

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	27MHz
Connectivity	SPI, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	52KB (52K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc878m13ffi3v3acfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2011-03 Published by Infineon Technologies AG 81726 Munich, Germany © 2011 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

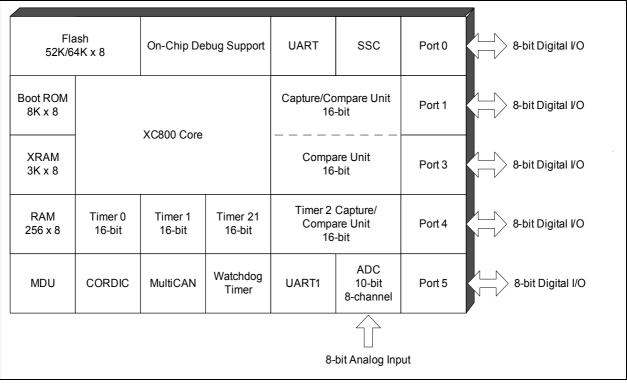
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

8-Bit Single-Chip Microcontroller


XC87xCLM

1 Summary of Features

The XC87x has the following features:

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- · On-chip memory
 - 8 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 3 Kbytes of XRAM
 - 64/52 Kbytes of Flash;
 - (includes memory protection strategy)
- I/O port supply at 3.3 V or 5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(more features on next page)

Figure 1 XC87x Functional Units

XC87xCLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P1.5	39/30		PU	CCPOS0_1 EXINT5_0 T1_1 MRST_2 EXF2_0 RXDO_0	•
P1.6	10/9		PU	CCPOS1_1 T12HR_0 EXINT6_0 RXDC0_2 T21_1	CCU6 Timer 12 Hardware Run Input
P1.7	11/10		PU	CCPOS2_1 T13HR_0 T2_1 TXDC0_2	CCU6 Timer 13 Hardware Run Input Timer 2 Input MultiCAN Node 0 Transmitter Output
					.6 can be used as a software chip t for the SSC.

XC87xCLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function	
P3.4	51/37		Hi-Z	CC62_0 RXDC0_1 T2EX1_0 T2CC3_1/ EXINT6_3 A14	Input/Output of Capture/Compare channel 2 MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input External Interrupt Input 6/T2CCU Capture/Compare Channel 3 Address Line 14 Output
P3.5	52/38		Hi-Z	COUT62_0 EXF21_0 TXDC0_1 A15	Output of Capture/Compare channel 2 Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output Address Line 15 Output
P3.6	41/32		PU	CTRAP_0	CCU6 Trap Input
P3.7	42/-		Hi-Z	EXINT4_0 COUT63_0 A16	External Interrupt Input 4 Output of Capture/Compare channel 3 Address Line 16 Output

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64 / VQFN-48)	Туре	Reset State	Function			
Ρ4		I/O		Port 4 Port 4 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, Timer 0, Timer 1, T2CCU, Timer 21, MultiCAN and External Bus Interface. Note: External Bus Interface is not available in XC874.			
P4.0	59/45		Hi-Z	RXDC0_3 CC60_1 T2CC0_0/ EXINT3_1 D0	MultiCAN Node 0 Receiver Input Output of Capture/Compare channel 0 External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Data Line 0 Input/Output		
P4.1	60/46		Hi-Z	TXDC0_3 COUT60_1 T2CC1_0/ EXINT4_1 D1	MultiCAN Node 0 Transmitter Output Output of Capture/Compare channel 0 External Interrupt Input 4/T2CCU Capture/Compare Channel 1 Data Line 1 Input/Output		
P4.2	61/47		PU	EXINT6_1 T21_0 D2	External Interrupt Input 6 Timer 21 Input Data Line 2 Input/Output		
P4.3	40/31		Hi-Z	T2EX_1 EXF21_1 COUT63_2 D3	Timer 2 External Trigger Input Timer 21 External Flag Output Output of Capture/Compare channel 3 Data Line 3 Input/Output		
P4.4	45/-		Hi-Z	CCPOS0_3 T0_0 CC61_4 T2CC2_0/ EXINT5_1 D4	CCU6 Hall Input 0 Timer 0 Input Output of Capture/Compare channel 1 External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Data Line 4 Input/Output		

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable The access to the standard SFR area is enabled The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions. The rest bits of SYSCON0 should not be modified.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC87x has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 10**.

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
91 _H	P1_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Alternate Select 1 Register	Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Alternate Select 0 Register	Туре	rw							
93 _H	P5_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Alternate Select 1 Register	Туре	rw							
во _Н	P3_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 0 Register	Туре	rw							
B1 _H	P3_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 1 Register	Туре	rw							
C8 _H	P4_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Alternate Select 0 Register	Туре	rw							
C9 _H	P4_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Alternate Select 1 Register	Туре	rw							
RMAP =	0, PAGE 3									
80 _H	P0_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Open Drain Control Register	Туре	rw							
86 _H	P0_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Drive Strength Control Register	Туре	rw							
90 _H	P1_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Open Drain Control Register	Туре	rw							
91 _H	P1_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Drive Strength Control Register	Туре	rw							
92 _H	P5_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Open Drain Control Register	Туре	rw							
93 _H	P5_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Drive Strength Control Register	Туре	rw							
в0 _Н	P3_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Open Drain Control Register	Туре	rw							
B1 _H	P3_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Drive Strength Control Register	Туре	rw							
C8 _H	P4_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Open Drain Control Register	Туре	rw							
C9 _H	P4_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Drive Strength Control Register	Туре	rw							

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
св _Н	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
сс ^н	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CD _H	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CEH	ADC_VFCR Reset: 00 _H	Bit Field		()		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register	Туре		l	r		w	w	w	w
RMAP =	0, PAGE 5									
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0
		Туре	rh							
св _Н	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0
		Туре	w	w	w	w	w	w	w	w
сс _Н	CH ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0
		Туре	w	w	w	w	w	w	w	w
CD _H	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0
	Register	Туре	rw							
Ceh	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	(0	EVINF 1	EVINF 0
		Туре	rh	rh	rh	rh		r	rh	rh
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	()	EVINC 1	EVINC 0
	Register	Туре	W	w	w	w		r	w	w
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	(0	EVINS 1	EVINS 0
		Туре	w	w	w	w		r	w	w
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	(D	EVINP 1	EVINP 0
	Register		rw	rw	rw	rw		r	rw	rw
RMAP =	0, PAGE 6									
CA _H	ADC_CRCR1 Reset: 00 _H	Bit Field	CH7	CH6	CH5	CH4		(0	
	Conversion Request Control Register 1	Туре	rwh	rwh	rwh	rwh			r	
св _Н	ADC_CRPR1 Reset: 00 _H	Bit Field	CHP7	CHP6	CHP5	CHP4		(0	
	Conversion Request Pending Register 1	Туре	rwh	rwh	rwh	rwh			r	

Interrupt	Vector	Assignment for XC87x	Enable Bit	SFR
Source	Address			
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1
		ADC[1:0]		
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
		T21		
		CORDIC		
		UART1		
		UART1 Fractional Divider (Normal Divider Overflow)		
		MDU[1:0]		
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4	•	
		External Interrupt 5		
		External Interrupt 6		
		T2CCU		
		MultiCAN Node 3		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
		MultiCAN Node 4		
XINTR11	005B _H	CCU6 INP1	ECCIP1	
		MultiCAN Node 5		
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
		MultiCAN Node 6		
XINTR13	006B _H	CCU6 INP3	ECCIP3	
		MultiCAN Node 7		

3.6 Power Supply System with Embedded Voltage Regulator

The XC87x microcontroller requires two different levels of power supply:

- 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 19 shows the XC87x power supply system. A power supply of 3.3 V or 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design.

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode¹⁾, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

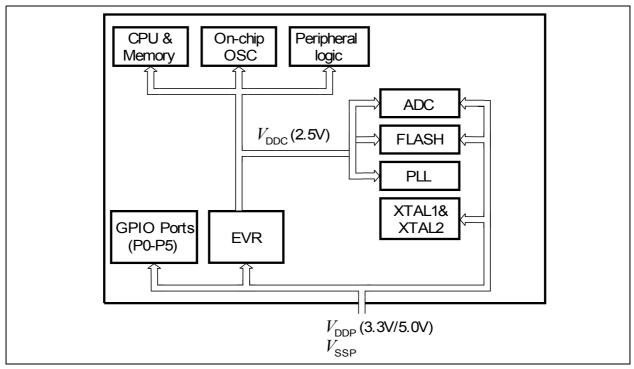


Figure 19 XC87x Power Supply System

EVR Features

- Input voltage (V_{DDP}): 3.3 V/5.0 V
- Output voltage (V_{DDC}): 2.5 V ± 7.5%
- Low power voltage regulator provided in power-down mode¹⁾
- V_{DDP} prewarning detection
- V_{DDC} brownout detection

¹⁾ SAK product variant does not support power-down mode.

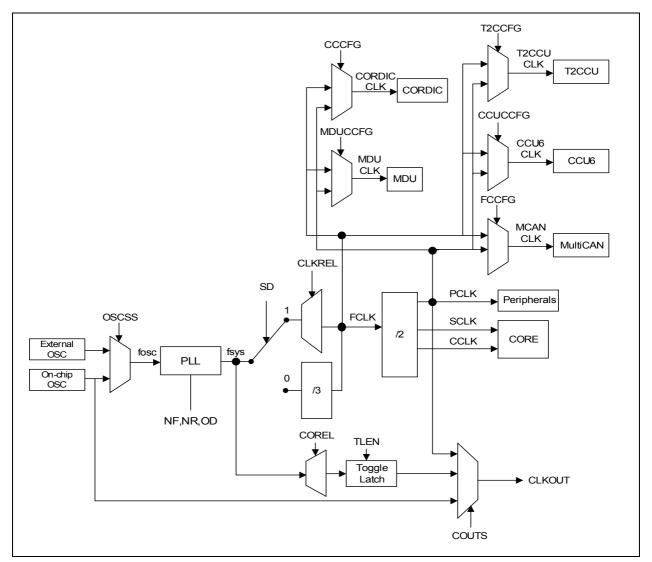


Figure 22 Clock Generation from f_{sys}

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC87x system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC87x will be aborted in a user-specified time period.

In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of $f_{PCLK}/2$ or $f_{PCLK}/128$
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{PCLK}/2$ or $f_{PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. **Figure 24** shows the block diagram of the WDT unit.

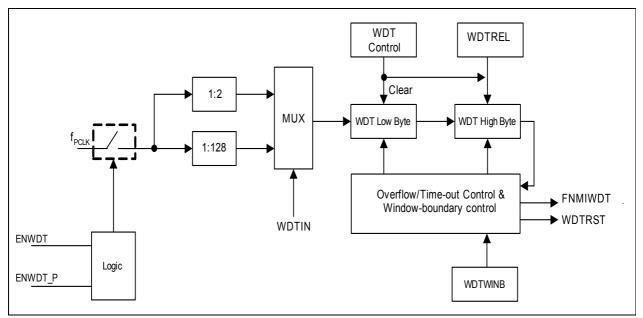


Figure 24 WDT Block Diagram

3.12 CORDIC Coprocessor

The CORDIC Coprocessor provides CPU with hardware support for the solving of circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions.

Features

- Modes of operation
 - Supports all CORDIC operating modes for solving circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions
 - Integrated look-up tables (LUTs) for all operating modes
- Circular vectoring mode: Extended support for values of initial X and Y data up to full range of [-2¹⁵,(2¹⁵-1)] for solving angle and magnitude
- Circular rotation mode: Extended support for values of initial Z data up to full range of $[-2^{15},(2^{15}-1)]$, representing angles in the range $[-\pi,((2^{15}-1)/2^{15})\pi]$ for solving trigonometry
- Implementation-dependent operational frequency of up to 80 MHz
- Gated clock input to support disabling of module
- 16-bit accessible data width
 - 24-bit kernel data width plus 2 overflow bits for X and Y each
 - 20-bit kernel data width plus 1 overflow bit for Z
 - With KEEP bit to retain the last value in the kernel register for a new calculation
- 16 iterations per calculation: Approximately 41 clock-cycles or less, from set of start (ST) bit to set of end-of-calculation flag, excluding time taken for write and read access of data bytes.
- Twos complement data processing
- Only exception: X result data with user selectable option for unsigned result
- X and Y data generally accepted as integer or rational number; X and Y must be of the same data form
- Entries of LUTs are 20-bit signed integers
 - Entries of atan and atanh LUTs are integer representations (S19) of angles with the scaling such that $[-2^{15},(2^{15}-1)]$ represents the range $[-\pi,((2^{15}-1)/2^{15})\pi]$
 - Accessible Z result data for circular and hyperbolic functions is integer in data form of S15
- Emulated LUT for linear function
 - Data form is 1 integer bit and 15-bit fractional part (1.15)
 - Accessible Z result data for linear function is rational number with fixed data form of S4.11 (signed 4Q16)
- Truncation Error
 - The result of a CORDIC calculation may return an approximation due to truncation of LSBs
 - Good accuracy of the CORDIC calculated result data, especially in circular mode
- Interrupt
 - On completion of a calculation

3.20 Capture/Compare Unit 6

The Capture/Compare Unit 6 (CCU6) provides two independent timers (T12, T13), which can be used for Pulse Width Modulation (PWM) generation, especially for AC-motor control. The CCU6 also supports special control modes for block commutation and multi-phase machines.

The timer T12 can function in capture and/or compare mode for its three channels. The timer T13 can work in compare mode only.

The multi-channel control unit generates output patterns, which can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal modulation.

Timer T12 Features

- Three capture/compare channels, each channel can be used either as a capture or as a compare channel
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and lowside switches)
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- Dead-time control for each channel to avoid short-circuits in the power stage
- Concurrent update of the required T12/13 registers
- · Generation of center-aligned and edge-aligned PWM
- Supports single-shot mode
- Supports many interrupt request sources
- Hysteresis-like control mode

Timer T13 Features

- One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock frequency
- Can be synchronized to T12
- Interrupt generation at period-match and compare-match
- Supports single-shot mode

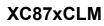
Additional Features

- Implements block commutation for Brushless DC-drives
- Position detection via Hall-sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- · Control modes for multi-channel AC-drives
- Output levels can be selected and adapted to the power stage

The block diagram of the CCU6 module is shown in **Figure 29**.

3.24 Chip Identification Number

The XC87x identity (ID) register is located at Page 1 of address $B3_{H}$. The value of ID register is 49_{H} . However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product, variant type and device step information.


Two methods are provided to read a device's chip identification number:

- In-application subroutine, GET_CHIP_INFO
- Bootstrap loader (BSL) mode A

Table 37 lists the chip identification numbers of available XC87x Flash device variants.

Product Variant	Chip Identification Number
	AC-step
Flash Devices	
XC878-16FF 5V	4B580063 _H
XC878M-16FF 5V	4B580023 _H
XC878CM-16FF 5V	4B580003 _H
XC878LM-16FF 5V	4B500023 _H
XC878CLM-16FF 5V	4B500003 _H
XC878-13FF 5V	4B590463 _H
XC878M-13FF 5V	4B590423 _H
XC878CM-13FF 5V	4B590403 _H
XC878LM-13FF 5V	4B510423 _H
XC878CLM-13FF 5V	4B510403 _H
XC878-16FF 3V3	4B180063 _H
XC878M-16FF 3V3	4B180023 _H
XC878CM-16FF 3V3	4B180003 _H
XC878-13FF 3V3	4B190463 _H
XC878M-13FF 3V3	4B190423 _H
XC878CM-13FF 3V3	4B190403 _H
XC874CM-16FV 5V	4B580002 _H
XC874LM-16FV 5V	4B500022 _H
XC874-16FV 5V	4B580062 _H

 Table 37
 Chip Identification Number

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC87x can be subjected to without permanent damage.

Parameter	Symbol	Limit Values		Unit	Notes	
		min.	max.			
Ambient temperature	T _A	-40	125	°C	under bias	
Storage temperature	T _{ST}	-65	150	°C		
Junction temperature	TJ	-40	140	°C	under bias	
Voltage on power supply pin with respect to V_{SS}	V _{DDP}	-0.5	6	V		
Voltage on any pin with respect to V_{SS}	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	Whatever is lower	
Input current on any pin during overload condition	I _{IN}	-10	10	mA		
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	-	50	mA		

Table 38	Absolute Maximum Rating Parameters
----------	------------------------------------

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

4.2 DC Parameters

The electrical characteristics of the DC Parameters are detailed in this section.

4.2.1 Input/Output Characteristics

Table 40 provides the characteristics of the input/output pins of the XC87x.

Table 40Input/Output Characteristics (Operating Conditions apply)	Table 40	Input/Output (Characteristics	(Operating	Conditions apply)
---	----------	----------------	-----------------	------------	-------------------

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
V_{DDP} = 5 V Range							
Output low voltage	V _{OL}	CC	_	0.6	V	$I_{OL} = 9 \text{ mA} (DS = 0)^{1}$ $I_{OL} = 12 \text{ mA} (DS = 1)^{2}$	
Output high voltage	V _{OH}	CC	2.4	-	V	$I_{\rm OH}$ = -20 mA (DS = 0) ¹⁾ $I_{\rm OH}$ = -25 mA (DS = 1) ²⁾	
Input low voltage	$V_{\rm IL}$	SR	-0.3	0.8	V	CMOS Mode	
Input high voltage	$V_{\rm IH}$	SR	2.2	V_{DDP}	V	CMOS Mode	
Input Hysteresis	HYS	CC	0.35	-	V	CMOS Mode ³⁾⁷⁾	
Input low voltage at XTAL1	V _{ILX}	SR	-0.3	0.8	V		
Input high voltage at XTAL1	V _{IHX}	SR	3.4	V _{DDP}	V		
Pull-up current	$I_{\rm PU}$	SR	-	-20	μA	V _{IH,min}	
			-88	_	μA	V _{IL,max}	
Pull-down current	$I_{\rm PD}$	SR	_	10	μA	V _{IL,max}	
			66	-	μA	V _{IH,min}	
Input leakage current	I _{OZ1}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 105^{\circ}C^{4)}$	
Overload current on any pin	I _{OV}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{OV} $	SR	-	25	mA	5)	
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	6)	

4.2.4 **Power Supply Current**

Table 43, **Table 44**, **Table 45** and **Table 46** provide the characteristics of the power supply current in the XC87x.

Table 43Power Supply Current Parameters (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit Values		Unit	Test Conditions				
		typ. ¹⁾	max. ²⁾						
V _{DDP} = 5V Range									
Active Mode	I _{DDP}	37.5	45	mA	³⁾ SAF and SAX variants				
		40.5	48	mA	³⁾ SAK variant				
Idle Mode	I _{DDP}	29.2	35	mA	⁴⁾ SAF and SAX variants				
		32.2	38	mA	⁴⁾ SAK variant				
Active Mode with slow- down enabled	I _{DDP}	10	15	mA	⁵⁾ SAF and SAX variants				
		13	18	mA	⁵⁾ SAK variant				
Idle Mode with slow- down enabled	I _{DDP}	9.2	14	mA	⁶⁾ SAF and SAX variants				
		12.2	17	mA	⁶⁾ SAK variant				

1) The typical I_{DDP} values are based on preliminary measurements and are to be used as reference only. These values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

2) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 105 °C and V_{DDP} = 5.5 V).

3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz with onchip oscillator of 4 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

5) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , $\overline{\text{RESET}} = V_{\text{DDP}}$; all other pins are disconnected, no load on ports.

6) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 1 MHz by setting CLKREL in CMCON to 1000_B, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

Table 45Power Supply Current Parameters¹⁾ (Operating Conditions apply; $V_{\text{DDP}} = 3.3V$ range)

Parameter	Symbol	Limit	Values	Unit	Test
		typ. ²⁾	max. ³⁾		Conditions
V_{DDP} = 3.3V Range					
Active Mode	I _{DDP}	35.4	43	mA	4)
Idle Mode	I _{DDP}	27.6	33	mA	5)
Active Mode with slow-down enabled	I _{DDP}	8.6	13	mA	6)
Idle Mode with slow-down enabled	I _{DDP}	8	12	mA	7)

1) The table is only applicable to SAF and SAX variants.

2) The typical I_{DDP} values are based on preliminary measurements and are to be used as reference only. These values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 3.3 V.

3) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 105 °C and V_{DDP} = 3.6 V).

4) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz with onchip oscillator of 4 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

5) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

- 6) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , $\overline{\text{RESET}} = V_{\text{DDP}}$; all other pins are disconnected, no load on ports.
- 7) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 1 MHz by setting CLKREL in CMCON to 1000_{B} , RESET = V_{DDP} ; all other pins are disconnected, no load on ports.

4.3.8 SSC Master Mode Timing

Table 55 provides the characteristics of the SSC timing in the XC87x.

Table 55 SS	C Master Mode Timing (Ope	erating Conditions apply; CL = 50 pF)
-------------	---------------------------	---------------------------------------

Parameter	Syn	nbol	Limit Values		Unit	Test Conditions
			min.	max.		
SCLK clock period	t ₀	CC	2*T _{SSC}	-	ns	1)2)
MTSR delay from SCLK	t ₁	CC	0	5	ns	2)
MRST setup to SCLK 飞	<i>t</i> ₂	SR	13	-	ns	2)
MRST hold from SCLK	t ₃	SR	0	-	ns	2)

1) $T_{SSCmin} = T_{CPU} = 1/f_{CPU}$. When $f_{CPU} = 24$ MHz, $t_0 = 83.3$ ns. T_{CPU} is the CPU clock period.

2) 1Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

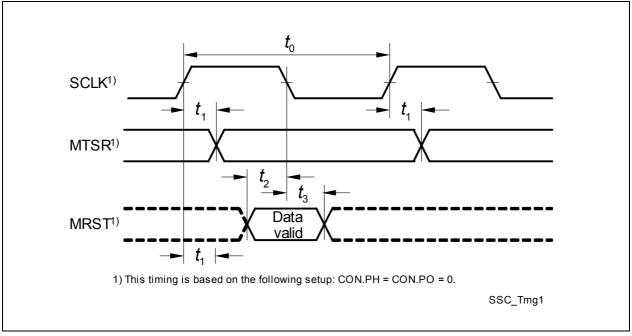


Figure 46 SSC Master Mode Timing