

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc878lm16ffa5vackxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2.2 Logic Symbol

The logic symbols of the XC878 and XC874 are shown in Figure 3.

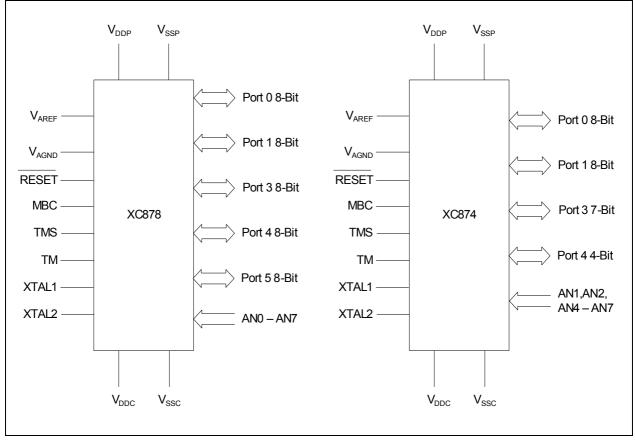


Figure 3 XC878 and XC874 Logic Symbol

XC87xCLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P0.3	63/1		Hi-Z	SCK_1 COUT63_1	SSC Clock Input/Output Output of Capture/Compare channel 3
				RXDO1_0 A17	UART1 Transmit Data Output Address Line 17 Output
P0.4	64/2		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input
				CC62_1	Input/Output of Capture/Compare channel 2
				TXD1_0	UART1 Transmit Data Output/Clock Output
				A18	Address Line 18 Output
P0.5	1/3		Hi-Z	MRST_1	SSC Master Receive Input/Slave Transmit Output
				EXINT0_0	External Interrupt Input 0
				T2EX1_1	Timer 21 External Trigger Input
				RXD1_0	UART1 Receive Data Input
				COUT62_1	Output of Capture/Compare channel 2
				A19	Address Line 19 Output
P0.6	2/4		PU	<u>T2CC4_</u> 1 WR	Compare Output Channel 4 External Data Write Control Output
P0.7	62/48		PU	CLKOUT_1 T2CC5_1 RD	Clock Output Compare Output Channel 5 External Data Read Control Output

XC87xCLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P4.5	46/-		Hi-Z	CCPOS1_3 T1_0 COUT61_2	CCU6 Hall Input 1 Timer 1 Input Output of Capture/Compare channel 1
				T2CC3_0/ EXINT6_2 D5	External Interrupt Input 6/T2CCU Capture/Compare Channel 3 Data Line 5 Input/Output
P4.6	47/-		Hi-Z	CCPOS2_3 T2_0 CC62_2 T2CC4_0 D6	CCU6 Hall Input 2 Timer 2 Input Output of Capture/Compare channel 2 Compare Output Channel 4 Data Line 6 Input/Output
P4.7	48/-		Hi-Z	CTRAP_3 COUT62_2 T2CC5_0 D7	

Flash Protection	Without hardware protection	With hardware protect	tion
P-Flash program and erase	Possible	Possible only on the condition that MSB - 1 of password is set to 1	Possible only on the condition that MSB - 1 of password is set to 1
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash
External access to D- Flash	Not possible	Not possible	Not possible
D-Flash program	Possible	Possible	Possible, on the condition that MSB - 1 of password is set to 1
D-Flash erase	Possible	 Possible, on these conditions: MISC_CON.DFLASH EN bit is set to 1 prior to each erase operation; or the MSB - 1 of password is set to 1 	Possible, on the condition that MSB - 1 of password is set to 1

Table 4Flash Protection Modes (cont'd)

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. To disable the flash protection, a password match is required. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. With a valid password, the Flash hardware protection is then enabled or disabled upon next reset. For the other protection strategies, no reset is necessary.

Although no protection scheme can be considered infallible, the XC87x memory protection strategy provides a very high level of protection for a general purpose microcontroller.

Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents.

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description					
RMAP	0	rw	 Interrupt Node XINTR0 Enable The access to the standard SFR area is enabled The access to the mapped SFR area is enabled 					
1	2	r	Reserved Returns 1 if read; should be written with 1.					
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.					

Note: The RMAP bit should be cleared/set by ANL or ORL instructions. The rest bits of SYSCON0 should not be modified.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC87x has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 10**.

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
9CH	CD_CORDYL Reset: 00 _H	Bit Field		DATAL						
	CORDIC Y Data Low Byte	Туре		rw						
9D _H	CD_CORDYH Reset: 00 _H	Bit Field	DATAH							
	CORDIC Y Data High Byte	Туре		rw						
9E _H	CD_CORDZL Reset: 00 _H	Bit Field				DA	TAL			
	CORDIC Z Data Low Byte	Туре	rw							
9F _H	CD_CORDZH Reset: 00 _H	Bit Field	DATAH							
	CORDIC Z Data High Byte	Туре	rw							
^0 _H	CD_STATC Reset: 00 _H CORDIC Status and Data	Bit Field	KEEP Z	KEEP Y	KEEP X	DMAP	INT_E N	EOC	ERRO R	BSY
	Control Register	Туре	rw	rw	rw	rw	rw	rwh	rh	rh
А1 _Н	CD_CON Reset: 00 _H CORDIC Control Register	Bit Field	MPS		X_USI GN	ST_M ODE	ROTV EC	MC	DE	ST
		Туре	n	N	rw	rw	rw	r	W	rwh

Table 7CORDIC Register Overview (cont'd)

3.2.4.4 System Control Registers

The system control SFRs can be accessed in the mapped memory area (RMAP = 0).

Table 8 SCU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0 or 1									
8F _H	F _H SYSCON0 Reset: 04 _H System Control Register 0			0		IMOD E	0	1	0	RMAP
		Туре		r		rw	r	r	r	rw
RMAP =	= 0									
bf _H	SCU_PAGE Reset: 00 _H	Bit Field	(OP	ST	NR	0		PAGE	
	Page Register	Туре	w		١	N	r		rwh	
RMAP =	= 0, PAGE 0				•					
	MODPISEL Reset: 00 _H Peripheral Input Select Register	Bit Field	0	URRIS H	JTAGT DIS	JTAGT CKS	EXINT 2IS	EXINT 1IS	EXINT 0IS	URRIS
		Туре	r	rw	rw	rw	rw	rw	rw	rw
B4 _H	IRCON0 Reset: 00 _H Interrupt Request Register 0	Bit Field	0	EXINT 6	EXINT 5	EXINT 4	EXINT 3	EXINT 2	EXINT 1	EXINT 0
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
B5 _H	IRCON1 Reset: 00 _H Interrupt Request Register 1	Bit Field	0	CANS RC2	CANS RC1	ADCS R1	ADCS R0	RIR	TIR	EIR
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
B6 _H	IRCON2 Reset: 00 _H Interrupt Request Register 2	Bit Field	0			CANS RC3		0		CANS RC0
		Туре		r		rwh		r		rwh

3.2.4.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1					•				
вв _Н	B _H WDTCON Reset: 00 _H Watchdog Timer Control Register	Bit Field		0	WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N
Register	Register	Туре		r	rw	rh	r	rw	rwh	rw
вс _Н	WDTREL Reset: 00 _H	Bit Field	WDTREL							
	Watchdog Timer Reload Register	Туре	rw							
вd _Н	WDTWINB Reset: 00 _H	Bit Field	WDTWINB							
	Watchdog Window-Boundary Count Register	Туре	rw							
BE _H	WDTL Reset: 00 _H	Bit Field	WDT							
	Watchdog Timer Register Low	Туре	rh							
bf _h	WDTH Reset: 00 _H	Bit Field	WDT							
	Watchdog Timer Register High		rh							

Table 9WDT Register Overview

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
B2 _H	PORT_PAGE Reset: 00 _H	Bit Field	C)P	ST	NR	0		PAGE	
	Page Register	Туре	Ņ	N	١	N	r		rwh	
RMAP =	= 0, PAGE 0	-								
80 _H	P0_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
P0	P0 Data Register	Туре	rwh	rwh						
86 _H	P0_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Register	Туре	rw	rw						
90 _H	P1_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register	Туре	rwh	rwh						
91 _H	P1_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Register	Туре	rw	rw						
92 _H	P5_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register	Туре	rwh	rwh						
93 _H	P5_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
P5 Direction Reg	P5 Direction Register	Туре	rw	rw						

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
св _Н	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
сс ^н	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CD _H	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CEH	ADC_VFCR Reset: 00 _H	Bit Field		()		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register	Туре		l	r		w	w	w	w
RMAP =	0, PAGE 5									
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0
		Туре	rh							
св _Н	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0
		Туре	w	w	w	w	w	w	w	w
сс _Н	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0
		Туре	w	w	w	w	w	w	w	w
CD _H	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0
	Register	Туре	rw							
Ceh	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	(0	EVINF 1	EVINF 0
		Туре	rh	rh	rh	rh		r	rh	rh
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	(0	EVINC 1	EVINC 0
	Register	Туре	W	w	w	w		r	w	w
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	(0	EVINS 1	EVINS 0
		Туре	w	w	w	w		r	w	w
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	(D	EVINP 1	EVINP 0
	Register	Туре	rw	rw	rw	rw		r	rw	rw
RMAP =	0, PAGE 6									
CA _H	ADC_CRCR1 Reset: 00 _H	Bit Field	CH7	CH6	CH5	CH4		(0	
	Conversion Request Control Register 1	Туре	rwh	rwh	rwh	rwh			r	
св _Н	ADC_CRPR1 Reset: 00 _H	Bit Field	CHP7	CHP6	CHP5	CHP4		(0	
	Conversion Request Pending Register 1	Туре	rwh	rwh	rwh	rwh			r	

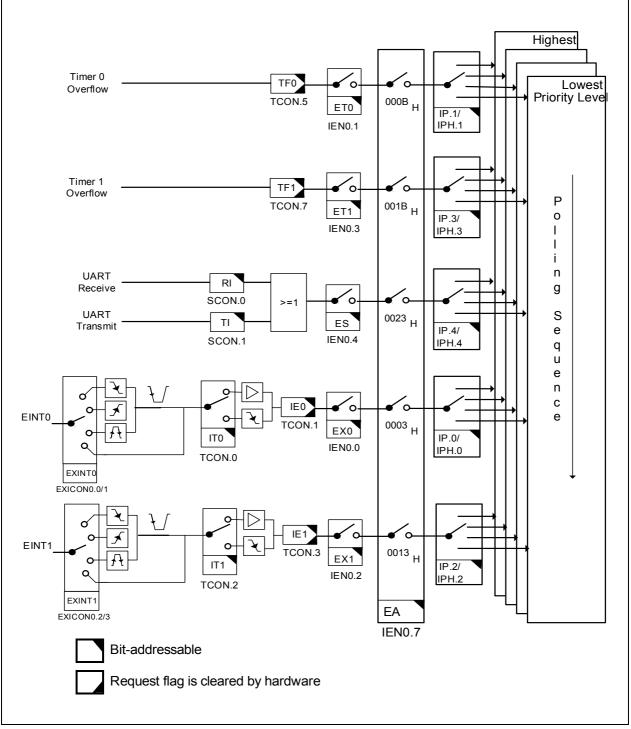


Figure 13 Interrupt Request Sources (Part 1)

XC87xCLM

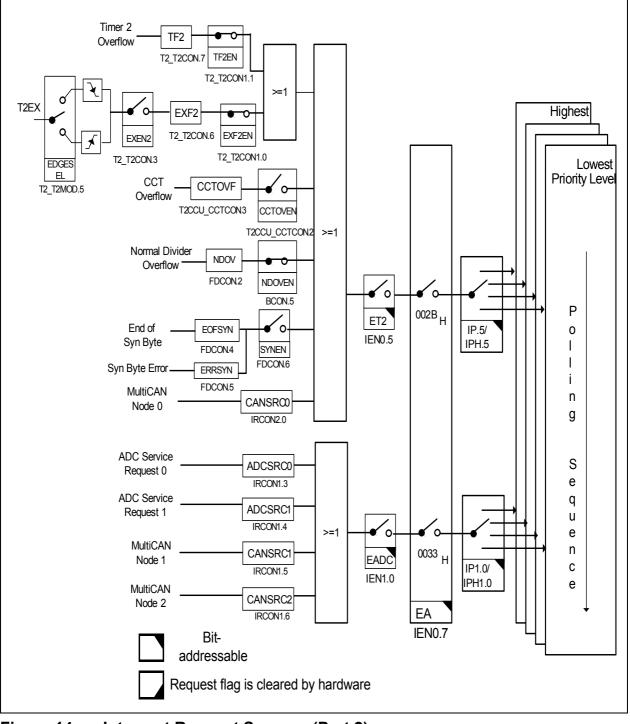


Figure 14 Interrupt Request Sources (Part 2)

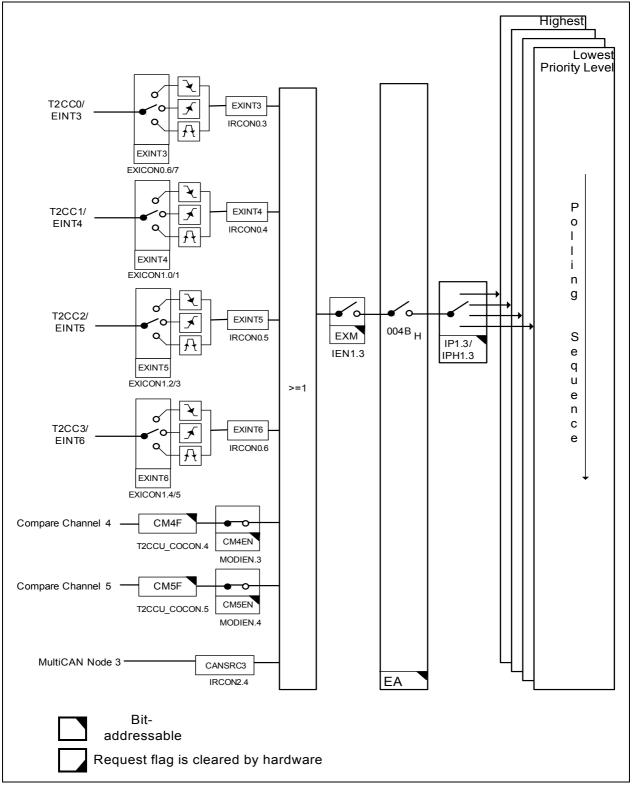


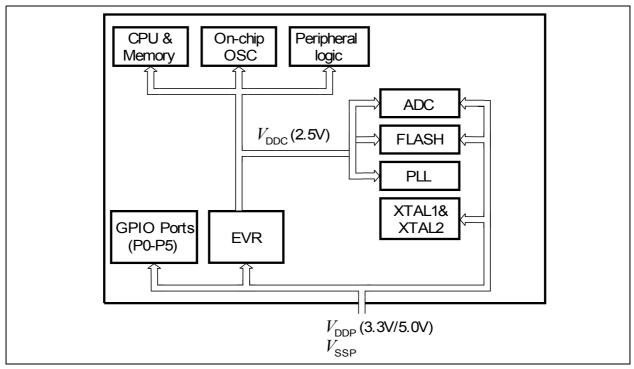
Figure 16 Interrupt Request Sources (Part 4)

3.5 Parallel Ports

The XC87x has 40 port pins organized into five parallel ports: Port 0 (P0), Port 1 (P1), Port 3 (P3), Port 4 (P4) and Port 5 (P5). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. These ports are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected.

Bidirectional Port Features

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Configurable drive strength
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals


3.6 Power Supply System with Embedded Voltage Regulator

The XC87x microcontroller requires two different levels of power supply:

- 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 19 shows the XC87x power supply system. A power supply of 3.3 V or 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design.

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode¹⁾, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

72

Figure 19 XC87x Power Supply System

EVR Features

- Input voltage (V_{DDP}): 3.3 V/5.0 V
- Output voltage (V_{DDC}): 2.5 V ± 7.5%
- Low power voltage regulator provided in power-down mode¹⁾
- V_{DDP} prewarning detection
- V_{DDC} brownout detection

¹⁾ SAK product variant does not support power-down mode.

3.11 Multiplication/Division Unit

The Multiplication/Division Unit (MDU) provides fast 16-bit multiplication, 16-bit and 32-bit division as well as shift and normalize features. It has been integrated to support the XC87x Core in real-time control applications, which require fast mathematical computations.

Features

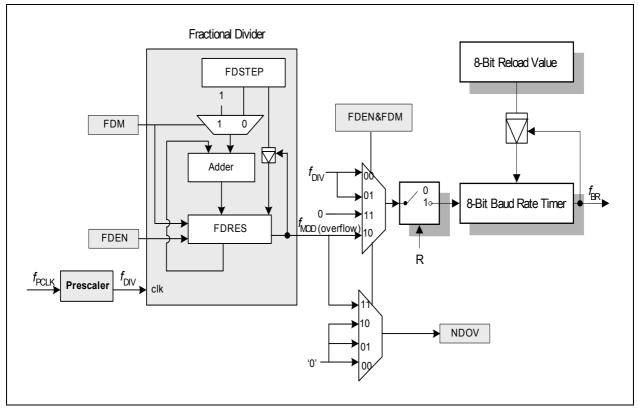
- Fast signed/unsigned 16-bit multiplication
- Fast signed/unsigned 32-bit divide by 16-bit and 16-bit divide by 16-bit operations
- 32-bit unsigned normalize operation
- 32-bit arithmetic/logical shift operations

Table 29 specifies the number of clock cycles used for calculation in various operations.

Operation	Result	Remainder	No. of Clock Cycles used for calculation
Signed 32-bit/16-bit	32-bit	16-bit	33
Signed 16-bit/16bit	16-bit	16-bit	17
Signed 16-bit x 16-bit	32-bit	-	16
Unsigned 32-bit/16-bit	32-bit	16-bit	32
Unsigned 16-bit/16-bit	16-bit	16-bit	16
Unsigned 16-bit x 16-bit	32-bit	-	16
32-bit normalize	-	-	No. of shifts + 1 (Max. 32)
32-bit shift L/R	-	-	No. of shifts + 1 (Max. 32)

 Table 29
 MDU Operation Characteristics

3.12 CORDIC Coprocessor


The CORDIC Coprocessor provides CPU with hardware support for the solving of circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions.

Features

- Modes of operation
 - Supports all CORDIC operating modes for solving circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions
 - Integrated look-up tables (LUTs) for all operating modes
- Circular vectoring mode: Extended support for values of initial X and Y data up to full range of [-2¹⁵,(2¹⁵-1)] for solving angle and magnitude
- Circular rotation mode: Extended support for values of initial Z data up to full range of $[-2^{15},(2^{15}-1)]$, representing angles in the range $[-\pi,((2^{15}-1)/2^{15})\pi]$ for solving trigonometry
- Implementation-dependent operational frequency of up to 80 MHz
- Gated clock input to support disabling of module
- 16-bit accessible data width
 - 24-bit kernel data width plus 2 overflow bits for X and Y each
 - 20-bit kernel data width plus 1 overflow bit for Z
 - With KEEP bit to retain the last value in the kernel register for a new calculation
- 16 iterations per calculation: Approximately 41 clock-cycles or less, from set of start (ST) bit to set of end-of-calculation flag, excluding time taken for write and read access of data bytes.
- Twos complement data processing
- Only exception: X result data with user selectable option for unsigned result
- X and Y data generally accepted as integer or rational number; X and Y must be of the same data form
- Entries of LUTs are 20-bit signed integers
 - Entries of atan and atanh LUTs are integer representations (S19) of angles with the scaling such that $[-2^{15},(2^{15}-1)]$ represents the range $[-\pi,((2^{15}-1)/2^{15})\pi]$
 - Accessible Z result data for circular and hyperbolic functions is integer in data form of S15
- Emulated LUT for linear function
 - Data form is 1 integer bit and 15-bit fractional part (1.15)
 - Accessible Z result data for linear function is rational number with fixed data form of S4.11 (signed 4Q16)
- Truncation Error
 - The result of a CORDIC calculation may return an approximation due to truncation of LSBs
 - Good accuracy of the CORDIC calculated result data, especially in circular mode
- Interrupt
 - On completion of a calculation

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 26**.

Figure 26Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

XC87xCLM

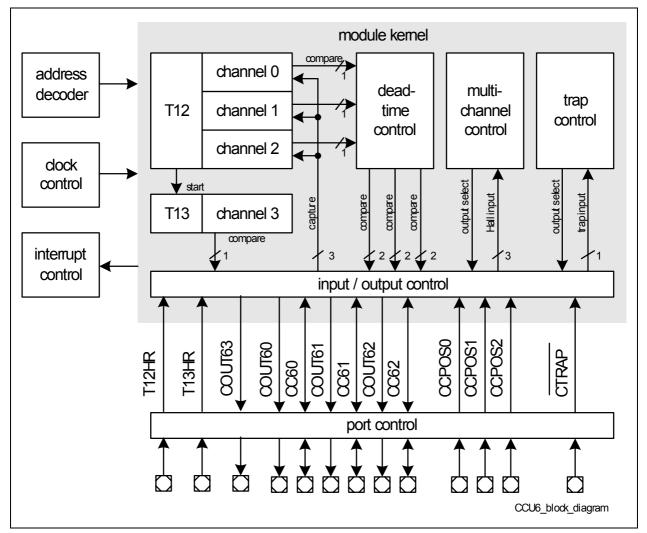


Figure 29 CCU6 Block Diagram

Electrical Parameters

4.1.3 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the XC87x. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

Table 39	Operating	Condition	Parameters
----------	-----------	-----------	------------

Parameter	Symbol	Limit Values		Unit	Notes/
		min.	max.		Conditions
Digital power supply voltage	V_{DDP}	4.5	5.5	V	5V Device
Digital power supply voltage	V _{DDP}	3.0	3.6	V	3.3V Device
Digital ground voltage	V _{SS}	0		V	
CPU Clock Frequency ¹⁾	f _{cclk}		26.67 ²⁾	MHz	
Ambient temperature	T _A	-40	85	°C	SAF-XC878/874
		-40	105	°C	SAX-XC878
		-40	125	°C	SAK-XC878/874

1) f_{CCLK} is the input frequency to the XC800 core. Please refer to Figure 22 for detailed description.

2)Default setting of f_{CCLK} upon reset is 24 MHz.

Electrical Parameters

Table 45Power Supply Current Parameters¹⁾ (Operating Conditions apply; $V_{\text{DDP}} = 3.3V$ range)

Parameter	Symbol	Limit Values		Unit	Test
		typ. ²⁾	max. ³⁾		Conditions
V_{DDP} = 3.3V Range					
Active Mode	I _{DDP}	35.4	43	mA	4)
Idle Mode	I _{DDP}	27.6	33	mA	5)
Active Mode with slow-down enabled	I _{DDP}	8.6	13	mA	6)
Idle Mode with slow-down enabled	I _{DDP}	8	12	mA	7)

1) The table is only applicable to SAF and SAX variants.

2) The typical I_{DDP} values are based on preliminary measurements and are to be used as reference only. These values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 3.3 V.

3) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 105 °C and V_{DDP} = 3.6 V).

4) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz with onchip oscillator of 4 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

5) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

- 6) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , $\overline{\text{RESET}} = V_{\text{DDP}}$; all other pins are disconnected, no load on ports.
- 7) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

Package and Quality Declaration

5.3 Quality Declaration

Table 57 shows the characteristics of the quality parameters in the XC87x.

Table 57	Quality Parameters
----------	--------------------

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		
Operation Lifetime when the device is used at the two stated $T_J^{(1)}$	t _{OP1}	-	15000	hours	$T_{\rm J} = 110^{\circ}{\rm C}$
		-	2000	hours	$T_{\rm J}$ = -40°C
Operation Lifetime when the device is used at the five stated $T_J^{(1)}$	t _{OP2}	-	120	hours	$T_{\rm J} = 140^{\circ}{\rm C}$
		-	960	hours	<i>T</i> _J = 135°C
		-	7800	hours	$T_{\rm J} = 91^{\circ}{\rm C}$
		-	2400	hours	$T_{\rm J} = 38^{\circ}{\rm C}$
		-	720	hours	$T_{\rm J}$ = -25°C
ESD susceptibility according to Human Body Model (HBM)	V _{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM) pins	V _{CDM}	-	750	V	Conforming to JESD22-C101-C

1) This lifetime refers only to the time when device is powered-on.