

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	60
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 2.75V
Data Converters	A/D 16x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12e64cfuer

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision History

Date	Revision Level	Description
October 10, 2005	01.07	New Data Sheet

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. This product incorporates SuperFlash® technology licensed from SST.

© Freescale Semiconductor, Inc., 2005. All rights reserved.

Chapter 9 Serial Peripheral Interface (SPIV3)

9.1	Introdu	ction	. 277
	9.1.1	Features	. 277
	9.1.2	Modes of Operation	. 277
	9.1.3	Block Diagram	. 278
9.2	Externa	l Signal Description	. 278
	9.2.1	MOSI — Master Out/Slave In Pin	. 278
	9.2.2	MISO — Master In/Slave Out Pin	. 279
	9.2.3	\overline{SS} — Slave Select Pin	. 279
	9.2.4	SCK — Serial Clock Pin	. 279
9.3	Memory	y Map and Register Definition	. 279
	9.3.1	Module Memory Map	. 279
	9.3.2	Register Descriptions	. 280
9.4	Functio	nal Description	. 287
	9.4.1	Master Mode	. 288
	9.4.2	Slave Mode	. 289
	9.4.3	Transmission Formats	. 290
	9.4.4	SPI Baud Rate Generation	. 293
	9.4.5	Special Features	. 294
	9.4.6	Error Conditions	. 295
	9.4.7	Operation in Run Mode	. 296
	9.4.8	Operation in Wait Mode	. 296
	9.4.9	Operation in Stop Mode	. 296
9.5	Reset .		. 297
9.6	Interrup	ots	. 297
	9.6.1	MODF	. 297
	9.6.2	SPIF	. 297
	9.6.3	SPTEF	. 297

Chapter 10 Inter-Integrated Circuit (IICV2)

10.1	Introduction	299
	10.1.1 Features	299
	10.1.2 Modes of Operation	300
	10.1.3 Block Diagram	300
10.2	External Signal Description	301
	10.2.1 IIC_SCL — Serial Clock Line Pin	301
	10.2.2 IIC_SDA — Serial Data Line Pin	301
10.3	Memory Map and Register Definition	301
	10.3.1 Module Memory Map	301
	10.3.2 Register Descriptions	302
10.4	Functional Description	313
	10.4.1 I-Bus Protocol	313

Chapter 2 128 Kbyte Flash Module (FTS128K1V1)

Chapter 4 Clocks and Reset Generator (CRGV4)

The VCO has a minimum operating frequency, which corresponds to the self-clock mode frequency f_{SCM}.

Figure 4-16. PLL Functional Diagram

4.4.1.1 PLL Operation

The oscillator output clock signal (OSCCLK) is fed through the reference programmable divider and is divided in a range of 1 to 16 (REFDV+1) to output the reference clock. The VCO output clock, (PLLCLK) is fed back through the programmable loop divider and is divided in a range of 2 to 128 in increments of $[2 \times (SYNR + 1)]$ to output the feedback clock. See Figure 4-16.

The phase detector then compares the feedback clock, with the reference clock. Correction pulses are generated based on the phase difference between the two signals. The loop filter then slightly alters the DC voltage on the external filter capacitor connected to XFC pin, based on the width and direction of the correction pulse. The filter can make fast or slow corrections depending on its mode, as described in the next subsection. The values of the external filter network and the reference frequency determine the speed of the corrections and the stability of the PLL.

4.4.1.2 Acquisition and Tracking Modes

The lock detector compares the frequencies of the feedback clock, and the reference clock. Therefore, the speed of the lock detector is directly proportional to the final reference frequency. The circuit determines the mode of the PLL and the lock condition based on this comparison.

Chapter 9 Serial Peripheral Interface (SPIV3)

The baud rate generator is activated only when the SPI is in the master mode and a serial transfer is taking place. In the other cases, the divider is disabled to decrease I_{DD} current.

BaudRateDivisor = $(SPPR + 1) \bullet 2^{(SPR + 1)}$

Figure 9-11. Baud Rate Divisor Equation

9.4.5 Special Features

9.4.5.1 **SS** Output

The \overline{SS} output feature automatically drives the \overline{SS} pin low during transmission to select external devices and drives it high during idle to deselect external devices. When \overline{SS} output is selected, the \overline{SS} output pin is connected to the \overline{SS} input pin of the external device.

The \overline{SS} output is available only in master mode during normal SPI operation by asserting SSOE and MODFEN bit as shown in Table 9-3.

The mode fault feature is disabled while \overline{SS} output is enabled.

NOTE

Care must be taken when using the \overline{SS} output feature in a multimaster system because the mode fault feature is not available for detecting system errors between masters.

9.4.5.2 Bidirectional Mode (MOSI or MISO)

The bidirectional mode is selected when the SPC0 bit is set in SPI Control Register 2 (see Table 9-9). In this mode, the SPI uses only one serial data pin for the interface with external device(s). The MSTR bit decides which pin to use. The MOSI pin becomes the serial data I/O (MOMI) pin for the master mode, and the MISO pin becomes serial data I/O (SISO) pin for the slave mode. The MISO pin in master mode and MOSI pin in slave mode are not used by the SPI.

When SPE = 1	Master Mode MSTR = 1	Slave Mode MSTR = 0
Normal Mode SPC0 = 0	Serial Out SPI Serial In	Serial In SPI Serial Out MISO
Bidirectional Mode SPC0 = 1	Serial Out SPI BIDIROE Serial In	Serial In SPI Serial Out

Table 9-9. Normal Mode and Bidirectional Mode

Table 10-7. IBCR Field Descriptions

Field	Description
7 IBEN	 I-Bus Enable — This bit controls the software reset of the entire IIC bus module. The module is reset and disabled. This is the power-on reset situation. When low the interface is held in reset but registers can be accessed The IIC bus module is enabled. This bit must be set before any other IBCR bits have any effect If the IIC bus module is enabled in the middle of a byte transfer the interface behaves as follows: slave mode ignores the current transfer on the bus and starts operating whenever a subsequent start condition is detected. Master mode will not be aware that the bus is busy, hence if a start cycle is initiated then the current bus cycle may become corrupt. This would ultimately result in either the current bus master or the IIC bus module losing arbitration, after which bus operation would return to normal.
6 IBIE	 I-Bus Interrupt Enable Interrupts from the IIC bus module are disabled. Note that this does not clear any currently pending interrupt condition Interrupts from the IIC bus module are enabled. An IIC bus interrupt occurs provided the IBIF bit in the status register is also set.
5 MS/SL	Master/Slave Mode Select Bit — Upon reset, this bit is cleared. When this bit is changed from 0 to 1, a START signal is generated on the bus, and the master mode is selected. When this bit is changed from 1 to 0, a STOP signal is generated and the operation mode changes from master to slave. A STOP signal should only be generated if the IBIF flag is set. MS/SL is cleared without generating a STOP signal when the master loses arbitration. 0 Slave Mode 1 Master Mode
4 Tx/Rx	 Transmit/Receive Mode Select Bit — This bit selects the direction of master and slave transfers. When addressed as a slave this bit should be set by software according to the SRW bit in the status register. In master mode this bit should be set according to the type of transfer required. Therefore, for address cycles, this bit will always be high. 0 Receive 1 Transmit
3 TXAK	 Transmit Acknowledge Enable — This bit specifies the value driven onto SDA during data acknowledge cycles for both master and slave receivers. The IIC module will always acknowledge address matches, provided it is enabled, regardless of the value of TXAK. Note that values written to this bit are only used when the IIC bus is a receiver, not a transmitter. 0 An acknowledge signal will be sent out to the bus at the 9th clock bit after receiving one byte data 1 No acknowledge signal response is sent (i.e., acknowledge bit = 1)
2 RSTA	 Repeat Start — Writing a 1 to this bit will generate a repeated START condition on the bus, provided it is the current bus master. This bit will always be read as a low. Attempting a repeated start at the wrong time, if the bus is owned by another master, will result in loss of arbitration. 1 Generate repeat start cycle
1 RESERVED	Reserved — Bit 1 of the IBCR is reserved for future compatibility. This bit will always read 0.
0 IBSWAI	I Bus Interface Stop in Wait Mode 0 IIC bus module clock operates normally 1 Halt IIC bus module clock generation in wait mode

Wait mode is entered via execution of a CPU WAI instruction. In the event that the IBSWAI bit is set, all clocks internal to the IIC will be stopped and any transmission currently in progress will halt. If the CPU were woken up by a source other than the IIC module, then clocks would restart and the IIC would resume

Chapter 11 Pulse Width Modulator with Fault Protection (PMF15B6CV2)

HALF = 1, LDFQ[3:0] = 00 = Reload every HALF-cycle

Figure 11-71. Half-Cycle Center-Aligned Modulus Loading

Chapter 13 Timer Module (TIM16B4CV1)

13.1 Introduction

The basic timer consists of a 16-bit, software-programmable counter driven by a seven-stage programmable prescaler.

This timer can be used for many purposes, including input waveform measurements while simultaneously generating an output waveform. Pulse widths can vary from microseconds to many seconds.

This timer contains 4 complete input capture/output compare channels IOC[7:4] and one pulse accumulator. The input capture function is used to detect a selected transition edge and record the time. The output compare function is used for generating output signals or for timer software delays. The 16-bit pulse accumulator is used to operate as a simple event counter or a gated time accumulator. The pulse accumulator shares timer channel 7 when in event mode.

A full access for the counter registers or the input capture/output compare registers should take place in one clock cycle. Accessing high byte and low byte separately for all of these registers may not yield the same result as accessing them in one word.

13.1.1 Features

The TIM16B4CV1 includes these distinctive features:

- Four input capture/output compare channels.
- Clock prescaling.
- 16-bit counter.
- 16-bit pulse accumulator.

13.1.2 Modes of Operation

Stop: Timer is off because clocks are stopped.

- Freeze: Timer counter keep on running, unless TSFRZ in TSCR (0x0006) is set to 1.
- Wait: Counters keep on running, unless TSWAI in TSCR (0x0006) is set to 1.
- Normal: Timer counter keep on running, unless TEN in TSCR (0x0006) is cleared to 0.

13.3.2.10 Timer Interrupt Enable Register (TIE)

Read: Anytime

Write: Anytime.

Table 13-12. TIE Field Descriptions

Field	Description
7:4 C7I:C0I	Input Capture/Output Compare "x" Interrupt Enable — The bits in TIE correspond bit-for-bit with the bits in the TFLG1 status register. If cleared, the corresponding flag is disabled from causing a hardware interrupt. If set, the corresponding flag is enabled to cause a interrupt.

13.3.2.11 Timer System Control Register 2 (TSCR2)

Read: Anytime

Write: Anytime.

Field	Description
7 TOI	Timer Overflow Interrupt Enable0 Interrupt inhibited.1 Hardware interrupt requested when TOF flag set.
3 TCRE	 Timer Counter Reset Enable — This bit allows the timer counter to be reset by a successful output compare 7 event. This mode of operation is similar to an up-counting modulus counter. 0 Counter reset inhibited and counter free runs. 1 Counter reset by a successful output compare 7. If TC7 = 0x0000 and TCRE = 1, TCNT will stay at 0x0000 continuously. If TC7 = 0xFFFF and TCRE = 1, TOF will never be set when TCNT is reset from 0xFFFF to 0x0000.
2 PR[2:0]	Timer Prescaler Select — These three bits select the frequency of the timer prescaler clock derived from the Bus Clock as shown in Table 13-14.

14.3.2 Register Descriptions

The following paragraphs describe, in address order, all the VREG3V3V2 registers and their individual bits.

14.3.2.1 VREG3V3V2 — Control Register (VREGCTRL)

The VREGCTRL register allows to separately enable features of VREG3V3V2.

Figure 14-2. VREG3V3 — Control Register (VREGCTRL)

Table	14-3.	MCCTL1	Field	Descriptions
-------	-------	--------	-------	--------------

Field	Description
2 LVDS	 Low-Voltage Detect Status Bit — This read-only status bit reflects the input voltage. Writes have no effect. Input voltage V_{DDA} is above level V_{LVID} or RPM or shutdown mode. Input voltage V_{DDA} is below level V_{LVIA} and FPM.
1 LVIE	Low-Voltage Interrupt Enable Bit 0 Interrupt request is disabled. 1 Interrupt will be requested whenever LVIF is set.
0 LVIF	 Low-Voltage Interrupt Flag — LVIF is set to 1 when LVDS status bit changes. This flag can only be cleared by writing a 1. Writing a 0 has no effect. If enabled (LVIE = 1), LVIF causes an interrupt request. 0 No change in LVDS bit. 1 LVDS bit has changed.

NOTE

On entering the reduced-power mode the LVIF is not cleared by the VREG3V3V2.

14.4 Functional Description

Block VREG3V3V2 is a voltage regulator as depicted in Figure 14-1. The regulator functional elements are the regulator core (REG), a low-voltage detect module (LVD), a power-on reset module (POR) and a low-voltage reset module (LVR). There is also the regulator control block (CTRL) which represents the interface to the digital core logic but also manages the operating modes of VREG3V3V2.

14.4.1 REG — Regulator Core

VREG3V3V2, respectively its regulator core has two parallel, independent regulation loops (REG1 and REG2) that differ only in the amount of current that can be sourced to the connected loads. Therefore, only REG1 providing the supply at V_{DD}/V_{SS} is explained. The principle is also valid for REG2.

14.5 Resets

This subsection describes how VREG3V3V2 controls the reset of the MCU. The reset values of registers and signals are provided in Section 14.3, "Memory Map and Register Definition". Possible reset sources are listed in Table 14-4.

Reset Source	Local Enable
Power-on reset	Always active
Low-voltage reset	Available only in full-performance mode

Table 14-4. VREG3V3V2 — Reset Sources

14.5.1 Power-On Reset

During chip power-up the digital core may not work if its supply voltage V_{DD} is below the POR deassertion level (V_{PORD}). Therefore, signal POR which forces the other blocks of the device into reset is kept high until V_{DD} exceeds V_{PORD} . Then POR becomes low and the reset generator of the device continues the start-up sequence. The power-on reset is active in all operation modes of VREG3V3V2.

14.5.2 Low-Voltage Reset

For details on low-voltage reset see Section 14.4.6, "LVR - Low-Voltage Reset".

14.6 Interrupts

This subsection describes all interrupts originated by VREG3V3V2.

The interrupt vectors requested by VREG3V3V2 are listed in Table 14-5. Vector addresses and interrupt priorities are defined at MCU level.

Interrupt Source	Local Enable
Low Voltage Interrupt (LVI)	LVIE = 1; Available only in full-performance mode

14.6.1 LVI — Low-Voltage Interrupt

In FPM VREG3V3V2 monitors the input voltage V_{DDA} . Whenever V_{DDA} drops below level V_{LVIA} the status bit LVDS is set to 1. Vice versa, LVDS is reset to 0 when V_{DDA} rises above level V_{LVID} . An interrupt, indicated by flag LVIF = 1, is triggered by any change of the status bit LVDS if interrupt enable bit LVIE = 1.

NOTE

On entering the reduced-power mode, the LVIF is not cleared by the VREG3V3V2.

Chapter 16 Debug Module (DBGV1)

The DBG in DBG mode includes these distinctive features:

- Three comparators (A, B, and C)
 - Dual mode, comparators A and B used to compare addresses
 - Full mode, comparator A compares address and comparator B compares data
 - Can be used as trigger and/or breakpoint
 - Comparator C used in LOOP1 capture mode or as additional breakpoint
- Four capture modes
 - Normal mode, change-of-flow information is captured based on trigger specification
 - Loop1 mode, comparator C is dynamically updated to prevent redundant change-of-flow storage.
 - Detail mode, address and data for all cycles except program fetch (P) and free (f) cycles are stored in trace buffer
 - Profile mode, last instruction address executed by CPU is returned when trace buffer address is read
- Two types of breakpoint or debug triggers
 - Break just before a specific instruction will begin execution (tag)
 - Break on the first instruction boundary after a match occurs (force)
- BDM or SWI breakpoint
 - Enter BDM on breakpoint (BDM)
 - Execute SWI on breakpoint (SWI)
- Nine trigger modes for comparators A and B
 - A
 - A or B
 - A then B
 - A and B, where B is data (full mode)
 - A and not B, where B is data (full mode)
 - Event only B, store data
 - A then event only B, store data
 - Inside range, $A \le address \le B$
 - Outside range, address < A or address > B
- Comparator C provides an additional tag or force breakpoint when capture mode is not configured in LOOP1 mode.
- Sixty-four word (16 bits wide) trace buffer for storing change-of-flow information, event only data and other bus information.
 - Source address of taken conditional branches (long, short, bit-conditional, and loop constructs)
 - Destination address of indexed JMP, JSR, and CALL instruction.
 - Destination address of RTI, RTS, and RTC instructions
 - Vector address of interrupts, except for SWI and BDM vectors

16.3.2.3 Debug Trace Buffer Register (DBGTB)

Table 16-7. DBGTB Field Descriptions

Field	Description
15:0	Trace Buffer Data Bits — The trace buffer data bits contain the data of the trace buffer. This register can be read only as a word read. Any byte reads or misaligned access of these registers will return 0 and will not cause the trace buffer pointer to increment to the next trace buffer address. The same is true for word reads while the debugger is armed. In addition, this register may appear to contain incorrect data if it is not read with the same capture mode bit settings as when the trace buffer data was recorded (See Section 16.4.2.9, "Reading Data from Trace Buffer"). Because reads will reflect the contents of the trace buffer RAM, the reset state is undefined.

.

NOTES:

1. In BKP and DBG mode, PAGSEL selects the type of paging as shown in Table 16-11.

2. Current HCS12 implementations are limited to six PPAGE bits, PIX[5:0]. Therefore, EXTCMP[5:4] = 00.

Figure 16-10. Comparator C Extended Comparison in BKP/DBG Mode

16.3.2.6 Debug Comparator C Register (DBGCC)

	15	14	13	12	11	10	9	8	
R	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
W									
Reset	0	0	0	0	0	0	0	0	
		= Unimplemented or Reserved							

Figure 16-11. Debug Comparator C Register High (DBGCCH)

	7	6	5	4	3	2	1	0	
R	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
W									
Reset	0	0	0	0	0	0	0	0	
		= Unimplemented or Reserved							

Figure 16-12. Debug Comparator C Register Low (DBGCCL)

Table 16-12. DBGCC Field Descriptions

Field	Description
15:0	 Comparator C Compare Bits — The comparator C compare bits control whether comparator C will compare the address bus bits [15:0] to a logic 1 or logic 0. See Table 16-13. 0 Compare corresponding address bit to a logic 0 1 Compare corresponding address bit to a logic 1 Note: This register will be cleared automatically when the DBG module is armed in LOOP1 mode.

Table 16-15. DBGC3 Field Descriptions (continued)

Field	Description
5:4 BKBMB[H:L]	Breakpoint Mask High Byte and Low Byte of Data (Second Address) — In dual mode, these bits may be used to mask (disable) the comparison of the high and/or low bytes of the second address breakpoint. The functionality is as given in Table 16-17.
	The x:0 case is for a full address compare. When a program page is selected, the full address compare will be based on bits for a 20-bit compare. The registers used for the compare are {DBGCBX[5:0], DBGCBH[5:0], DBGCBL[7:0]} where DBGCBX[5:0] corresponds to PPAGE[5:0] or extended address bits [19:14] and CPU address [13:0]. When a program page is not selected, the full address compare will be based on bits for a 16-bit compare. The registers used for the compare are {DBGCBL[7:0]} which corresponds to CPU address [15:0].
	Note: This extended address compare scheme causes an aliasing problem in BKP mode in which several physical addresses may match with a single logical address. This problem may be avoided by using DBG mode to generate breakpoints.
	The 1:0 case is not sensible because it would ignore the high order address and compare the low order and expansion addresses. Logic forces this case to compare all address lines (effectively ignoring the BKBMBH control bit).
	The 1:1 case is useful for triggering a breakpoint on any access to a particular expansion page. This only makes sense if a program page is being accessed so that the breakpoint trigger will occur only if DBGCBX compares.
	In full mode, these bits may be used to mask (disable) the comparison of the high and/or low bytes of the data breakpoint. The functionality is as given in Table 16-18.
3 RWAEN	 Read/Write Comparator A Enable Bit — The RWAEN bit controls whether read or write comparison is enabled for comparator A. See Section 16.4.2.1.1, "Read or Write Comparison," for more information. This bit is not useful for tagged operations. 0 Read/Write is not used in comparison 1 Read/Write is used in comparison
2 RWA	 Read/Write Comparator A Value Bit — The RWA bit controls whether read or write is used in compare for comparator A. The RWA bit is not used if RWAEN = 0. 0 Write cycle will be matched 1 Read cycle will be matched
1 RWBEN	 Read/Write Comparator B Enable Bit — The RWBEN bit controls whether read or write comparison is enabled for comparator B. See Section 16.4.2.1.1, "Read or Write Comparison," for more information. This bit is not useful for tagged operations. 0 Read/Write is not used in comparison 1 Read/Write is used in comparison
0 RWB	 Read/Write Comparator B Value Bit — The RWB bit controls whether read or write is used in compare for comparator B. The RWB bit is not used if RWBEN = 0. 0 Write cycle will be matched 1 Read cycle will be matched Note: RWB and RWBEN are not used in full mode.

Table 16-16. Breakpoint Mask Bits for First Address

BKAMBH:BKAMBL	Address Compare	DBGCAX	DBGCAH	DBGCAL
x:0	Full address compare	Yes ¹	Yes	Yes
0:1	256 byte address range	Yes ¹	Yes	No
1:1	16K byte address range	Yes ¹	No	No

¹ If PPAGE is selected.

Chapter 16 Debug Module (DBGV1)

The breakpoint can operate in dual address mode or full breakpoint mode. Each of these modes is discussed in the subsections below.

16.4.1.1 Dual Address Mode

When dual address mode is enabled, two address breakpoints can be set. Each breakpoint can cause the system to enter background debug mode or to initiate a software interrupt based upon the state of BDM in DBGC2 being logic 1 or logic 0, respectively. BDM requests have a higher priority than SWI requests. No data breakpoints are allowed in this mode.

TAGAB in DBGC2 selects whether the breakpoint mode is forced or tagged. The BKxMBH:L bits in DBGC3 select whether or not the breakpoint is matched exactly or is a range breakpoint. They also select whether the address is matched on the high byte, low byte, both bytes, and/or memory expansion. The RWx and RWxEN bits in DBGC3 select whether the type of bus cycle to match is a read, write, or read/write when performing forced breakpoints.

16.4.1.2 Full Breakpoint Mode

Full breakpoint mode requires a match on address and data for a breakpoint to occur. Upon a successful match, the system will enter background debug mode or initiate a software interrupt based upon the state of BDM in DBGC2 being logic 1 or logic 0, respectively. BDM requests have a higher priority than SWI requests. R/W matches are also allowed in this mode.

TAGAB in DBGC2 selects whether the breakpoint mode is forced or tagged. When TAGAB is set in DBGC2, only addresses are compared and data is ignored. The BKAMBH:L bits in DBGC3 select whether or not the breakpoint is matched exactly, is a range breakpoint, or is in page space. The BKBMBH:L bits in DBGC3 select whether the data is matched on the high byte, low byte, or both bytes. RWA and RWAEN bits in DBGC2 select whether the type of bus cycle to match is a read or a write when performing forced breakpoints. RWB and RWBEN bits in DBGC2 are not used in full breakpoint mode.

NOTE

The full trigger mode is designed to be used for either a word access or a byte access, but not both at the same time. Confusing trigger operation (seemingly false triggers or no trigger) can occur if the trigger address occurs in the user program as both byte and word accesses.

16.4.1.3 Breakpoint Priority

Breakpoint operation is first determined by the state of the BDM module. If the BDM module is already active, meaning the CPU is executing out of BDM firmware, breakpoints are not allowed. In addition, while executing a BDM TRACE command, tagging into BDM is not allowed. If BDM is not active, the breakpoint will give priority to BDM requests over SWI requests. This condition applies to both forced and tagged breakpoints.

In all cases, BDM related breakpoints will have priority over those generated by the Breakpoint sub-block. This priority includes breakpoints enabled by the TAGLO and TAGHI external pins of the system that interface with the BDM directly and whose signal information passes through and is used by the breakpoint sub-block.

Chapter 18 Multiplexed External Bus Interface (MEBIV3)

	7	6	5	4	3	2	1	
R	MODO	MODR		0	1//19	0	EMK	
w	WODC	MODB	NODA		1015			
Reset								
Special Single Chip	0	0	0	0	0	0	0	
Emulation Expanded Narrow	0	0	1	0	1	0	1	
Special Test	0	1	0	0	1	0	0	
Emulation Expanded Wide	0	1	1	0	1	0	1	
Normal Single Chip	1	0	0	0	0	0	0	
Normal Expanded Narrow	1	0	1	0	0	0	0	
Peripheral	1	1	0	0	0	0	0	

ALAT (MODE) 15

= Unimplemented or Reserved

1

1

Figure 18-13. Mode Register (MODE)

0

0

0

0

Read: Anytime (provided this register is in the map).

1

Normal Expanded Wide

Write: Each bit has specific write conditions. Please refer to the descriptions of each bit on the following pages.

The MODE register is used to establish the operating mode and other miscellaneous functions (i.e., internal visibility and emulation of port E and K).

In special peripheral mode, this register is not accessible but it is reset as shown to system configuration features. Changes to bits in the MODE register are delayed one cycle after the write.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these accesses will be echoed externally.

0

EME

0

1

0

1

0

0

0

0

Chapter 19 Module Mapping Control (MMCV4)

19.3.2.4 Miscellaneous System Control Register (MISC)

_	7	6	5	4	3	2	1	0
R	0	0	0	0	EVOTD4	EVETDO		DOMON
w					ENSIRI	EXSIRU	KOIVIHIVI	ROMON
Reset: Expanded or Emulation	0	0	0	0	1	1	0	1
Reset: Peripheral or Single Chip	0	0	0	0	1	1	0	1
Reset: Special Test	0	0	0	0	1	1	0	0

1. The reset state of this bit is determined at the chip integration level.

= Unimplemented or Reserved

Figure 19-6. Miscellaneous System Control Register (MISC)

Read: Anytime

Write: As stated in each bit description

NOTE

Writes to this register take one cycle to go into effect.

This register initializes miscellaneous control functions.

Table 19-5. INITEE Field Descriptions

Field	Description
3:2 EXSTR[1:0]	External Access Stretch Bits 1 and 0 Write: once in normal and emulation modes and anytime in special modes This two-bit field determines the amount of clock stretch on accesses to the external address space as shown in Table 19-6. In single chip and peripheral modes these bits have no meaning or effect.
1 ROMHM	 FLASH EEPROM or ROM Only in Second Half of Memory Map Write: once in normal and emulation modes and anytime in special modes 0 The fixed page(s) of FLASH EEPROM or ROM in the lower half of the memory map can be accessed. 1 Disables direct access to the FLASH EEPROM or ROM in the lower half of the memory map. These physical locations of the FLASH EEPROM or ROM remain accessible through the program page window.
0 ROMON	 ROMON — Enable FLASH EEPROM or ROM Write: once in normal and emulation modes and anytime in special modes This bit is used to enable the FLASH EEPROM or ROM memory in the memory map. 0 Disables the FLASH EEPROM or ROM from the memory map. 1 Enables the FLASH EEPROM or ROM in the memory map.

Table 19-6. External Stretch Bit Definition

Stretch Bit EXSTR1	Stretch Bit EXSTR0	Number of E Clocks Stretched
0	0	0
0	1	1
1	0	2
1	1	3

A.4.2 NVM Reliability

The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures. The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed.

Conditions are shown in Table A-4 unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
Flash Reliability Characteristics							
1	С	Data retention after 10,000 program/erase cycles at an average junction temperature of $T_{Javg} \le 85^{\circ}C$	t _{FLRET}	15	100 ²	_	Years
2	С	Data retention with <100 program/erase cycles at an average junction temperature $T_{Javg} \le 85^{\circ}C$		20	100 ²	_	
3	С	Number of program/erase cycles $(-40^{\circ}C \le T_J \le 0^{\circ}C)$	n _{FL}	10,000	_	—	Cycles
4	С	Number of program/erase cycles $(0^{\circ}C \le T_{J} \le 140^{\circ}C)$		10,000	100,000 ³		

Table A-15. NVM Reliability Characteristics¹

¹ T_{Javg} will not exeed 85°C considering a typical temperature profile over the lifetime of a consumer, industrial or automotive application.

² Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines Typical Data Retention, please refer to Engineering Bulletin EB618.

³ Spec table quotes typical endurance evaluated at 25°C for this product family, typical endurance at various temperature can be estimated using the graph below. For additional information on how Freescale defines Typical Endurance, please refer to Engineering Bulletin EB619.

Appendix B Package Information

B.2 80-Pin QFP Package

Figure B-2. 80-Pin QFP Mechanical Dimensions (Case no. 841B)