

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product StatusObsoleteCore ProcessorXC800Core Size8-BitSpeed27MHzConnectivityLINbus, SPI, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O40Program Memory Size52KB (52K x 8)Program Memory TypeFLASHEEPROM Size-		
Core Size8-BitSpeed27MHzConnectivityLINbus, SPI, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O40Program Memory Size52KB (52K x 8)Program Memory TypeFLASH	oduct Status	Obsolete
Speed27MHzConnectivityLINbus, SPI, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O40Program Memory Size52KB (52K x 8)Program Memory TypeFLASH	ore Processor	XC800
ConnectivityLINbus, SPI, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O40Program Memory Size52KB (52K x 8)Program Memory TypeFLASH	ore Size	8-Bit
PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O40Program Memory Size52KB (52K x 8)Program Memory TypeFLASH	beed	27MHz
Number of I/O40Program Memory Size52KB (52K x 8)Program Memory TypeFLASH	onnectivity	LINbus, SPI, SSI, UART/USART
Program Memory Size 52KB (52K x 8) Program Memory Type FLASH	eripherals	Brown-out Detect/Reset, POR, PWM, WDT
Program Memory Type FLASH	umber of I/O	40
	ogram Memory Size	52KB (52K x 8)
EEPROM Size -	ogram Memory Type	FLASH
	EPROM Size	-
RAM Size 3.25K x 8	AM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5V	oltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters A/D 8x10b	ata Converters	A/D 8x10b
Oscillator Type Internal	scillator Type	Internal
Operating Temperature -40°C ~ 105°C (TA)	perating Temperature	-40°C ~ 105°C (TA)
Mounting Type Surface Mount	ounting Type	Surface Mount
Package / Case 64-LQFP	ackage / Case	64-LQFP
Supplier Device Package PG-LQFP-64-4	upplier Device Package	PG-LQFP-64-4
Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/xc878lm13ffa5vacxxuma1	urchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc878lm13ffa5vacxxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit

XC87xCLM

8-Bit Single-Chip Microcontroller

Data Sheet V1.5 2011-03

Microcontrollers

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P3		I/O		I/O port. It ca for CCU6, U/ MultiCAN an	B-bit bidirectional general purpose an be used as alternate functions ART1, T2CCU, Timer 21, d External Bus Interface. al Bus Interface is not available in 4.
P3.0	43/33		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1 T2CC0_1/ EXINT3_2	Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output
P3.1	44/34		Hi-Z	CCPOS0_2 CC61_2 COUT60_0 TXD1_1	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare channel 0 UART1 Transmit Data Output/Clock Output
P3.2	49/35		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0 T2CC1_1/ EXINT4_2	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1 External Interrupt Input 4/T2CCU Capture/Compare Channel 1
P3.3	50/36		Hi-Z	COUT61_0 TXDC1_1 T2CC2_1/ EXINT5_2 A13	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Address Line 13 Output

XC87xCLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P4.5	46/-		Hi-Z	CCPOS1_3 T1_0 COUT61_2	CCU6 Hall Input 1 Timer 1 Input Output of Capture/Compare channel 1
				T2CC3_0/ EXINT6_2 D5	External Interrupt Input 6/T2CCU Capture/Compare Channel 3 Data Line 5 Input/Output
P4.6	47/-		Hi-Z	CCPOS2_3 T2_0 CC62_2 T2CC4_0 D6	CCU6 Hall Input 2 Timer 2 Input Output of Capture/Compare channel 2 Compare Output Channel 4 Data Line 6 Input/Output
P4.7	48/-		Hi-Z	CTRAP_3 COUT62_2 T2CC5_0 D7	

3 Functional Description

Chapter 3 provides an overview of the XC87x functional description.

3.1 **Processor Architecture**

The XC87x is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the XC87x CPU uses a 2-clock machine cycle. This allows fast access to ROM or RAM memories without wait state. The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions.

The XC87x CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and Special Function Registers (SFRs).

Figure 6 shows the CPU functional blocks.

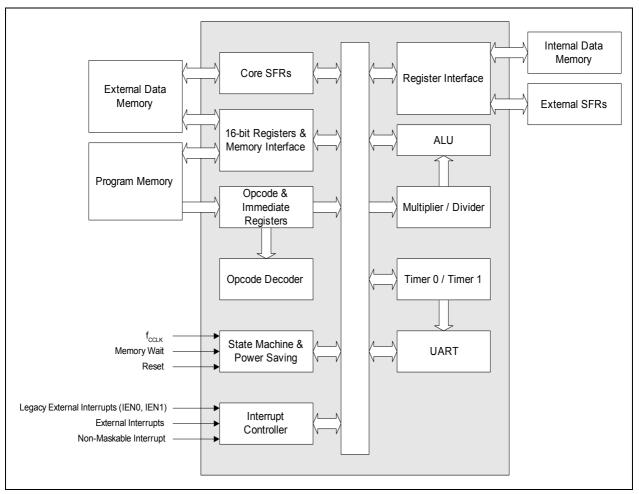
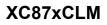



Figure 6 CPU Block Diagram

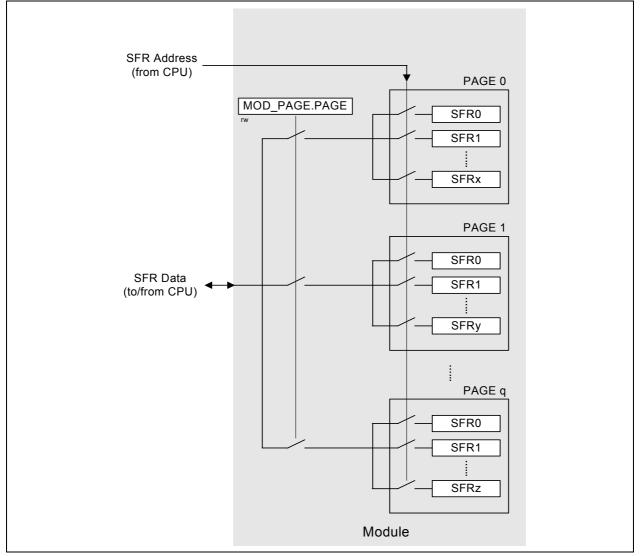


Figure 10 Address Extension by Paging

In order to access a register located in a page different from the actual one, the current page must be exited. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

• Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or

Table 6	MDU Register Overview	(cont'd)
---------	-----------------------	----------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
B1 _H	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE	IR	RSEL	STAR T		OPC	ODE	I
		Туре	rw	rw	rw	rwh		r	N	
в2 _Н	MD0 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 0	Туре				r	W			
B2 _H	MR0 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 0	Туре				r	h			
вз _Н	MD1 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 1	Туре				r	w			
вз _Н	MR1 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 1	Туре				r	h			
B4 _H	MD2 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 2	Туре				r	w			
B4 _H	MR2 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 2	Туре				r	h			
в5 _Н	MD3 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 3	Туре				r	w			
в5 _Н	MR3 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 3	Туре				r	h			
в6 _Н	MD4 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 4	Туре				r	W			
в6 _Н	MR4 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 4	Туре				r	h			
в7 _Н	MD5 Reset: 00 _H	Bit Field				DA	ATA			
	MDU Operand Register 5	Туре				r	w			
в7 _Н	MR5 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 5	Туре				r	h			

3.2.4.3 CORDIC Registers

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 7 CORDIC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 1									
9A _H	CD_CORDXL Reset: 00 _H	Bit Field				DA	TAL			
	CORDIC X Data Low Byte	Туре				r	W			
9B _H	CD_CORDXH Reset: 00 _H	Bit Field				DA	ТАН			
	CORDIC X Data High Byte	Туре				r	W			

Table 8SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
вв _Н	PASSWD Reset: 07 _H Password Register	Bit Field			PASS			PROT ECT_S	МС	DE
		Туре			W			rh	r	w
BE _H	COCON Reset: 00 _H	Bit Field	CO	UTS	TLEN	0		CO	REL	
	Clock Output Control Register	Туре	r	W	rw	r		r	W	
E9 _H	MISC_CON Reset: 00 _H Miscellaneous Control Register	Bit Field	ADCE TR0_ MUX	ADCE TR1_ MUX			0			DFLAS HEN
		Туре	rw	rw			r			rwh
EA _H	PLL_CON1 Reset: 20 _H	Bit Field		NDIV				PDIV		
	PLL Control Register 1	Туре		rw				rw		
EB _H	CR_MISC Reset: 00 _H or 01 _H Reset Status Register	Bit Field	CCCF G	MDUC CFG	CCUC CFG	T2CCF G		0		HDRS T
		Туре	rw	rw	rw	rw		r		rwh
RMAP =	= 0, PAGE 3									
вз _Н	XADDRH Reset: F0 _H	Bit Field				ADI	ORH			
	On-chip XRAM Address Higher Order	Туре				r	W			
B4 _H	IRCON3 Reset: 00 _H Interrupt Request Register 3	Bit Field	(0	CANS RC5	CCU6 SR1	()	CANS RC4	CCU6 SR0
		Туре		r	rwh	rwh		r	rwh	rwh
в5 _Н	IRCON4 Reset: 00 _H Interrupt Request Register 4	Bit Field	(0	CANS RC7	CCU6 SR3	0		CANS RC6	CCU6 SR2
		Туре		r	rwh	rwh		r	rwh	rwh
в6 _Н	MODIEN Reset: 07 _H Peripheral Interrupt Enable Register	Bit Field		0		CM5E N	CM4E N	RIREN	TIREN	EIREN
	Register	Туре		r		rw	rw	rw	rw	rw
в7 _Н	MODPISEL1 Reset: 00 _H Peripheral Input Select Register	Bit Field		EXINT6IS	3	UR ²	IRIS	T21EX IS	(0
	1	Туре		rw		r	w	rw		r
ва _Н	MODPISEL2 Reset: 00 _H Peripheral Input Select Register	Bit Field		0		T2EXI S	T21IS	T2IS	T1IS	TOIS
	2	Туре		r		rw	rw	rw	rw	rw
вв _Н	PMCON2 Reset: 00 _H Power Mode Control Register 2	Bit Field				0			UART 1_DIS	T21_D IS
		Туре				r			rw	rw
вd _Н	MODSUSP Reset: 01 _H Module Suspend Control Register	Bit Field	(0	CCTS USP	T21SU SP	T2SUS P	T13SU SP	T12SU SP	WDTS USP
	Register	Туре		r	rw	rw	rw	rw	rw	rw
ве _Н	MODPISEL3 Reset: 00 _H Peripheral Input Select Register	Bit Field	0		С	IS	S	IS	М	IS
	3	Туре		r	r	w	/ rw		rw	
EA _H	MODPISEL4 Reset: 00 _H	Bit Field	(0	EXIN	NT5IS	EXINT4IS		EXINT3IS	
	Peripheral Input Select Register 4	Туре		r	r	w	r	w	r	w

3.2.4.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1					•				
вв _Н	WDTCON Reset: 00 _H Watchdog Timer Control	Bit Field		0	WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N
	Register	Туре		r	rw	rh	r	rw	rwh	rw
вс _Н	WDTREL Reset: 00 _H	Bit Field				WD1	REL			
	Watchdog Timer Reload Register	Туре				r	w			
вd _Н	WDTWINB Reset: 00 _H	Bit Field				WDT	WINB			
	Watchdog Window-Boundary Count Register	Туре				r	w			
BE _H	WDTL Reset: 00 _H	Bit Field				W	DT			
	Watchdog Timer Register Low	Туре				r	h			
bf _h	WDTH Reset: 00 _H	Bit Field				W	DT			
	Watchdog Timer Register High	Туре				r	h			

Table 9WDT Register Overview

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
B2 _H	PORT_PAGE Reset: 00 _H	Bit Field	C)P	ST	NR	0		PAGE	
	Page Register	Туре	Ņ	N	١	N	r		rwh	
RMAP =	= 0, PAGE 0	-								
80 _H	P0_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register	Туре	rwh	rwh						
86 _H	P0_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Register	Туре	rw	rw						
90 _H	P1_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register	Туре	rwh	rwh						
91 _H	P1_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Register	Туре	rw	rw						
92 _H	P5_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register	Туре	rwh	rwh						
93 _H	P5_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Register	Туре	rw	rw						

Table 12T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
C5 _H	T2CCU_CCTH Reset: 00 _H	Bit Field		Ι	Ι	C	СТ			1
	T2CCU Capture/Compare Timer Register High	Туре				rv	vh			
C6 _H	T2CCU_CCTCON Reset: 00 _H T2CCU CaptureCcompare	Bit Field		ССТ	PRE		CCTO VF	CCTO VEN	TIMSY N	CCTS T
	Timer Control Register	Туре		r	W		rwh	rw	rw	rw
RMAP =	0, PAGE 2									
C0 _H	T2CCU_COSHDWReset: 00_H T2CCU Capture/compare Enable Register	Bit Field	ENSH DW	TXOV	COOU T5	COOU T4	COOU T3	COOU T2	COOU T1	COOU T0
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
C1 _H	T2CCU_CC0L Reset: 00 _H T2CCU Capture/Compare	Bit Field				CC/	/ALL			
	Register 0 Low	Туре				rv	vh			
C2 _H	T2CCU_CC0H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 0 High	Туре				rv	vh			
C3 _H	T2CCU_CC1L Reset: 00 _H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 1 Low	Туре				rv	vh			
C4 _H	T2CCU_CC1H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 1 High	Туре	rwh							
C5 _H	T2CCU_CC2L Reset: 00 _H	Bit Field	d CCVALL							
	T2CCU Capture/compare Register 2 Low	Туре				rv	vh			
C6 _H	T2CCU_CC2H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 2 High	Туре				rv	vh			
RMAP =	0, PAGE 3									
C0 _H	T2CCU_COCON Reset: 00 _H T2CCU Compare Control	Bit Field	CCM5	CCM4	CM5F	CM4F	POLB	POLA	CON	NOD
	Register	Туре	rw	rw	rwh	rwh	rw	rw	r	W
C1 _H	T2CCU_CC3L Reset: 00 _H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 3 Low	Туре				rv	vh			
C2 _H	T2CCU_CC3H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 3 High	Туре				rv	vh			
C3 _H	T2CCU_CC4L Reset: 00 _H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 4 Low	Туре				rv	vh			
C4 _H	T2CCU_CC4H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 4 High	Туре				rv	vh			
C5 _H	T2CCU_CC5L Reset: 00 _H	Bit Field	CCVALL							
	T2CCU Capture/compare Register 5 Low	Туре				rv	vh			
C6 _H	T2CCU_CC5H Reset: 00 _H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 5 High	Туре				rv	vh			

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FD _H	CCU6_MODCTRH Reset: 00 _H Modulation Control Register High	Bit Field	ECT1 3O	0		L	T13M	ODEN	•	
		Туре	rw	r			r	w		
FE _H	CCU6_TRPCTRL Reset: 00 _H Trap Control Register Low	Bit Field			0			TRPM 2	TRPM 1	TRPM 0
		Туре			r			rw	rw	rw
FF _H	CCU6_TRPCTRH Reset: 00 _H Trap Control Register High	Bit Field	TRPP EN	TRPE N13			TRI	PEN		
		Туре	rw	rw			r	w		
RMAP =	0, PAGE 3	1			1					
9A _H	CCU6_MCMOUTL Reset: 00 _H	Bit Field	0	R			MC	MP		
	Multi-Channel Mode Output Register Low	Туре	r	rh			r	h		
9B _H	CCU6_MCMOUTH Reset: 00 _H	Bit Field	()		CURH			EXPH	
	Multi-Channel Mode Output Register High	Туре		r		rh			rh	
9CH	CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12 PM	T12 OM	ICC62 F	ICC62 R	ICC61 F	ICC61 R	ICC60 F	ICC60 R
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13 PM	T13 CM
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	RP	ISC	C62	ISC	C61	ISC	C60
	Port Input Select Register 0 Low	Туре	r	w	r	w	r	w	r	N
9F _H	CCU6_PISEL0H Reset: 00 _H Port Input Select Register 0 High	Bit Field	IST1	2HR	ISP	OS2	ISP	OS1	ISP	OS0
		Туре	r	W	r	W	r	W	r	N
A4 _H	CCU6_PISEL2 Reset: 00 _H Port Input Select Register 2	Bit Field				0			IST1	3HR
		Туре				r			r	N
FA _H	CCU6_T12LReset: 00 _H Timer T12 Counter Register Low	Bit Field				T12	CVL			
	_	Туре				rv	vh			
FB _H	CCU6_T12H Reset: 00 _H Timer T12 Counter Register High	Bit Field				T12	CVH			
		Туре				rv	vh			
FC _H	CCU6_T13L Reset: 00 _H Timer T13 Counter Register Low	Bit Field				T13	CVL			
		Туре				rv	vh			
FD _H	CCU6_T13H Reset: 00 _H Timer T13 Counter Register High	Bit Field				T13	CVH			
		Туре					vh			
FE _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

XC87xCLM

Functional Description

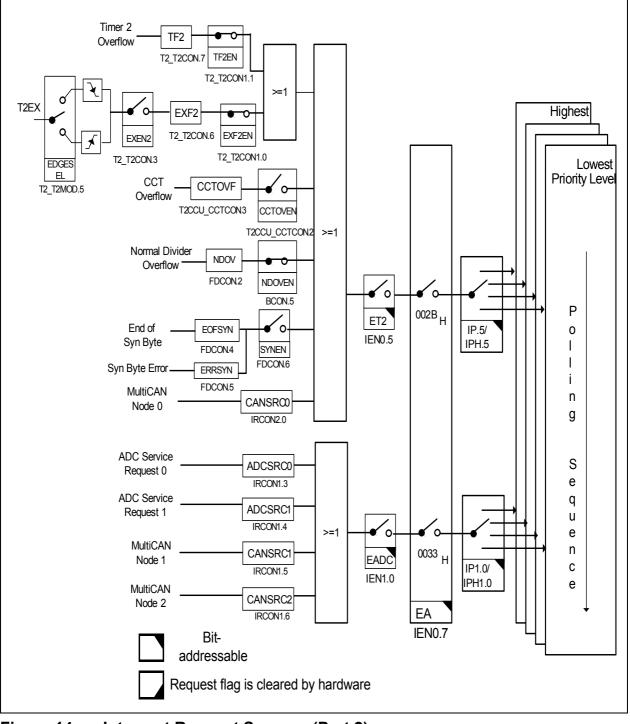


Figure 14 Interrupt Request Sources (Part 2)

3.11 Multiplication/Division Unit

The Multiplication/Division Unit (MDU) provides fast 16-bit multiplication, 16-bit and 32-bit division as well as shift and normalize features. It has been integrated to support the XC87x Core in real-time control applications, which require fast mathematical computations.

Features

- Fast signed/unsigned 16-bit multiplication
- Fast signed/unsigned 32-bit divide by 16-bit and 16-bit divide by 16-bit operations
- 32-bit unsigned normalize operation
- 32-bit arithmetic/logical shift operations

Table 29 specifies the number of clock cycles used for calculation in various operations.

Operation	Result	Remainder	No. of Clock Cycles used for calculation
Signed 32-bit/16-bit	32-bit	16-bit	33
Signed 16-bit/16bit	16-bit	16-bit	17
Signed 16-bit x 16-bit	32-bit	-	16
Unsigned 32-bit/16-bit	32-bit	16-bit	32
Unsigned 16-bit/16-bit	16-bit	16-bit	16
Unsigned 16-bit x 16-bit	32-bit	-	16
32-bit normalize	-	-	No. of shifts + 1 (Max. 32)
32-bit shift L/R	-	-	No. of shifts + 1 (Max. 32)

 Table 29
 MDU Operation Characteristics

- Interrupt enabling and corresponding flag

3.13 UART and UART1

The XC87x provides two Universal Asynchronous Receiver/Transmitter (UART and UART1) modules for full-duplex asynchronous reception/transmission. Both are also receive-buffered, i.e., they can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost.

Features

- Full-duplex asynchronous modes
 - 8-bit or 9-bit data frames, LSB first
 - Fixed or variable baud rate
- Receive buffered
- Multiprocessor communication
- Interrupt generation on the completion of a data transmission or reception

The UART modules can operate in the four modes shown in **Table 30**.

f _{PCLK} /2
Variable
$f_{\rm PCLK}/32 \text{ or } f_{\rm PCLK}/64^{1)}$
Variable

Table 30UART Modes

1) For UART1 module, the baud rate is fixed at $f_{PCLK}/64$.

There are several ways to generate the baud rate clock for the serial port, depending on the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at $f_{\rm PCLK}/2$. In mode 2, the baud rate is generated internally based on the UART input clock and can be configured to either $f_{\rm PCLK}/32$ or $f_{\rm PCLK}/64$. For UART1 module, only $f_{\rm PCLK}/64$ is available. The variable baud rate is set by the underflow rate on the dedicated baud-rate generator. For UART module, the variable baud rate alternatively can be set by the overflow rate on Timer 1.

3.13.1 Baud-Rate Generator

Both UART modules have their own dedicated baud-rate generator, which is based on a programmable 8-bit reload value, and includes divider stages (i.e., prescaler and

Table 32 Deviation Error for UART with Fractional Divider enabled									
f _{pclk}	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error					
24 MHz	1	6 (6 _H)	59 (3B _H)	+0.03 %					
12 MHz	1	3 (3 _H)	59 (3B _H)	+0.03 %					
8 MHz	1	2 (2 _H)	59 (3B _H)	+0.03 %					
6 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %					

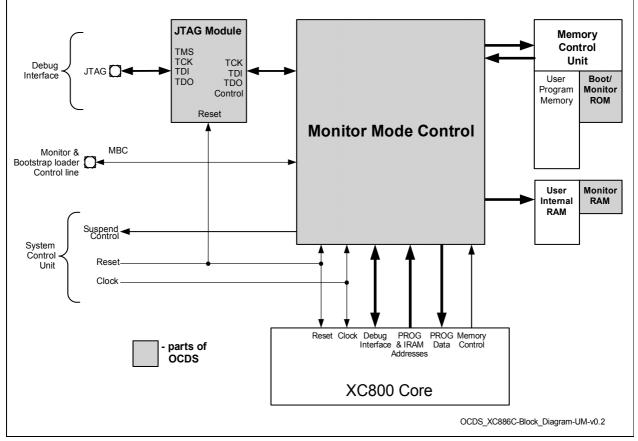
Table 32 Deviation Error for UART with Fractional Divider enabled

3.13.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 baud rate=
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.6)


3.14 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see **Figure 26**). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.7)

3.23.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the XC87x Flash devices are given in Table 36.

Device Type	Device Name	JTAG ID	
Flash	XC87x*-16FF	1018 2083 _H	
	XC87x*-13FF	1018 3083 _H	

Note: The asterisk (*) above denotes all possible device configurations.

3.24 Chip Identification Number

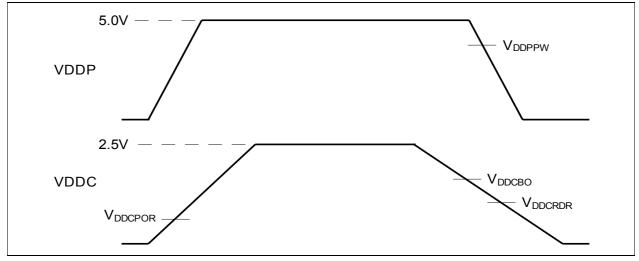
The XC87x identity (ID) register is located at Page 1 of address $B3_{H}$. The value of ID register is 49_{H} . However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product, variant type and device step information.

Two methods are provided to read a device's chip identification number:

- In-application subroutine, GET_CHIP_INFO
- Bootstrap loader (BSL) mode A

Table 37 lists the chip identification numbers of available XC87x Flash device variants.

Product Variant	Chip Identification Number AC-step					
Flash Devices						
XC878-16FF 5V	4B580063 _H					
XC878M-16FF 5V	4B580023 _H					
XC878CM-16FF 5V	4B580003 _H					
XC878LM-16FF 5V	4B500023 _H					
XC878CLM-16FF 5V	4B500003 _H					
XC878-13FF 5V	4B590463 _H					
XC878M-13FF 5V	4B590423 _H					
XC878CM-13FF 5V	4B590403 _H					
XC878LM-13FF 5V	4B510423 _H					
XC878CLM-13FF 5V	4B510403 _H					
XC878-16FF 3V3	4B180063 _H					
XC878M-16FF 3V3	4B180023 _H					
XC878CM-16FF 3V3	4B180003 _H					
XC878-13FF 3V3	4B190463 _H					
XC878M-13FF 3V3	4B190423 _H					
XC878CM-13FF 3V3	4B190403 _H					
XC874CM-16FV 5V	4B580002 _H					
XC874LM-16FV 5V	4B500022 _H					
XC874-16FV 5V	4B580062 _H					


 Table 37
 Chip Identification Number

Electrical Parameters

4.2.2 Supply Threshold Characteristics

 Table 41 provides the characteristics of the supply threshold in the XC87x.

Table 41 Supply Threshold Parameters (Operating Conditions apply)

Parameters	Symbol		Unit			
			min.	typ.	max.	
$V_{\rm DDC}$ brownout voltage ¹⁾	V _{DDCBO}	CC	1.7	1.9	2.2	V
RAM data retention voltage	V _{DDCRDR}	CC	1.2	-	-	V
$V_{\rm DDP}$ prewarning voltage ²⁾	V _{DDPPW}	CC	3.8	4.2	4.5	V
Power-on reset voltage ¹⁾³⁾	VDDCPOR	CC	1.7	1.9	2.2	V

1) Detection is enabled in both active and power-down mode.

2) Detection is enabled for 5.0V power supply variant. Detection is disabled for 3.3V power supply variant.

3) The reset of EVR is extended by 300 μ s typically after the VDDC reaches the power-on reset voltage.

Electrical Parameters

4.3.3 Power-on Reset and PLL Timing

Table 48 provides the characteristics of the power-on reset and PLL timing in the XC87x.

Table 48 Power-On Reset and PLL Timing (Operating Conditions apply)

Parameter	Symbol		Limit Values			Unit	Test Conditions	
			min.	typ.	max.	-		
On-Chip Oscillator start-up time	t _{OSCST}	CC	-	-	500	ns	1)	
PLL lock-in in time	t _{LOCK}	CC	-	_	200	μS	1)	
PLL accumulated jitter	D _P		_	_	1.8	ns	1)2)	

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

2) PLL lock at 144 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 72 and P = 1.

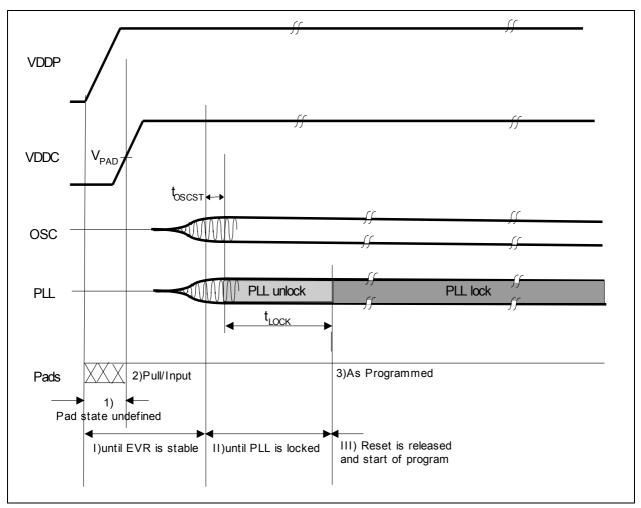
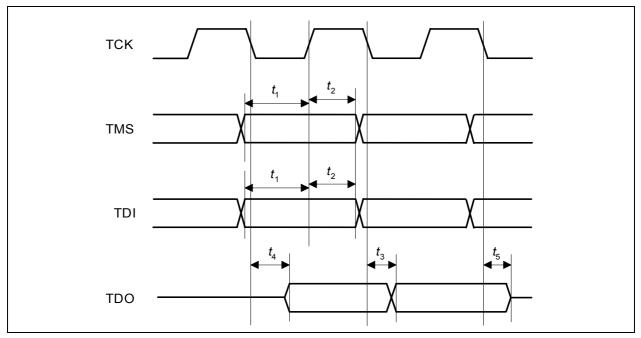


Figure 40 Power-on Reset Timing



Electrical Parameters

Table 54 JTAG Timing (Operating Conditions apply; CL = 50 pr) (cont d)							
Parameter	Symbol	Limits		Limits		Unit	Test Conditions
		min	max				
TDO high impedance to valid	t_4 CC	-	18	ns	5V Device ¹⁾		
output from TCK		-	21	ns	3.3V Device ¹⁾		
TDO valid output to high	t ₅ CC	-	21	ns	5V Device ¹⁾		
impedance from TCK		-	20	ns	3.3V Device ¹⁾		

Table 54JTAG Timing (Operating Conditions apply; CL = 50 pF) (cont'd)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Package and Quality Declaration

5.2 Package Outline

Figure 47 shows the package outlines of the XC878.

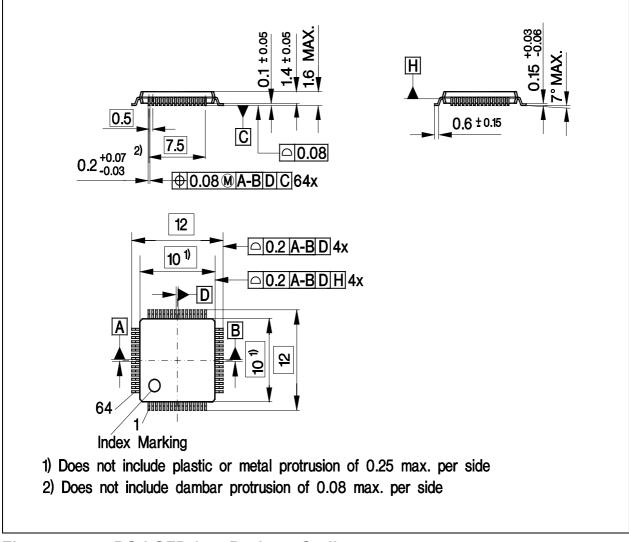


Figure 47 PG-LQFP-64-4 Package Outline