

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	40
Program Memory Size	320KB (320K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-6
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe162fn40f80lrabkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

Table	Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
28	P2.3	O0 / I	St/B	Bit 3 of Port 2, General Purpose Input/Output			
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output			
	CC2_CC16	O3 / I	St/B	CAPCOM2 CC16IO Capture Inp./ Compare Out.			
	ESR2_0	I	St/B	ESR2 Trigger Input 0			
	U0C0_DX0E	I	St/B	USIC0 Channel 0 Shift Data Input			
	U0C1_DX0D	I	St/B	USIC0 Channel 1 Shift Data Input			
	RxDC0A	I	St/B	CAN Node 0 Receive Data Input			
29	P2.4	00 / I	St/B	Bit 4 of Port 2, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output			
	CC2_CC17	O3 / I	St/B	CAPCOM2 CC17IO Capture Inp./ Compare Out.			
	ESR1_0	I	St/B	ESR1 Trigger Input 0			
	U0C0_DX0F	I	St/B	USIC0 Channel 0 Shift Data Input			
	RxDC1A	I	St/B	CAN Node 1 Receive Data Input			
30	P2.5	O0 / I	St/B	Bit 5 of Port 2, General Purpose Input/Output			
	U0C0_SCLK OUT	O1	St/B	USIC0 Channel 0 Shift Clock Output			
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output			
	CC2_CC18	O3 / I	St/B	CAPCOM2 CC18IO Capture Inp./ Compare Out.			
	U0C0_DX1D	I	St/B	USIC0 Channel 0 Shift Clock Input			
_	ESR1_10	I	St/B	ESR1 Trigger Input 10			
31	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output			
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output			
	U0C1_SELO 1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output			
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.			
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input			
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input			
	ESR2_6	I	St/B	ESR2 Trigger Input 6			

General Device Information

Table	Table 5 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
35	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output				
	U0C1_SELO 0	01	St/B	USIC0 Channel 1 Select/Control 0 Output				
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output				
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.				
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input				
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input				
	ESR2_7	I	St/B	ESR2 Trigger Input 7				
36	P2.8	O0 / I	DP/B	Bit 8 of Port 2, General Purpose Input/Output				
	U0C1_SCLK OUT	01	DP/B	USIC0 Channel 1 Shift Clock Output				
	EXTCLK	O2	DP/B	Programmable Clock Signal Output				
	CC2_CC21	O3 / I	DP/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.				
	U0C1_DX1D	I	DP/B	USIC0 Channel 1 Shift Clock Input				
37	P2.9	O0 / I	St/B	Bit 9 of Port 2, General Purpose Input/Output				
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output				
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output				
	CC2_CC22	O3 / I	St/B	CAPCOM2 CC22IO Capture Inp./ Compare Out.				
	CLKIN1	I	St/B	Clock Signal Input 1				
	TCK_A	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. A is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 0 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.				

Memory Content Protection

The contents of on-chip memories can be protected against soft errors (induced e.g. by radiation) by activating the parity mechanism or the Error Correction Code (ECC).

The parity mechanism can detect a single-bit error and prevent the software from using incorrect data or executing incorrect instructions.

The ECC mechanism can detect and automatically correct single-bit errors. This supports the stable operation of the system.

It is strongly recommended to activate the ECC mechanism wherever possible because this dramatically increases the robustness of an application against such soft errors.

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 8Compare Modes (cont'd)

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

3.8 Capture/Compare Units CCU6x

The XE162xN types feature the CCU60 unit(s).

CCU6 is a high-resolution capture and compare unit with application-specific modes. It provides inputs to start the timers synchronously, an important feature in devices with several CCU6 modules.

The module provides two independent timers (T12, T13), that can be used for PWM generation, especially for AC motor control. Additionally, special control modes for block commutation and multi-phase machines are supported.

Timer 12 Features

- Three capture/compare channels, where each channel can be used either as a capture or as a compare channel.
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and low-side switches)
- 16-bit resolution, maximum count frequency = peripheral clock
- Dead-time control for each channel to avoid short circuits in the power stage
- Concurrent update of the required T12/13 registers
- Center-aligned and edge-aligned PWM can be generated
- Single-shot mode supported
- Many interrupt request sources
- Hysteresis-like control mode
- Automatic start on a HW event (T12HR, for synchronization purposes)

Timer 13 Features

- One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock
- Can be synchronized to T12
- · Interrupt generation at period match and compare match
- Single-shot mode supported
- Automatic start on a HW event (T13HR, for synchronization purposes)

Additional Features

- Block commutation for brushless DC drives implemented
- Position detection via Hall sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- Control modes for multi-channel AC drives
- · Output levels can be selected and adapted to the power stage

3.9 General Purpose Timer (GPT12E) Unit

The GPT12E unit is a very flexible multifunctional timer/counter structure which can be used for many different timing tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers organized in two separate modules, GPT1 and GPT2. Each timer in each module may either operate independently in a number of different modes or be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation: Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the system clock and divided by a programmable prescaler. Counter Mode allows timer clocking in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes each timer has one associated port pin (TxIN) which serves as a gate or clock input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.

The counting direction (up/down) for each timer can be programmed by software or altered dynamically by an external signal on a port pin (TxEUD), e.g. to facilitate position tracking.

In Incremental Interface Mode the GPT1 timers can be directly connected to the incremental position sensor signals A and B through their respective inputs TxIN and TxEUD. Direction and counting signals are internally derived from these two input signals, so that the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components. It may also be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to the basic operating modes, T2 and T4 may be configured as reload or capture register for timer T3. A timer used as capture or reload register is stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at the associated input pin (TxIN). Timer T3 is reloaded with the contents of T2 or T4, triggered either by an external signal or a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be continuously generated without software intervention.

Note: Signals T2IN, T2EUD, T4EUD, and T6EUD are not connected to pins.

Functional Description

3.10 Real Time Clock

The Real Time Clock (RTC) module of the XE162xN can be clocked with a clock signal selected from internal sources or external sources (pins).

The RTC basically consists of a chain of divider blocks:

- Selectable 32:1 and 8:1 dividers (on off)
- The reloadable 16-bit timer T14
- The 32-bit RTC timer block (accessible via registers RTCH and RTCL) consisting of: – a reloadable 10-bit timer
 - a reloadable 6-bit timer
 - a reloadable 6-bit timer
 - a reloadable 10-bit timer

All timers count up. Each timer can generate an interrupt request. All requests are combined to a common node request.

Figure 10 RTC Block Diagram

Note: The registers associated with the RTC are only affected by a power reset.

3.12 Universal Serial Interface Channel Modules (USIC)

The XE162xN features the USIC modules USIC0, USIC1, USIC2. Each module provides two serial communication channels.

The Universal Serial Interface Channel (USIC) module is based on a generic data shift and data storage structure which is identical for all supported serial communication protocols. Each channel supports complete full-duplex operation with a basic data buffer structure (one transmit buffer and two receive buffer stages). In addition, the data handling software can use FIFOs.

The protocol part (generation of shift clock/data/control signals) is independent of the general part and is handled by protocol-specific preprocessors (PPPs).

The USIC's input/output lines are connected to pins by a pin routing unit. The inputs and outputs of each USIC channel can be assigned to different interface pins, providing great flexibility to the application software. All assignments can be made during runtime.

Figure 11 General Structure of a USIC Module

The regular structure of the USIC module brings the following advantages:

- Higher flexibility through configuration with same look-and-feel for data management
- Reduced complexity for low-level drivers serving different protocols
- Wide range of protocols with improved performances (baud rate, buffer handling)

4.3 DC Parameters

These parameters are static or average values that may be exceeded during switching transitions (e.g. output current).

The XE162xN can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range.

Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range.

During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms.

Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage.

The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application.

The pads of the XE162xN are designed to operate in various driver modes. The DC parameter specifications refer to the pad current limits specified in **Section 4.7.4**.

4.3.3 Power Consumption

The power consumed by the XE162xN depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current $I_{\rm LK}$ depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

4.5 System Parameters

The following parameters specify several aspects which are important when integrating the XE162xN into an application system.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Short-term deviation of internal clock source frequency ¹⁾	∆f _{INT} CC	-1	-	1	%	$\Delta T_{J} \leq 10^{\circ}C$
Internal clock source frequency	$f_{\sf INT}{\sf CC}$	4.8	5.0	5.2	MHz	
Wakeup clock source	$f_{\rm WU}{ m CC}$	400	-	700	kHz	FREQSEL= 00
frequency ²⁾		210	-	390	kHz	FREQSEL= 01
		140	-	260	kHz	FREQSEL= 10
		110	-	200	kHz	FREQSEL= 11
Startup time from power- on with code execution from Flash	t _{SPO} CC	1.5	2.0	2.4	ms	∫ _{WU} = 500 kHz
Startup time from stopover mode with code execution from PSRAM	t _{SSO} CC	11 / f _{WU} ³⁾	-	12 / f _{WU} ³⁾	μs	
Core voltage (PVC) supervision level	V _{PVC} CC	V _{LV} - 0.03	V _{LV}	V _{LV} + 0.07 ⁴⁾	V	5)
Supply watchdog (SWD) supervision level	V _{SWD} CC	V _{LV} - 0.10 ⁶⁾	V _{LV}	V _{LV} + 0.15	V	voltage_range= lower ⁵⁾
		V _{LV} - 0.15	V _{LV}	V _{LV} + 0.15	V	voltage_range= upper ⁵⁾
		V _{LV} - 0.30	V _{LV}	V _{LV} + 0.30	V	$V_{\rm LV}$ = 5.5 V ⁵⁾

Table 21Various System Parameters

 The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization.

4.6 Flash Memory Parameters

The XE162xN is delivered with all Flash sectors erased and with no protection installed.

The data retention time of the XE162xN's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Parallel Flash module	$N_{\rm PP}{\rm SR}$	-	-	2 ¹⁾		$N_{\rm FL_RD} \leq 1$
program/erase limit depending on Flash read activity		_	-	1 ²⁾		N _{FL_RD} > 1
Flash erase endurance for security pages	$N_{\rm SEC}{\rm SR}$	10	-	-	cycles	$t_{\rm RET} \ge 20$ years
Flash wait states ³⁾	$N_{\rm WSFLAS}$	1	-	-		$f_{\rm SYS} \le 8 \rm MHz$
	H SR	2	-	-		$f{\rm SYS} \le 13 \ \rm MHz$
		3	-	-		$f_{\rm SYS} \le 17 \ {\rm MHz}$
		4	-	-		$f_{\rm SYS}$ > 17 MHz
Erase time per sector/page	t _{ER} CC	-	7 ⁴⁾	8.0	ms	
Programming time per page	t _{PR} CC	-	34)	3.5	ms	
Data retention time	t _{RET} CC	20	-	-	years	$N_{\rm ER} \le$ 1,000 cycl es
Drain disturb limit	$N_{\rm DD}{\rm SR}$	32	-	-	cycles	
Number of erase cycles	$N_{ER}SR$	_	-	15.000	cycles	$t_{\text{RET}} \ge 5$ years; Valid for Flash module 1 (up to 64 kbytes)
		-	-	1.000	cycles	$t_{\text{RET}} \ge 20 \text{ years}$

Table 24 Flash Parameters

The unused Flash module(s) can be erased/programmed while code is executed and/or data is read from only one Flash module or from PSRAM. The Flash module that delivers code/data can, of course, not be erased/programmed.

4.7.3 External Clock Input Parameters

These parameters specify the external clock generation for the XE162xN. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2.
- By supplying an external clock signal
 - This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain).

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. If connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Oscillator frequency	$f_{\rm OSC}{\rm SR}$	4	-	40	MHz	Input= Clock Signal
		4	_	16	MHz	Input= Crystal or Ceramic Resonator
XTAL1 input current absolute value	$ I_{\rm IL} $ CC	-	-	20	μA	
Input clock high time	t_1 SR	6	-	-	ns	
Input clock low time	$t_2 \mathrm{SR}$	6	-	-	ns	
Input clock rise time	t_3 SR	_	8	8	ns	
Input clock fall time	t_4 SR	-	8	8	ns	
Input voltage amplitude on XTAL1 ¹⁾	$V_{AX1}SR$	0.3 x V _{DDIM}	-	-	V	$f_{\rm OSC} \ge 4$ MHz; $f_{\rm OSC} < 16$ MHz
		$0.4 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	f _{OSC} ≥ 16 MHz; f _{OSC} < 25 MHz
		0.5 x V_{DDIM}	-	-	V	$f_{\rm OSC} \ge$ 25 MHz; $f_{\rm OSC} \le$ 40 MHz
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}{ m SR}$	-1.7 + И _{DDIM}	_	1.7	V	2)

Table 26 External Clock Input Characteristics

Parameter	Symbol	Values			Unit	Note /			
		Min.	Тур.	Max.	-	Test Condition			
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	23 + 0.6 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Medium			
		-	-	11.6 + 0.22 x <i>C</i> _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Medium			
		-	-	4.2 + 0.14 x <i>C</i> _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Sharp			
			-	-	20.6 + 0.22 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Slow		
								-	-

Table 27 Standard Pad Parameters for Upper Voltage Range (cont'd)

1) An output current above $|I_{OXnom}|$ may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and $\Sigma - I_{OH}$) must remain below 50 mA.

Electrical Parameters

Parameter	Symbol		Values			Note /	
		Min.	Тур.	Max.		Test Condition	
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	37 + 0.65 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Medium	
		-	-	24 + 0.3 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Medium	
		-	_	6.2 + 0.24 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Sharp	
			-	-	34 + 0.3 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Slow
			_	-	500 + 2.5 x C _L	ns	$C_{\rm L} \ge 20 \text{ pF};$ $C_{\rm L} \le 100 \text{ pF};$ Driver_Strength = Weak

 Table 28
 Standard Pad Parameters for Lower Voltage Range (cont'd)

1) An output current above $|I_{OXnom}|$ may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and $\Sigma - I_{OH}$) must remain below 50 mA.

4.7.5 Synchronous Serial Interface Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 29 is valid under the following conditions: C_L = 20 pF; *SSC*= master ; voltage_range= upper

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{SYS} - 8 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 6 ¹⁾	-	-	ns	
Data output DOUT valid time	t ₃ CC	-6	-	9	ns	
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	31	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-4	-	-	ns	
1) 110						

Table 29 USIC SSC Master Mode Timing for Upper Voltage Range

1) $t_{SYS} = 1 / f_{SYS}$

Table 30 is valid under the following conditions: C_L = 20 pF; *SSC*= master ; voltage_range= lower

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.	_	Test Condition
DAP0 clock period ¹⁾	<i>t</i> ₁₁ SR	25	-	-	ns	
DAP0 high time	<i>t</i> ₁₂ SR	8	-	-	ns	
DAP0 low time ¹⁾	t ₁₃ SR	8	-	-	ns	
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns	
DAP0 clock fall time	t ₁₅ SR	_	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	12	17	-	ns	

Table 34 DAP Interface Timing for Lower Voltage Range

1) See the DAP chapter for clock rate restrictions in the Active::IDLE protocol state.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Electrical Parameters

Figure 27 JTAG Timing

Package and Reliability

5.2 Thermal Considerations

When operating the XE162xN in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta,IA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- · Reduce the system frequency
- · Reduce the number of output pins
- Reduce the load on active output drivers