	Operating	Condition	Parameters
----------	-----------	-----------	-------------------

Parameter	Symbol	Limit V	Values	Unit	Notes/	
		min.	max.		Conditions	
Digital power supply voltage	V _{DDP}	4.5	5.5	V	5V Device	
Digital power supply voltage	V _{DDP}	3.0	3.6	V	3.3V Device	
Digital ground voltage	V _{SS}	0		V		
CPU Clock Frequency ¹⁾	f _{cclk}		26.67 ²⁾	MHz		
Ambient temperature	T _A	-40	85	°C	SAF-XC878/874	
		-40	105	°C	SAX-XC878	
		-40	125	°C	SAK-XC878/874	

1) f_{CCLK} is the input frequency to the XC800 core. Please refer to Figure 22 for detailed description.

2)Default setting of f_{CCLK} upon reset is 24 MHz.

Table 40Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbo	bl	Limit	Values	Unit	Test Conditions
			min.	max.		
Maximum current per pin (excluding V_{DDP} and V_{SS})	$I_{M} \operatorname{SR}$	SR	_	25	mA	
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	_	150	mA	
Maximum current into $V_{\rm DDP}$	I _{MVDDP}	SR	-	200	mA	5)
Maximum current out of V_{SS}	I _{MVSS}	SR	-	200	mA	5)
$V_{\rm DDP}$ = 3.3 V Range						
Output low voltage	V _{OL}	CC	_	0.5	V	$I_{OL} = 6 \text{ mA} (DS = 0)^{1)}$ $I_{OL} = 8 \text{ mA} (DS = 1)^{2)}$
Output high voltage	V _{OH}	СС	2.2	-	V	I_{OH} = -5 mA (DS = 0) ¹⁾ I_{OH} = -7 mA (DS = 1) ²⁾
Input low voltage	V_{IL}	SR	-0.3	0.7	V	CMOS Mode
Input high voltage	V _{IH}	SR	2	V_{DDP}	V	CMOS Mode
Input Hysteresis	HYS	CC	0.28	_	V	CMOS Mode ³⁾⁷⁾
Input low voltage at XTAL1	V _{ILX}	SR	-0.3	0.7	V	
Input high voltage at XTAL1	V _{IHX}	SR	2.3	V _{DDP}	V	
Pull-up current	I _{PU}	SR	-	-7	μA	$V_{\rm IH,min}$
			-35	_	μA	$V_{\rm IL,max}$
Pull-down current	I_{PD}	SR	-	12	μA	V _{IL,max}
			60	_	μA	$V_{\rm IH,min}$
Input leakage current	I _{OZ1}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 105^{\circ}C^{4)}$
Overload current on any pin	I _{OV}	SR	-5	5	mA	
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	5)

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case, the analog parameters may show a reduced performance. All ground pins ($V_{\rm SS}$) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Parameter	Symbol		Lir	Limit Values		Unit	Test Conditions/	
			min.	typ.	max.		Remarks	
Analog reference voltage	V _{AREF}	SR	V _{AGND} + 1	V_{DDP}	V _{DDP} + 0.05	V	1)	
Analog reference ground	V_{AGND}	SR	V _{SS} - 0.05	V_{SS}	V _{AREF} - 1	V	1)	
Analog input voltage range	V_{AIN}	SR	V_{AGND}	Ι	V_{AREF}	V		
ADC clocks	$f_{\sf ADC}$		-	24	-	MHz	module clock ¹⁾	
	f _{adci}		_	-	14 ²⁾	MHz	internal analog clock ¹⁾ See Figure 31	
Sample time	t _S	СС	(2 + INPCR0.STC) × t_{ADCI}			μS	1)	
Conversion time	t _C	CC	See Se	ection 4	4.2.3.1	μS	1)	
Differential Nonlinearity	$ EA_{DNL} $	CC	_	_	1.5	LSB	10-bit conversion	
Integral Nonlinearity	$ EA_{INL} $	CC	_	_	2	LSB	10-bit conversion	
Offset	$ EA_{OFF} $	CC	-	-	3	LSB	10-bit conversion	
Gain	$ EA_{GAIN} $	CC	-	-	2.5	LSB	10-bit conversion	
Switched capacitance at the reference voltage input	C _{AREFSW}	CC	_	10	14	pF	1)3)	
Switched capacitance at the analog voltage inputs	C _{AINSW}	CC	-	4	5	pF	1)4)	

Table 42ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Table 34 3TAG Timing (Operating Conditions apply, CL – 30 pl) (contra)							
Parameter	Symbol	Lir	nits	Unit	Test Conditions		
		min	max				
TDO high impedance to valid	t_4 CC	-	18	ns	5V Device ¹⁾		
output from TCK		-	21	ns	3.3V Device ¹⁾		
TDO valid output to high	t_5 CC	-	21	ns	5V Device ¹⁾		
impedance from TCK		-	20	ns	3.3V Device ¹⁾		

Table 54JTAG Timing (Operating Conditions apply; CL = 50 pF) (cont'd)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the XC87x package and reliability section.

5.1 Package Parameters

Table 56 provides the thermal characteristics of the package used in XC878 and XC874.

Table 50 Thermal Cha	lacterist	163	UT LITE F	achayes		
Parameter	Symbol		Lin	nit Values	Unit	Notes
			Min. Max.			
PG-LQFP-64-4 (XC878)					L	
Thermal resistance junction case ¹⁾	R _{TJC}	СС	-	13.8	K/W	-
Thermal resistance junction lead ¹⁾	$R_{\rm TJL}$ (СС	-	34.6	K/W	-
PG-VQFN-48-22 (XC874)						
Thermal resistance junction case ¹⁾	R _{TJC}	СС	-	16.6	K/W	-
Thermal resistance junction lead ¹⁾	$R_{\rm TJL}$ (СС	-	30.7	K/W	-

Table 56 Thermal Characteristics of the Packages

1) The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.

Package and Quality Declaration

Figure 48 PG-VQFN-48-22 Package Outline