

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	40
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	18K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-6
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe162hn16f80laafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XE162xN Data Sheet

Revision H	listory: V1.5 2013-02
Previous Ve	ersions:
V1.4, 2011-	07
V1.3, 2010-	.04
V1.2, 2009-	07
V1.1, 2009-	07
V1.0, 2009-	03 Preliminary
Page	Subjects (major changes since last revision)
26	Added AB step marking.
76	Errata SWD_X.P002 implemented: V_{SWD} tolerance boundaries for 5.5 V are changed.
78	Clarified "Coding of bit fields LEVxV" descriptions. Matched with Operating Conditions: marked some coding values "out of valid operation range".
79	Errata FLASH_X.P001 implemented: Test Condition for Flash parameter $N_{\rm ER}$ corrected

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

General Device Information

Key to Pin Definitions

 Ctrl.: The output signal for a port pin is selected by bit field PC in the associated register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to 1x00_B, output O1 is selected by 1x01_B, etc.

Output signal OH is controlled by hardware.

- Type: Indicates the pad type and its power supply domain (A, B, M, 1).
 - St: Standard pad
 - Sp: Special pad e.g. XTALx
 - DP: Double pad can be used as standard or high speed pad
 - In: Input only pad
 - PS: Power supply pad

Pin	Symbol	Ctrl.	Туре	Function			
3	TESTM	I	In/B	Testmode Enable Enables factory test modes, must be held HIGH for normal operation (connect to V_{DDPB}). An internal pull-up device will hold this pin high when nothing is driving it.			
4	TRST	1	In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XE162xN's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low when nothing is driving it			
5	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output			
	T3OUT	01	St/B	GPT12E Timer T3 Toggle Latch Output			
	T6OUT	O2	St/B	GPT12E Timer T6 Toggle Latch Output			
	TDO_A	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
	ESR2_1	1	St/B	ESR2 Trigger Input 1			

Table 5 Pin Definitions and Functions

XE162FN, XE162HN XE166 Family / Value Line

General Device Information

Table	able 5Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
38	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	CCU60_CC6 0	O2	St/B	CCU60 Channel 0 Output			
	CCU60_CC6 0INA	1	St/B	CCU60 Channel 0 Input			
	ESR1_2	I	St/B	ESR1 Trigger Input 2			
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input			
	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input			
39	P10.1	O0 / I	St/B	Bit 1 of Port 10, General Purpose Input/Output			
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output			
	CCU60_CC6 1	O2	St/B	CCU60 Channel 1 Output			
	CCU60_CC6 1INA	1	St/B	CCU60 Channel 1 Input			
	U0C0_DX1A	I	St/B	USIC0 Channel 0 Shift Clock Input			
	U0C0_DX0B	I	St/B	USIC0 Channel 0 Shift Data Input			
40	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output			
	U0C0_SCLK OUT	O1	St/B	USIC0 Channel 0 Shift Clock Output			
	CCU60_CC6 2	O2	St/B	CCU60 Channel 2 Output			
	CCU60_CC6 2INA	1	St/B	CCU60 Channel 2 Input			
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input			
42	P2.10	O0 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	U0C0_SELO 3	O2	St/B	USIC0 Channel 0 Select/Control 3 Output			
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.			
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input			
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input			

XE162FN, XE162HN XE166 Family / Value Line

General Device Information

Pin	Symbol	Ctrl.	Туре	Function		
2, 16, 18, 32, 34, 48, 50, 64	V _{DDPB}	-	PS/B	Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins. Note: The on-chip voltage regulators and all ports except P5, P6 and P15 are fed from supply voltage V_{DDPB} .		
1, 17, 33,	V _{SS}	-	PS/	Digital Ground All V_{SS} pins must be connected to the ground-line or ground-plane.		
49				Note: Also the exposed pad is connected internally to V_{SS} . To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.		

Table 5 Pin Definitions and Functions (cont'd)

General Device Information

2.2 Identification Registers

The identification registers describe the current version of the XE162xN and of its modules.

Table 6	XE162xN	Identification	Registers
---------	---------	----------------	-----------

Short Name	Value	Address	Notes
SCU_IDMANUF	1820 _H	00'F07E _H	
SCU_IDCHIP	3001 _H	00'F07C _H	marking EES-AA or ES-AA
	3002 _H	00'F07C _H	marking AA, AB
SCU_IDMEM	304F _H	00'F07A _H	
SCU_IDPROG	1313 _H	00'F078 _H	
JTAG_ID	0018'B083 _H		marking EES-AA or ES-AA
	1018'B083 _H		marking AA, AB

3.1 Memory Subsystem and Organization

The memory space of the XE162xN is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
IMB register space	FE'EE00.	FF'FFFF.	256 Bytes	
Reserved	E0'0000	FF'EEFE	< 1 Mbyte	Minus IMB registers
	T 0 0000H			
Reserved for EPSRAM	E8′4000 _H	FLEEH	496 Kbytes	MIRTORS EPSRAM
Emulated PSRAM	E8'0000 _H	E8'3FFF _H	up to 16 Kbytes	With Flash timing
Reserved for PSRAM	E0'4000 _H	E7'FFFF _H	496 Kbytes	Mirrors PSRAM
PSRAM	E0'0000 _H	E0'3FFF _H	up to 16 Kbytes	Program SRAM
Reserved for Flash	C5'0000 _H	DF'FFFF _H	1,728 Kbytes	
Flash 1	C4'0000 _H	C4'FFFF _H	64 Kbytes	
Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes ³⁾	Minus res. seg.
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	
External IO area ⁴⁾	21'0000 _H	3F'FFFF _H	1,984 Kbytes	
Reserved	20'BC00 _H	20'FFFF _H	17 Kbytes	
USIC0–2 alternate regs.	20'B000 _H	20'BBFF _H	3 Kbytes	Accessed via EBC
MultiCAN alternate regs.	20'8000 _H	20'AFFF _H	12 Kbytes	Accessed via EBC
Reserved	20'5800 _H	20'7FFF _H	10 Kbytes	
USIC0–2 registers	20'4000 _H	20'57FF _H	6 Kbytes	Accessed via EBC
Reserved	20'6800 _H	20'7FFF _H	6 Kbytes	
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via EBC
External memory area	01'0000 _H	1F'FFFF _H	1984 Kbytes	
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbytes	
Dualport RAM (DPRAM)	00'F600 _H	00'FDFF _H	2 Kbytes	
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbytes	
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbytes	
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes	
Data SRAM (DSRAM)	00'A000 _H	00'DFFF _H	16 Kbytes	

Table 7XE162xN Memory Map 1)

Memory Content Protection

The contents of on-chip memories can be protected against soft errors (induced e.g. by radiation) by activating the parity mechanism or the Error Correction Code (ECC).

The parity mechanism can detect a single-bit error and prevent the software from using incorrect data or executing incorrect instructions.

The ECC mechanism can detect and automatically correct single-bit errors. This supports the stable operation of the system.

It is strongly recommended to activate the ECC mechanism wherever possible because this dramatically increases the robustness of an application against such soft errors.

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 8Compare Modes (cont'd)

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XE162xN to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

3.11 A/D Converters

For analog signal measurement, up to two 10-bit A/D converters (ADC0, ADC1) with 7 + 2 multiplexed input channels and a sample and hold circuit have been integrated onchip. 2 inputs can be converted by both A/D converters. Conversions use the successive approximation method. The sample time (to charge the capacitors) and the conversion time are programmable so that they can be adjusted to the external circuit. The A/D converters can also operate in 8-bit conversion mode, further reducing the conversion time.

Several independent conversion result registers, selectable interrupt requests, and highly flexible conversion sequences provide a high degree of programmability to meet the application requirements. Both modules can be synchronized to allow parallel sampling of two input channels.

For applications that require more analog input channels, external analog multiplexers can be controlled automatically. For applications that require fewer analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converters of the XE162xN support two types of request sources which can be triggered by several internal and external events.

- Parallel requests are activated at the same time and then executed in a predefined sequence.
- Queued requests are executed in a user-defined sequence.

In addition, the conversion of a specific channel can be inserted into a running sequence without disturbing that sequence. All requests are arbitrated according to the priority level assigned to them.

Data reduction features reduce the number of required CPU access operations allowing the precise evaluation of analog inputs (high conversion rate) even at a low CPU speed. Result data can be reduced by limit checking or accumulation of results.

The Peripheral Event Controller (PEC) can be used to control the A/D converters or to automatically store conversion results to a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer. Each A/D converter contains eight result registers which can be concatenated to build a result FIFO. Wait-for-read mode can be enabled for each result register to prevent the loss of conversion data.

In order to decouple analog inputs from digital noise and to avoid input trigger noise, those pins used for analog input can be disconnected from the digital input stages. This can be selected for each pin separately with the Port x Digital Input Disable registers.

The Auto-Power-Down feature of the A/D converters minimizes the power consumption when no conversion is in progress.

Broken wire detection for each channel and a multiplexer test mode provide information to verify the proper operation of the analog signal sources (e.g. a sensor system).

3.17 Parallel Ports

The XE162xN provides up to 40 I/O lines which are organized into 4 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in Table 9.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	I/O	Connected Modules
P2	11	I/O	CAN, CC2, GPT12E, USIC, DAP/JTAG
P5	7	I	Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN
P6	2	I/O	ADC, CAN, GPT12E
P7	1	I/O	CAN, GPT12E, SCU, DAP/JTAG, USIC
P10	16	I/O	CCU6, USIC, DAP/JTAG, CAN
P15	2	I	Analog Inputs, GPT12E

Table 9Summary of the XE162xN's Ports

Table 10	nstruction Set Summary (cont'd)	uction Set Summary (cont'd)							
Mnemonic	Description	Bytes							
ROL/ROR	Rotate left/right direct word GPR	2							
ASHR	Arithmetic (sign bit) shift right direct word GPR	2							
MOV(B)	Move word (byte) data	2/4							
MOVBS/Z	Move byte operand to word op. with sign/zero extension	2/4							
JMPA/I/R	Jump absolute/indirect/relative if condition is met	4							
JMPS	Jump absolute to a code segment	4							
JB(C)	Jump relative if direct bit is set (and clear bit)	4							
JNB(S)	Jump relative if direct bit is not set (and set bit)	4							
CALLA/I/R	Call absolute/indirect/relative subroutine if condition is met	4							
CALLS	Call absolute subroutine in any code segment	4							
PCALL	Push direct word register onto system stack and call absolute subroutine	4							
TRAP	Call interrupt service routine via immediate trap number	2							
PUSH/POP	Push/pop direct word register onto/from system stack	2							
SCXT	Push direct word register onto system stack and update register with word operand	4							
RET(P)	Return from intra-segment subroutine (and pop direct word register from system stack)	2							
RETS	Return from inter-segment subroutine	2							
RETI	Return from interrupt service subroutine	2							
SBRK	Software Break	2							
SRST	Software Reset	4							
IDLE	Enter Idle Mode	4							
PWRDN	Unused instruction ¹⁾	4							
SRVWDT	Service Watchdog Timer	4							
DISWDT/ENW	DT Disable/Enable Watchdog Timer	4							
EINIT	End-of-Initialization Register Lock	4							
ATOMIC	Begin ATOMIC sequence	2							
EXTR	Begin EXTended Register sequence	2							
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4							
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4							

4 Electrical Parameters

The operating range for the XE162xN is defined by its electrical parameters. For proper operation the specified limits must be respected when integrating the device in its target environment.

4.1 General Parameters

These parameters are valid for all subsequent descriptions, unless otherwise noted.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Output current on a pin when high value is driven	$I_{\rm OH}{\rm SR}$	-30	-	-	mA	
Output current on a pin when low value is driven	$I_{\rm OL}{\rm SR}$	-	-	30	mA	
Overload current	I _{OV} SR	-10	-	10	mA	1)
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	-	-	100	mA	1)
Junction Temperature	$T_{J} \operatorname{SR}$	-40	-	150	°C	
Storage Temperature	$T_{\rm ST}{ m SR}$	-65	-	150	°C	
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	-0.5	-	6.0	V	
Voltage on any pin with respect to ground (Vss)	$V_{\rm IN}{\rm SR}$	-0.5	-	V _{DDP} + 0.5	V	$V_{\rm IN} \leq V_{\rm DDP(max)}$

Table 11 Absolute Maximum Rating Parameters

1) Overload condition occurs if the input voltage $V_{\rm IN}$ is out of the absolute maximum rating range. In this case the current must be limited to the listed values by design measures.

Note: Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Table 12Operating Conditions (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Overload current coupling factor for digital I/O pins	K _{OVD} CC	_	1.0 x 10 ⁻²	3.0 x 10 ⁻²	-	<i>I</i> _{OV} < 0 mA; not subject to production test
		_	1.0 x 10 ⁻⁴	5.0 x 10 ⁻³	-	<i>I</i> _{OV} > 0 mA; not subject to production test
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	-	-	50	mA	not subject to production test
Digital core supply voltage for domain M ⁸⁾	V _{DDIM} CC	-	1.5	_		
Digital core supply voltage for domain 1 ⁸⁾	V _{DDI1} CC	-	1.5	-		
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	3.0	-	5.5	V	
Digital ground voltage	$V_{\rm SS}{\rm SR}$	-	0	-	V	

1) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each V_{DDIM} and V_{DDI1} pin to keep the resistance of the board tracks below 2 Ohm. Connect all V_{DDI1} pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time.

- 2) Use one Capacitor for each pin.
- This is the reference load. For bigger capacitive loads, use the derating factors listed in the pad properties section.
- 4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_L).
- 5) The operating frequency range may be reduced for specific device types. This is indicated in the device designation (...FxxL). 80 MHz devices are marked ...F80L.
- 6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: V_{OV} > V_{IHmax} (I_{OV} > 0) or V_{OV} < V_{ILmin} ((I_{OV} < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by V_{DDIM}).

4.3 DC Parameters

These parameters are static or average values that may be exceeded during switching transitions (e.g. output current).

The XE162xN can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range.

Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range.

During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms.

Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage.

The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application.

The pads of the XE162xN are designed to operate in various driver modes. The DC parameter specifications refer to the pad current limits specified in **Section 4.7.4**.

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances.

The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and **Figure 20**).

This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal f_{SYS} . The number of VCO cycles is K2 × **T**, where **T** is the number of consecutive f_{SYS} cycles (TCS).

The maximum accumulated jitter (long-term jitter) D_{Tmax} is defined by:

 D_{Tmax} [ns] = ±(220 / (K2 × f_{SYS}) + 4.3)

This maximum value is applicable, if either the number of clock cycles T > (f_{SYS} / 1.2) or the prescaler value K2 > 17.

In all other cases for a timeframe of $\mathbf{T} \times TCS$ the accumulated jitter D_T is determined by:

 D_{T} [ns] = $D_{Tmax} \times [(1 - 0.058 \times K2) \times (T - 1) / (0.83 \times f_{SYS} - 1) + 0.058 \times K2]$

 f_{SYS} in [MHz] in all formulas.

Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:

 $D_{max} = \pm (220 / (4 \times 33) + 4.3) = 5.97$ ns (Not applicable directly in this case!)

 $\mathsf{D}_3 = 5.97 \times [(1 - 0.058 \times 4) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 4]$

= 5.97 × [0.768 × 2 / 26.39 + 0.232]

Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:

 $D_{max} = \pm (220 / (2 \times 33) + 4.3) = 7.63$ ns (Not applicable directly in this case!)

 $\begin{array}{l} \mathsf{D}_3 = 7.63 \times [(1 - 0.058 \times 2) \times (3 - 1) \, / \, (0.83 \times 33 - 1) + 0.058 \times 2] \\ = 7.63 \times [0.884 \times 2 \, / \, 26.39 + 0.116] \end{array}$

Table 28	Standard Pad Parameters for Lower Voltage Range
----------	---

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	_	Test Condition
Maximum output driver current (absolute value) ¹⁾	I _{Omax} CC	-	-	2.5	mA	Driver_Strength = Medium
		-	-	10	mA	Driver_Strength = Strong
		-	-	0.5	mA	Driver_Strength = Weak
Nominal output driver current (absolute value)	I _{Onom} CC	-	-	1.0	mA	Driver_Strength = Medium
		-	-	2.5	mA	Driver_Strength = Strong
		-	-	0.1	mA	Driver_Strength = Weak

Figure 22 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted.

Table 36 JTAG Interface Timing for Lower Voltage Range (cont'd)

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ¹⁾	t ₈ CC	-	32	36	ns	
TDO high impedance to valid output from TCK falling edge ²⁾¹⁾	t ₉ CC	-	32	36	ns	
TDO valid output to high impedance from TCK falling edge ¹⁾	<i>t</i> ₁₀ CC	-	32	36	ns	
TDO hold after TCK falling edge ¹⁾	<i>t</i> ₁₈ CC	5	-	_	ns	

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.

Figure 26 Test Clock Timing (TCK)

Package and Reliability

Package Outlines

Figure 28 PG-LQFP-64-6 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages