

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	40
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	26K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-6
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe162fn24f80laafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

4.7.2	Definition of Internal Timing	82
4.7.2.1	Phase Locked Loop (PLL)	83
4.7.2.2	Wakeup Clock	86
4.7.2.3	Selecting and Changing the Operating Frequency	86
4.7.3	External Clock Input Parameters	87
4.7.4	Pad Properties	89
4.7.5	Synchronous Serial Interface Timing	93
4.7.6	Debug Interface Timing	97
5 5.1 5.2 5.3	Package and Reliability1Packaging1Thermal Considerations1Quality Declarations1	03 03 05 06

Summary of Features

1.1 Device Types

The following XE162xN device types are available and can be ordered through Infineon's direct and/or distribution channels. The devices are available for the SAF temperature range. SAK types are available upon request only.

	•				
Derivative	Flash Memory ¹⁾	PSRAM DSRAM ²⁾	Capt./Comp. Modules	ADC ³⁾ Chan.	Interfaces ³⁾
XE162FN-16F80L	128 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60	7 + 2	2 CAN Node, 6 Serial Chan.
XE162FN-24F80L	192 Kbytes	8 Kbytes 16 Kbytes	CC2 CCU60	7 + 2	2 CAN Node, 6 Serial Chan.
XE162FN-40F80L	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60	7 + 2	2 CAN Node, 6 Serial Chan.
XE162HN-16F80L	128 Kbytes	8 Kbytes 8 Kbytes	CC2 CCU60	7 + 2	no CAN Nodes, 6 Serial Chan.
XE162HN-24F80L	192 Kbytes	8 Kbytes 16 Kbytes	CC2 CCU60	7 + 2	no CAN Nodes, 6 Serial Chan.
XE162HN-40F80L	320 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60	7 + 2	no CAN Nodes, 6 Serial Chan.

Table 1 Synopsis of XE162xN Device Types

1) Specific information about the on-chip Flash memory in Table 2.

2) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

3) Specific information about the available channels in Table 4.

Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

General Device Information

Table	Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
7	P6.0	O0 / I	DA/A	Bit 0 of Port 6, General Purpose Input/Output			
	EMUX0	01	DA/A	External Analog MUX Control Output 0 (ADC0)			
	BRKOUT	O3	DA/A	OCDS Break Signal Output			
	ADCx_REQG TyG	I	DA/A	External Request Gate Input for ADC0/1			
	U1C1_DX0E	I	DA/A	USIC1 Channel 1 Shift Data Input			
8	P6.1	O0 / I	DA/A	Bit 1 of Port 6, General Purpose Input/Output			
	EMUX1	01	DA/A	External Analog MUX Control Output 1 (ADC0)			
	T3OUT	02	DA/A	GPT12E Timer T3 Toggle Latch Output			
	U1C1_DOUT	O3	DA/A	USIC1 Channel 1 Shift Data Output			
	ADCx_REQT RyE	I	DA/A	External Request Trigger Input for ADC0/1			
	ESR1_6	I	DA/A	ESR1 Trigger Input 6			
10	P15.0	I	In/A	Bit 0 of Port 15, General Purpose Input			
	ADC1_CH0	I	In/A	Analog Input Channel 0 for ADC1			
11	P15.4	I	In/A	Bit 4 of Port 15, General Purpose Input			
	ADC1_CH4	I	In/A	Analog Input Channel 4 for ADC1			
	T6INA	I	In/A	GPT12E Timer T6 Count/Gate Input			
12	V _{AREF}	-	PS/A	Reference Voltage for A/D Converters ADC0/1			
13	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1			
14	P5.0	I	In/A	Bit 0 of Port 5, General Purpose Input			
	ADC0_CH0	I	In/A	Analog Input Channel 0 for ADC0			
15	P5.2	I	In/A	Bit 2 of Port 5, General Purpose Input			
	ADC0_CH2	I	In/A	Analog Input Channel 2 for ADC0			
	TDI_A	I	In/A	JTAG Test Data Input			
19	P5.4	I	In/A	Bit 4 of Port 5, General Purpose Input			
	ADC0_CH4	I	In/A	Analog Input Channel 4 for ADC0			
	T3EUDA	1	In/A	GPT12E Timer T3 External Up/Down Control Input			
	TMS_A	I	In/A	JTAG Test Mode Selection Input			

General Device Information

Tabl	Fable 5Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
20	P5.8	I	In/A	Bit 8 of Port 5, General Purpose Input		
	ADC0_CH8	I	In/A	Analog Input Channel 8 for ADC0		
	ADC1_CH8	I	In/A	Analog Input Channel 8 for ADC1		
	CCU6x_T12H RC	I	In/A	External Run Control Input for T12 of CCU60/1		
	CCU6x_T13H RC	I	In/A	External Run Control Input for T13 of CCU60/1		
	U2C0_DX0F	1	In/A	USIC2 Channel 0 Shift Data Input		
21	P5.10	1	In/A	Bit 10 of Port 5, General Purpose Input		
	ADC0_CH10	1	In/A	Analog Input Channel 10 for ADC0		
	ADC1_CH10	I	In/A	Analog Input Channel 10 for ADC1		
	BRKIN_A	I	In/A	OCDS Break Signal Input		
	U2C1_DX0F	I	In/A	USIC2 Channel 1 Shift Data Input		
22	P5.13	I	In/A	Bit 13 of Port 5, General Purpose Input		
	ADC0_CH13	1	In/A	Analog Input Channel 13 for ADC0		
23	P5.15	1	In/A	Bit 15 of Port 5, General Purpose Input		
	ADC0_CH15	I	In/A	Analog Input Channel 15 for ADC0		
25	P2.0	O0 / I	St/B	Bit 0 of Port 2, General Purpose Input/Output		
	RxDC0C	I	St/B	CAN Node 0 Receive Data Input		
	T5INB	I	St/B	GPT12E Timer T5 Count/Gate Input		
26	P2.1	O0 / I	St/B	Bit 1 of Port 2, General Purpose Input/Output		
	TxDC0	01	St/B	CAN Node 0 Transmit Data Output		
	T5EUDB	I	St/B	GPT12E Timer T5 External Up/Down Control Input		
	ESR1_5	1	St/B	ESR1 Trigger Input 5		
27	P2.2	O0 / I	St/B	Bit 2 of Port 2, General Purpose Input/Output		
	TxDC1	01	St/B	CAN Node 1 Transmit Data Output		
	ESR2_5	I	St/B	ESR2 Trigger Input 5		

XE162FN, XE162HN XE166 Family / Value Line

General Device Information

Table	Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
47	P10.7	O0 / I	St/B	Bit 7 of Port 10, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	CCU60_COU T63	02	St/B	CCU60 Channel 3 Output			
	U0C1_DX0B	I	St/B	USIC0 Channel 1 Shift Data Input			
	CCU60_CCP OS0A	I	St/B	CCU60 Position Input 0			
	T4INB	I	St/B	GPT12E Timer T4 Count/Gate Input			
51	P10.8	O0 / I	St/B	Bit 8 of Port 10, General Purpose Input/Output			
	U0C0_MCLK OUT	01	St/B	USIC0 Channel 0 Master Clock Output			
	U0C1_SELO 0	02	St/B	USIC0 Channel 1 Select/Control 0 Output			
	U2C1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output			
	CCU60_CCP OS1A	I	St/B	CCU60 Position Input 1			
	U0C0_DX1C	I	St/B	USIC0 Channel 0 Shift Clock Input			
	BRKIN_B	I	St/B	OCDS Break Signal Input			
	T3EUDB	1	St/B	GPT12E Timer T3 External Up/Down Control Input			

General Device Information

Table	Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
52	P10.9	O0 / I	St/B	Bit 9 of Port 10, General Purpose Input/Output				
	U0C0_SELO 4	01	St/B	USIC0 Channel 0 Select/Control 4 Output				
	U0C1_MCLK OUT	02	St/B	USIC0 Channel 1 Master Clock Output				
	CCU60_CCP OS2A	I	St/B	CCU60 Position Input 2				
	ТСК_В	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.				
	T3INB	I	St/B	GPT12E Timer T3 Count/Gate Input				
53	P10.10	O0 / I	St/B	Bit 10 of Port 10, General Purpose Input/Output				
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output				
	CCU60_COU T63	02	St/B	CCU60 Channel 3 Output				
	U0C0_DX2C	I	St/B	USIC0 Channel 0 Shift Control Input				
	U0C1_DX1A	I	St/B	USIC0 Channel 1 Shift Clock Input				
	TDI_B	IH	St/B	JTAG Test Data Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.				
54	P10.11	O0 / I	St/B	Bit 11 of Port 10, General Purpose Input/Output				
	U1C0_SCLK OUT	01	St/B	USIC1 Channel 0 Shift Clock Output				
	BRKOUT	O2	St/B	OCDS Break Signal Output				
	U1C0_DX1D	I	St/B	USIC1 Channel 0 Shift Clock Input				
	TMS_B	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.				

3.1 Memory Subsystem and Organization

The memory space of the XE162xN is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
IMB register space	FE'EE00.	FF'FFFF.	256 Bytes	
Reserved	E0'0000	FF'EEFE	< 1 Mbyte	Minus IMB registers
	T 0 0000H			
Reserved for EPSRAM	E8′4000 _H	FLEEH	496 Kbytes	MIRTORS EPSRAM
Emulated PSRAM	E8'0000 _H	E8'3FFF _H	up to 16 Kbytes	With Flash timing
Reserved for PSRAM	E0'4000 _H	E7'FFFF _H	496 Kbytes	Mirrors PSRAM
PSRAM	E0'0000 _H	E0'3FFF _H	up to 16 Kbytes	Program SRAM
Reserved for Flash	C5'0000 _H	DF'FFFF _H	1,728 Kbytes	
Flash 1	C4'0000 _H	C4'FFFF _H	64 Kbytes	
Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes ³⁾	Minus res. seg.
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	
External IO area ⁴⁾	21'0000 _H	3F'FFFF _H	1,984 Kbytes	
Reserved	20'BC00 _H	20'FFFF _H	17 Kbytes	
USIC0–2 alternate regs.	20'B000 _H	20'BBFF _H	3 Kbytes	Accessed via EBC
MultiCAN alternate regs.	20'8000 _H	20'AFFF _H	12 Kbytes	Accessed via EBC
Reserved	20'5800 _H	20'7FFF _H	10 Kbytes	
USIC0–2 registers	20'4000 _H	20'57FF _H	6 Kbytes	Accessed via EBC
Reserved	20'6800 _H	20'7FFF _H	6 Kbytes	
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via EBC
External memory area	01'0000 _H	1F'FFFF _H	1984 Kbytes	
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbytes	
Dualport RAM (DPRAM)	00'F600 _H	00'FDFF _H	2 Kbytes	
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbytes	
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbytes	
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes	
Data SRAM (DSRAM)	00'A000 _H	00'DFFF _H	16 Kbytes	

Table 7XE162xN Memory Map 1)

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 8Compare Modes (cont'd)

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

Functional Description

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XE162xN to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

Functional Description

3.10 Real Time Clock

The Real Time Clock (RTC) module of the XE162xN can be clocked with a clock signal selected from internal sources or external sources (pins).

The RTC basically consists of a chain of divider blocks:

- Selectable 32:1 and 8:1 dividers (on off)
- The reloadable 16-bit timer T14
- The 32-bit RTC timer block (accessible via registers RTCH and RTCL) consisting of: – a reloadable 10-bit timer
 - a reloadable 6-bit timer
 - a reloadable 6-bit timer
 - a reloadable 10-bit timer

All timers count up. Each timer can generate an interrupt request. All requests are combined to a common node request.

Figure 10 RTC Block Diagram

Note: The registers associated with the RTC are only affected by a power reset.

MultiCAN Features

- CAN functionality conforming to CAN specification V2.0 B active for each CAN node (compliant to ISO 11898)
- Independent CAN nodes
- · Set of independent message objects (shared by the CAN nodes)
- · Dedicated control registers for each CAN node
- · Data transfer rate up to 1 Mbit/s, individually programmable for each node
- · Flexible and powerful message transfer control and error handling capabilities
- · Full-CAN functionality for message objects:
 - Can be assigned to one of the CAN nodes
 - Configurable as transmit or receive objects, or as message buffer FIFO
 - Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering
 - Remote Monitoring Mode, and frame counter for monitoring
- Automatic Gateway Mode support
- 16 individually programmable interrupt nodes
- Analyzer mode for CAN bus monitoring

3.14 System Timer

The System Timer consists of a programmable prescaler and two concatenated timers (10 bits and 6 bits). Both timers can generate interrupt requests. The clock source can be selected and the timers can also run during power reduction modes.

Therefore, the System Timer enables the software to maintain the current time for scheduling functions or for the implementation of a clock.

3.15 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.4 s can be monitored (@ 80 MHz).

The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

4 Electrical Parameters

The operating range for the XE162xN is defined by its electrical parameters. For proper operation the specified limits must be respected when integrating the device in its target environment.

4.1 General Parameters

These parameters are valid for all subsequent descriptions, unless otherwise noted.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Output current on a pin when high value is driven	$I_{\rm OH}{\rm SR}$	-30	-	-	mA	
Output current on a pin when low value is driven	$I_{\rm OL}{\rm SR}$	-	-	30	mA	
Overload current	I _{OV} SR	-10	-	10	mA	1)
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	-	-	100	mA	1)
Junction Temperature	$T_{J} \operatorname{SR}$	-40	-	150	°C	
Storage Temperature	$T_{\rm ST}{ m SR}$	-65	-	150	°C	
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	-0.5	-	6.0	V	
Voltage on any pin with respect to ground (Vss)	$V_{\rm IN}{\rm SR}$	-0.5	-	V _{DDP} + 0.5	V	$V_{\rm IN} \leq V_{\rm DDP(max)}$

Table 11 Absolute Maximum Rating Parameters

1) Overload condition occurs if the input voltage $V_{\rm IN}$ is out of the absolute maximum rating range. In this case the current must be limited to the listed values by design measures.

Note: Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

4.3.1 DC Parameters for Upper Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current $I_{\rm OV}$.

Note: Operating Conditions apply.

Table 15 is valid under the following conditions: $V_{\text{DDP}} \le 5.5 \text{ V}$; V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5 \text{ V}$

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.11 x V _{DDP}	_	-	V	R _S = 0 Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	-	10	200	nA	$V_{\rm IN}$ > $V_{\rm SS}$; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double bond pins. ³⁾¹⁾⁴⁾	I _{OZ2} CC	-	0.2	5	μA	$T_{\rm J} \leq$ 110 °C; $V_{\rm IN} > V_{\rm SS}$; $V_{\rm IN} < V_{\rm DDP}$
		_	0.2	15	μA	$\begin{array}{l} T_{\rm J} \!$
Pull Level Force Current ⁵⁾	I _{PLF} SR	250	_	_	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ down_enabled); \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ up_enabled) \end{array} $
Pull Level Keep Current ⁶⁾	I _{PLK} SR	_	_	30	μA	$ \begin{array}{l} V_{\rm IN} \geq V_{\rm IHmin}(pull \\ up_enabled); \\ V_{\rm IN} \leq V_{\rm ILmax}(pull \\ down_enabled) \end{array} $
Input high voltage (all except XTAL1)	V _{IH} SR	0.7 х V _{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}{\rm SR}$	-0.3	-	0.3 x V _{DDP}	V	

 Table 15
 DC Characteristics for Upper Voltage Range

4.3.3 Power Consumption

The power consumed by the XE162xN depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current $I_{\rm LK}$ depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

4.4 Analog/Digital Converter Parameters

These parameters describe the conditions for optimum ADC performance. *Note: Operating Conditions apply.*

Table 19ADC Parameters

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Switched capacitance at an analog input	C _{AINSW} CC	-	-	4	pF	not subject to production test
Total capacitance at an analog input	C _{AINT} CC	_	-	10	pF	not subject to production test
Switched capacitance at the reference input	C _{AREFSW} CC	_	-	7	pF	not subject to production test
Total capacitance at the reference input	C _{AREFT} CC	-	-	15	pF	not subject to production test
Differential Non-Linearity Error	EA _{DNL} CC	-	0.8	1	LSB	
Gain Error	$ EA_{GAIN} $ CC	-	0.4	0.8	LSB	
Integral Non-Linearity	EA _{INL} CC	-	0.8	1.2	LSB	
Offset Error	EA _{OFF} CC	-	0.5	0.8	LSB	
Analog clock frequency	$f_{\rm ADCI}{ m SR}$	0.5	-	16.5	MHz	voltage_range= lower
		0.5	-	20	MHz	voltage_range= upper
Input resistance of the selected analog channel	R _{AIN} CC	_	-	2	kOh m	not subject to production test
Input resistance of the reference input	R _{AREF} CC	-	-	2	kOh m	not subject to production test

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances.

The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and **Figure 20**).

This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal f_{SYS} . The number of VCO cycles is K2 × **T**, where **T** is the number of consecutive f_{SYS} cycles (TCS).

The maximum accumulated jitter (long-term jitter) D_{Tmax} is defined by:

 D_{Tmax} [ns] = ±(220 / (K2 × f_{SYS}) + 4.3)

This maximum value is applicable, if either the number of clock cycles T > (f_{SYS} / 1.2) or the prescaler value K2 > 17.

In all other cases for a timeframe of $\mathbf{T} \times TCS$ the accumulated jitter D_T is determined by:

 D_{T} [ns] = $D_{Tmax} \times [(1 - 0.058 \times K2) \times (T - 1) / (0.83 \times f_{SYS} - 1) + 0.058 \times K2]$

 f_{SYS} in [MHz] in all formulas.

Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:

 $D_{max} = \pm (220 / (4 \times 33) + 4.3) = 5.97$ ns (Not applicable directly in this case!)

 $\mathsf{D}_3 = 5.97 \times [(1 - 0.058 \times 4) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 4]$

= 5.97 × [0.768 × 2 / 26.39 + 0.232]

Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:

 $D_{max} = \pm (220 / (2 \times 33) + 4.3) = 7.63$ ns (Not applicable directly in this case!)

 $\begin{array}{l} \mathsf{D}_3 = 7.63 \times [(1 - 0.058 \times 2) \times (3 - 1) \, / \, (0.83 \times 33 - 1) + 0.058 \times 2] \\ = 7.63 \times [0.884 \times 2 \, / \, 26.39 + 0.116] \end{array}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAP0 clock period ¹⁾	<i>t</i> ₁₁ SR	25	-	-	ns	
DAP0 high time	<i>t</i> ₁₂ SR	8	-	-	ns	
DAP0 low time ¹⁾	t ₁₃ SR	8	-	-	ns	
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns	
DAP0 clock fall time	t ₁₅ SR	_	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	12	17	-	ns	

Table 34 DAP Interface Timing for Lower Voltage Range

1) See the DAP chapter for clock rate restrictions in the Active::IDLE protocol state.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Electrical Parameters

Figure 24 DAP Timing Host to Device

Figure 25 DAP Timing Device to Host

Debug via JTAG

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 35 is valid under the following conditions: C_{L} = 20 pF; voltage_range= upper

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
TCK clock period	t ₁ SR	50	-	-	ns	1)
TCK high time	$t_2 \mathrm{SR}$	16	-	-	ns	

 Table 35
 JTAG Interface Timing for Upper Voltage Range

Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram.