
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f753-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADL		101755/1	10733 31								
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Value on all other Resets
Bank	Bank 0										
00h	INDF				IND	F<7:0>				xxxx xxxx	XXXX XXXX
01h	TMR0				TMR	0<7:0>				XXXX XXXX	uuuu uuuu
02h	PCL				PCL	_<7:0>				0000 0000	0000 0000
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR				FSF	R<7:0>				XXXX XXXX	uuuu uuuu
05h	PORTA	-	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
06h	—		<u>. </u>		Unimp	lemented			<u> </u>	_	_
07h	PORTC	-	—	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu
08h	IOCAF	_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
09h	IOCCF	—	—	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	00 0000	00 0000
0Ah	PCLATH	_	_	_			PCLATH<4:0>	>		0 0000	0 0000
0Bh	INTCON	GIE	PEIE	T0IE	INTE	IOCIE	TOIF	INTF	IOCIF	0000 0000	0000 0000
0Ch	PIR1	TMR1GIF	ADIF	—	—	HLTMR2IF	HLTMR1IF	TMR2IF	TMR1IF	000000	000000
0Dh	PIR2	—	—	C2IF	C1IF	—	COG1IF	_	CCP1IF	00 -0-0	00 -0-0
0Eh	—		Unimplemented							-	—
0Fh	TMR1L		TMR1L<7:0>							xxxx xxxx	uuuu uuuu
10h	TMR1H				TMR1	IH<7:0>				XXXX XXXX	uuuu uuuu
11h	T1CON	TMR1C	S<1:0>	T1CKP	PS<1:0>	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	0000 00-0
12h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	00x0 0x00	00x0 0x00
13h	CCPR1L				CCPR	1L<7:0>				xxxx xxxx	uuuu uuuu
14h	CCPR1H				CCPR	1H<7:0>				xxxx xxxx	uuuu uuuu
15h	CCP1CON	—	—	DC1E	3<1:0>		CCP1N	1<3:0>		00 0000	00 0000
16h	—		Unimplemented						—	—	
17h	—		Unimplemented							_	—
18h	—		Unimplemented							_	—
19h	—		Unimplemented						_	—	
1Ah	_		Unimplemented						—	—	
1Bh	—		Unimplemented						—	—	
1Ch	ADRESL		Least Significant two bits of the left shifted result or eight bits of the right shifted result xxxx xxxx u						uuuu uuuu		
1Dh	ADRESH	Most	Significant e	ight bits of th	e left shifted	A/D result or	two bits of the	right shifted	result	XXXX XXXX	uuuu uuuu
1Eh	ADCON0	ADFM	—		CHS	8<3:0>		GO/DONE	ADON	0-00 0000	0-00 0000
1Fh	ADCON1	—		ADCS<2:0>		-	-	—	ADPREF1	-0000	-0000

TABLE 2-1: PIC16F753/HV753 SPECIAL REGISTERS SUMMARY BANK 0

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition shaded = unimplemented.

.

IADI	ADLE 2-3: PICTOF733/HV733 SPECIAL REGISTERS SUMMART DANK 2										
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Value on all other Resets
Ban	Bank 2										
100h	INDF				INDF	<7:0>				XXXX XXXX	XXXX XXXX
101h	TMR0				TMR)<7:0>				xxxx xxxx	uuuu uuuu
102h	PCL				PCL	<7:0>				0000 0000	0000 0000
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
104h	FSR			•	FSR	<7:0>	•	•		xxxx xxxx	uuuu uuuu
105h	LATA	—	_	LATA5	LATA4	_	LATA2	LATA1	LATA0	xx -xxx	uu -uuu
106h	—				Unimple	emented				_	_
107h	LATC	_	_	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xx xxxx	uu uuuu
108h	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
109h	IOCCN	—	_	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	00 0000	00 0000
10Ah	PCLATH	_		—		F	PCLATH<4:0:	>		0 0000	0 0000
10Bh	INTCON	GIE	PEIE	TOIE	INTE	IOCIE	T0IF	INTF	IOCIF	0000 0000	0000 0000
10Ch	WPUA	—	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111
10Dh	WPUC	_		WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	11 1111	11 1111
10Eh	SLRCONC	_		SLRC5	SLRC4	-	—	_	_	00	00
10Fh	PCON	—	-	_	_	—	—	POR	BOR	qq	uu
110h	TMR2				TMR2	2<7:0>				0000 0000	0000 0000
111h	PR2				PR2-	<7:0>				1111 1111	1111 1111
112h	T2CON	—		T2OUTF	PS<3:0>		TMR2ON	T2CKF	PS<1:0>	-000 0000	-000 0000
113h	HLTMR1		F	Iolding Registe	er for the 8-bit	Hardware Lim	nit Timer1 Co	unt		0000 0000	0000 0000
114h	HLTPR1			HL	TMR1 Module	e Period Regis	ster			1111 1111	1111 1111
115h	HLT1CON0	—		H1OUT	PS<3:0>		H1ON	H1CKF	PS<1:0>	-000 0000	-000 0000
116h	HLT1CON1	H1FES	H1RES	_		H1ERS<2:0>		H1FEREN	H1REREN	11-0 0000	11-0 0000
117h	HLTMR2		Holding Register for the 8-bit Hardware Limit Timer2 Count					0000 0000	0000 0000		
118h	HLTPR2		HLTMR2 Module Period Register					1111 1111	1111 1111		
119h	HLT2CON0	_		H2OUTPS<3:0> H2ON H2CKPS<1:0>				-000 0000	-000 0000		
11Ah	HLT2CON1	H2FES	S H2RES — H2ERS<2:0> H2FEREN H2REREN				11-0 0000	11-0 0000			
11Bh	_		Unimplemented							_	—
11Ch	_		Unimplemented							_	_
11Dh	—				Unimple	emented				_	_
11Eh	SLPCCON0	SC1EN	_	—	SC1POL	SC1TS	S<1:0>	—	SC1INS	0-00 00-0	0-00 00-0
11Fh	SLPCCON1		_	_	SC1RNG		SC1ISI	ET<3:0>		0 0000	0 0000
Logor	ale llaiman la	$-$ = Unimplemented locations read as $(0^{2})_{11}$ = unchanged x = unknown α = value depends on condition shaded = unimplemented									

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition shaded = unimplemented.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PMCON1	_	_		_	_	WREN	WR	RD	27
PMCON2		Program Memory Control Register 2							27
PMADRL	PMADRL<7:0>								26
PMADRH	_	_	PMADRH<1:0>						26
PMDATL	PMDATL<7:0>						26		
PMDATH	— — PMDATH<5:0>						26		
INTCON	GIE	PEIE	TOIE	INTE	IOCIE	T0IF	INTF	IOCIF	17

TABLE 3-1: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory module. * Page provides register information.

TABLE 3-2: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG ⁽¹⁾	13:8			DEBUG	CLKOUTEN	WRT<1:0>		BOREI	N<1:0>	450
CONFIG	7:0	_	CP	MCLRE	PWRTE	WDTE			FOSC0	150

Legend: — = unimplemented location, read as '1'. Shaded cells are not used by Flash program memory.

Note 1: See Configuration Word register (Register 19-1) for operation of all register bits.

5.3 PORTA and TRISA Registers

PORTA is a 6-bit wide port with five bidirectional and one input-only pin. The corresponding data direction register is TRISA (Register 5-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input-only and its TRIS bit will always read as '1'. Example 5-1 shows how to initialize PORTA.

Reading the PORTA register (Register 5-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. RA3 reads '0' when MCLRE = 1.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSEL register must be initialized to
	configure an analog channel as a digital
	input. Pins configured as analog inputs will
	read '0' and cannot generate an interrupt.

5.3.1 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 5-1.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as comparator inputs, are not shown in the priority lists. These inputs are active when the peripheral is enabled and the input multiplexer for the pin is selected. The Analog mode, set with the ANSELA register, disables the digital input buffer thereby preventing excessive input current when the analog input voltage is between logic states. Digital output functions may control the pin when it is in Analog mode with the priority shown in Table 5-1.

TABLE 5-1: PORTA OUTPUT PRIORITY

Pin Name	Function Priority
RAO	ICSPDAT FVROUT DACOUT C1IN0+ RA0
RA1	FVRIN ICSPCLK VREF+ C1IN0- C2IN0- RA1
RA2	COG1FLT T0CKI C1OUT INT RA2
RA3	MCLR VPP T1G RA3
RA4	CLKOUT T1G RA4
RA5	CLKIN T1CKI RA5

5.4 Additional Pin Functions

Every PORTA pin on the PIC16F753 has an interrupton-change option and a weak pull-up option. The next three sections describe these functions.

5.4.1 ANSELA REGISTER

The ANSELA register (Register 5-5) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

5.4.2 WEAK PULL-UPS

Each of the PORTA pins, except RA3, has an individually configurable internal weak pull-up. Control bits WPUx enable or disable each pull-up. Refer to Register 5-6. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RAPU bit of the OPTION_REG register. A weak pull-up is automatically enabled for RA3 when configured as MCLR and disabled when RA3 is an I/O. There is no software control of the MCLR pull-up.

5.4.3 INTERRUPT-ON-CHANGE

Each PORTA pin is individually configurable as an interrupt-on-change pin. Control bits IOCA enable or disable the interrupt function for each pin. Refer to Register 5-7. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt Flag bit (IOCIF) in the INTCON register (Register 2-3).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

a) Any read of PORTA AND Clear flag bit IOCIF. This will end the mismatch condition;

OR

 Any write of PORTA AND Clear flag bit IOCIF will end the mismatch condition;

A mismatch condition will continue to set flag bit IOCIF. Reading PORTA will end the mismatch condition and allow flag bit IOCIF to be cleared. The latch holding the last read value is not affected by a MCLR nor BOR Reset. After these Resets, the IOCIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when any PORTA operation is being executed, then the IOCIF interrupt flag may not get set.

7.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 7-1 displays the Timer1 enable selections.

TABLE 7-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

7.2 Clock Source Selection

The TMR1CS<1:0> bits of the T1CON register are used to select the clock source for Timer1. Table 7-2 displays the clock source selections.

TABLE 7-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0> Clock Source		
11	Temperature Sense Oscillator	
10	External Clocking on T1CKI Pin	
01	System Clock (Fosc)	
00	Instruction Clock (Fosc/4)	

7.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc or Fosc/4 as determined by the Timer1 prescaler.

7.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter. When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI.

Note:	In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge (see Figure 7-2) after any one or more of the following conditions:
	Timer1 enabled after POR Reset

- Write to TMR1H or TMR1L
- Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON = 1) when T1CKI is low.

7.2.3 WDT OSCILLATOR

When the Watchdog is selected, Timer 1 will use the LFINTOSC that is used to operate the Watchdog Timer. This is the same oscillator as the LFINTOSC used as the system clock. Selecting this option will enable the oscillator even when the LFINTOSC or the Watchdog are not in use. This oscillator will continue to operate when in Sleep mode.

9.1 HLT Operation

The clock input to the HLT module is the system instruction clock (Fosc/4). HLTMRx increments on each rising clock edge.

A 4-bit counter/prescaler on the clock input provides the following prescale options:

- Direct input
- Divide-by-4
- Divide-by-16
- Divide-by-64

The prescale options are selected by the prescaler control bits, HxCKPS<1:0> of the HLTxCON0 register.

The value of HLTMRx is compared to that of the Period register, HLTPRx, on each clock cycle. When the two values match, then the comparator generates a match signal as the HLTimerx output. This signal also resets the value of HLTMRx to 00h on the next clock rising edge and drives the output counter/postscaler (see **Section 9.2 "HLT Interrupt"**).

The HLTMRx and HLTPRx registers are both directly readable and writable. The HLTMRx register is cleared on any device Reset, whereas the HLTPRx register initializes to FFh. Both the prescaler and postscaler counters are cleared on any of the following events:

- A write to the HLTMRx register
- A write to the HLTxCON0 register
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note: HLTMRx is not cleared when HLTxCON0 is written.

9.2 HLT Interrupt

The HLT can also generate an optional device interrupt. The HLTMRx output signal (HLTMRx-to-HLTPRx match) provides the input for the 4-bit counter/postscaler. The overflow output of the postscaler sets the HLTMRxIF bit of the PIR1 register. The interrupt is enabled by setting the HLTMRx Match Interrupt Enable bit, HLTMRxIE of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, HxOUTPS<3:0>, of the HLTxCON0 register.

9.3 Peripheral Resets

Resets driven from the selected peripheral output prevents the HLTMRx from matching the HLTPRx register and generating an output. In this manner, the HLT can be used as a hardware time limit to other peripherals.

In this device, the primary purpose of the HLT is to limit the COG PWM duty cycle. Normally, the COG operation uses analog feedback to determine the PWM duty cycle. The same feedback signal is used as an HLT Reset input. The HLTPRx register is set to occur at the maximum allowed duty cycle. If the analog feedback to the COG exceeds the maximum time, then an HLTMRx-to-HLTPRx match will occur and generate the output needed to limit the COG drive output.

The HLTMRx can be reset by one of several selectable peripheral sources. Reset inputs include:

- CCP1 output
- · Comparator 1 output
- · Comparator 2 output
- COGxFLT pin
- COG1OUT0
- COG10UT1

The external Reset input is selected with the HxERS<2:0> bits of the HLTxCON1 register. High and low Reset enables are selected with the HxREREN and HxFEREN bits, respectively. Setting the HxRES and HxFES bits makes the respective rising and falling Reset events edge sensitive. Reset inputs that are not edge sensitive are level sensitive.

HLTMRx Resets are synchronous with the HLT clock. In other words, HLTMRx is cleared on the rising edge of the HLT clock after the enabled Reset event occurs.

If an enabled external Reset occurs at the same time a write occurs to the TMR4A register, the write to the timer takes precedence and pending Resets are cleared.

9.4 HLTimerx Output

The unscaled output of HLTMRx is available only to the COG module, where it is used as a selectable limit to the maximum COG period.

9.5 HLT Operation During Sleep

The HLT cannot be operated while the processor is in Sleep mode. The contents of the HLTMRx register will remain unchanged while the processor is in Sleep mode.

10.2.5 COMPARE DURING SLEEP

The Compare mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2		Bit 2 Bit 1		Register on Page
CCP1CON	—	—	DC1E	8<1:0>		CCP1M<	3:0>		80
CCPR1L				CCF	PR1L<7:0>				74
CCPR1H				CCP	R1H<7:0>				74
INTCON	GIE	PEIE	T0IE	INTE	IOCIE	T0IF	INTF	IOCIF	17
PIE1	TMR1- GIE	ADIE	—	—	— HLTMR2IE H		TMR2IE	TMR1IE	18
PIE2	—	—	C2IE	C1IE	_	COG1IE		CCP1IE	19
PIR1	TMR1- GIF	ADIF		_	HLTMR2IF	HLTMR1IF	TMR2IF	TMR1IF	20
PIR2	—	—	C2IF	C1IF	_	COG1IF	_	CCP1IF	21
T1CON	TMR1C	S<1:0>	T1CKP	2S<1:0>	T1OSCEN	T1SYNC		TMR1ON	65
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ T1GVAL T1GSS<1: DONE		S<1:0>	66	
TMR1H		TMR1H<7:0>							57*
TMR1L				TM	R1L<7:0>				57*
TRISA			TRISA5	TRISA4	TRISA3 ⁽¹⁾	TRISA2	TRISA1	TRISA0	43

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Compare mode.

* Page provides register information.

Note 1: TRISA3 always reads '1'.

When the phase delay count value is zero, phase delay is disabled and the phase delay counter output is true, thereby allowing the event signal to pass straight through to complementary output driver flop.

CUMULATIVE UNCERTAINTY 11.7.1

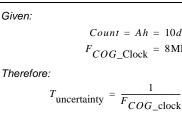
It is not possible to create more than one COG_clock of uncertainty by successive stages. Consider that the phase delay stage comes after the blanking stage, the dead-band stage comes after either the blanking or phase delay stages, and the blanking stage comes after the dead-band stage. When the preceding stage is enabled, the output of that stage is necessarily synchronous with the COG_clock, which removes any possibility of uncertainty in the succeeding stage.

EQUATION 11-1: PHASE, DEAD-BAND AND **BLANKING TIME** CALCULATION

$$T_{\min} = \frac{\text{Count}}{F_{COG_clock}}$$

$$T_{\max} = \frac{\text{Count} + 1}{F_{COG_clock}}$$

$$T_{\text{uncertainty}} = T_{\max} - T_{\min}$$
Also:
$$T_{\text{uncertainty}} = \frac{1}{F_{COG_clock}}$$


Where:

т	Count
Rising Phase Delay	COGxPHR
Falling Phase Delay	COGxPHF
Rising Dead Band	COGxDBR
Falling Dead Band	COGxDBF
Rising Event Blanking	COGxBKR
Falling Event Blanking	COGxBKF

EQUATION 11-2: TIMER UNCERTAINTY

Count = Ah = 10d

 $F_{COG_Clock} = 8MHz$

$$= \frac{1}{8MHz} = 125ns$$

Proof:

$$T_{\min} = \frac{Count}{F_{COG_clock}}$$

$$= 125ns \bullet 10d \qquad = 1.25\mu s$$

$$T_{\max} = \frac{Count + 1}{F_{COG_clock}}$$

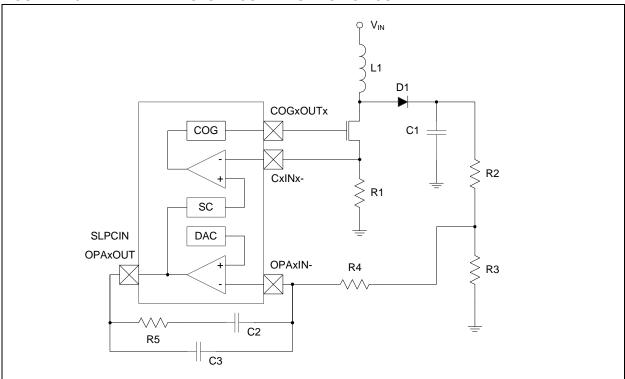
$$= 125 ns \bullet (10d + 1)$$

$$= 1.375 \, \mu s$$

Therefore:

$$T_{\text{uncertainty}} = T_{\text{max}} - T_{\text{min}}$$
$$= 1.375 \,\mu s - 1.25 \,\mu s$$
$$= 125 \,n s$$

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
—	GxRMHLT2	GxRMHLT1	GxRMT2M	GxRMFLT	GxRMCCP1	GxRMC2	GxRMC1			
bit 7							bit			
Legend: R = Readable I	nit	W = Writable t	sit	II – I Inimplen	nented bit, read a	e 'O'				
u = Bit is uncha		x = Bit is unkn		•	at POR and BOR/		er Resets			
'1' = Bit is set		'0' = Bit is clea			ends on conditior					
		0 21110 0100		<u>q</u>		·				
bit 7	Unimplement	ed: Read as '0'								
bit 6	GxRMHLT2: (GxRIHLT2 = 1	COGx Rising Ev	ent Input Sour	ce 6 Mode bit ⁽¹)					
	1 = HLTimer2	low-to-high tra high level will d			nt after rising ever ent	nt phase delay				
		no effect on ris	ng event							
bit 5	GxRMHLT1: (<u>GxRIHLT1 = 1</u>	COGx Rising Ev <u>:</u>	ent Input Sour	ce 5 Mode bit ⁽¹)					
		high level will o			nt after rising ever ent	nt phase delay				
		no effect on ris	-	(4)						
bit 4	GxRMT2M: C GxRIT2M = 1:	OGx Rising Eve	ent Input Sourc	e 4 Mode bit ⁽¹⁾						
	1 = Timer2 m	1 = Timer2 match with PR2 low-to-high transition will cause a rising event after rising event phase delay								
	0 = Timer2 match with PR2 high level will cause an immediate rising event GxRIT2M = 0:									
		with PR2 has n	o effect on risir	ng event						
bit 3	GxRMFLT: CO GxRIFLT = 1:	OGx Rising Eve	nt Input Source	e 3 Mode bit						
	1 = COGxFL	Г pin low-to-higł Г pin high level			event after rising event	event phase de	lay			
		has no effect or	n rising event							
bit 2	GxRMCCP1: GxRICCP1 = 1	COGx Rising Ev	vent Input Sour	ce 2 Mode bit						
	1 = CCP1 lov	v-to-high transiti h level will caus			fter rising event pł	nase delay				
		effect on rising	event							
bit 1		Gx Rising Even	t Input Source	1 Mode bit						
		tor 2 low-to-high tor 2 high level		-	event after rising event	event phase de	lay			
		has no effect or	n rising event							
bit 0		Gx Rising Even	t Input Source	0 Mode bit						
	0 = Compara GxRIC1 = 0:	tor 1 high level	will cause an in		event after rising event	event phase de	lay			
	Comparator 1	has no effect or	n rising event							
Note 1: The	ese sources are	pulses and ther	efore the only b	penefit of Edge	mode over Level	mode is that th	ev can be			


REGISTER 11-4: COGxRSIM: COG RISING EVENT SOURCE INPUT MODE REGISTER

Note 1: These sources are pulses and therefore the only benefit of Edge mode over Level mode is that they can be delayed by rising event phase delay.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
_	GxFIHLT2	GxFIHLT1	GxFIT2M	GxFIFLT	GxFICCP1	GxFIC2	GxFIC1				
oit 7							bit				
Legend:											
R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$											
u = Bit is uncl	hanged	x = Bit is unkn	own	•	at POR and BOR		er Resets				
1' = Bit is set		'0' = Bit is clea	red	q = Value dep	ends on conditio	n					
oit 7	Unimplement	ed: Read as '0'									
oit 6		OGx Falling Eve									
		output is enabl has no effect o									
oit 5		DGx Falling Eve	-								
		output is enabl									
	0 = HLTimer1	has no effect o	n the falling ev	rent							
oit 4		Gx Falling Ever	•								
		atch with PR2 is atch with PR2 h		•	•						
oit 3	GxFIFLT: COO	Gx Falling Even	Input Source	3 Enable bit							
		r pin is enabled	•	•							
		F pin has no effe		-							
oit 2	GxFICCP1: COGx Falling Event Input Source 2 Enable bit 1 = CCP1 output is enabled as a falling event input										
		s no effect on th									
oit 1		x Falling Event	•								
	•	 1 = Comparator 2 output is enabled as a falling event input 0 = Comparator 2 output has no effect on the falling event 									
		•		•							
oit 0		x Falling Event tor 1 output is e	•		t						
	0 = Compara				-						

REGISTER 11-5: COGxFIS: COG FALLING EVENT INPUT SELECTION REGISTER

17.3 Inputs

The SC module connects to the following inputs:

- COG1
- COG2
- Comparator C1
- Comparator C2

17.4 Outputs

The SC module connects to the following outputs:

- Comparator C1
- Comparator C2
- Op amp

17.5 Operation During Sleep

The SC module is unaffected by Sleep.

17.6 Effects of a Reset

The SC module resets to a disabled condition.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					
Operands:	$0 \leq k \leq 2047$					
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>					
Status Affected:	None					
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.					

INCFSZ	Increment f, Skip if 0					
Syntax:	[label] INCFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0					
Status Affected:	None					
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.					

IORLW	Inclusive OR literal with W						
Syntax:	[<i>label</i>] IORLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	(W) .OR. $k \rightarrow$ (W)						
Status Affected:	Z						
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.						

INCF	Increment f					
Syntax:	[label] INCF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (destination)					
Status Affected:	Z					
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

IORWF	Inclusive OR W with f						
Syntax:	[label] IORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .OR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.						

TABLE 22-3: POWER-DOWN CURRENTS (IPD) (CONTINUED)^(1,2)

PIC16F753		Standa Sleep		ating Co	ondition	s (unless	otherw	ise stated)
PIC16H	V753							
Param Device		Min.	Тур†		Max.	Units		Conditions
No.	Characteristics			85°C	125°C		Vdd	Note
	Power-down Bas	e Curre	ent (IPD) ⁽²	2, 3)				
D025			0.10	0.41	3.51	μA	3.0	A/D Current ⁽¹⁾ , no conversion in
		—	0.12	0.55	4.41	μA	5.0	progress
D025			145	171	175	μA	3.0	
		_	185	226	231	μA	4.5	
D026		_	20	37	37	μA	2.0	DAC Current ⁽¹⁾
			30	46	46	μA	3.0	
		_	50	76	76	μA	5.0	
D026			85	155	155	μA	2.0	
			165	213	213	μA	3.0	
			215	284	284	μA	4.5	7
D027		_	115	185	203	203 μΑ 2.0	2.0	FVR Current ⁽¹⁾ , FVRBUFEN = 1,
			120	193	219	μA	3.0	FVROUT buffer enabled
			125	196	224	μA	5.0	
D027			65	126	145	μA	2.0	
			136	171	182	μA	3.0	7
			175	226	231	μA	4.5	
D028			1	2	4	μA	2.0	T1OSC Current,
			2	3	5	μA	3.0	TMR1CS <1:0> = 11
			9	20	21	μA	5.0	
D028			65	126	140	μA	2.0	
			136	172	180	μA	3.0	
			175	228	235	μA	4.5	1
D029			140	258	265	μA	2.0	Op-Amp Current ⁽¹⁾
			155	326	340	μA	3.0	7
		_	165	421	422	μA	5.0	1
D029		—	140	260	265	μA	2.0	
			155	325	340	μA	3.0	1
			165	400	410	μA	4.5	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral △ current can be determined by subtracting the base IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: Shunt regulator is always ON and always draws operating current.

TABLE 22-4: I/O PORTS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym Characteristic		Min.	Typ† Max.		Units	Conditions			
		Capacitive Loading Specs on (Capacitive Loading Specs on Output Pins							
D101*	COSC2	OSC2 pin	—	—	15	pF	In XT, HS, LP modes when			
D101A*	CIO	All I/O pins	—	—	50	pF	external clock is used to driv OSC1			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

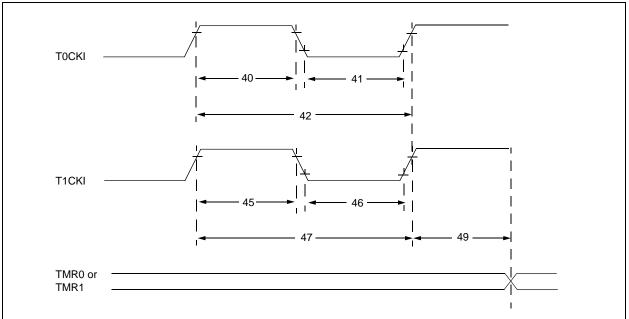
Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: This specification applies to all weak pull-up pins, including the weak pull-up found on RA3/MCLR. When RA3/MCLR is configured as MCLR Reset pin, the weak pull-up is always enabled.

TABLE 22-5: MEMORY PROGRAMMING SPECIFICATIONS

Param. No. Sym.		Characteristic	Min.	Тур†	Max.	Units	Conditions		
		Program Memory Programming Specifications							
D110	VIHH	Voltage on MCLR/VPP pin	10.0	_	13.0	V	(Note 2)		
D112	VBE	VDD for Bulk Erase	4.5		VDDMAX	V			
D113	VPEW	VDD for Write or Row Erase	4.5	_	VDDMAX	V			
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	300	1000	μA			
		Program Flash Memory							
D121	Eр	Cell Endurance	10K	100K	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)		
D121A	Eр	Cell Endurance	1K	10K	—	E/W	-40°C ≤ TA ≤ +125°C (Note 1)		
D122	Vprw	VDD for Read/Write	VDDMIN	_	VDDMAX	V			
D123	Tiw	Self-timed Write Cycle Time	_	2	2.5	ms			
D124	Tretd	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated		
D125	EHEFC	High-Endurance Flash Cell	N/A		_	E/W	0°C to +60°C, Lower byte last 128 addresses		


Standard Operating Conditions (unless otherwise stated)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

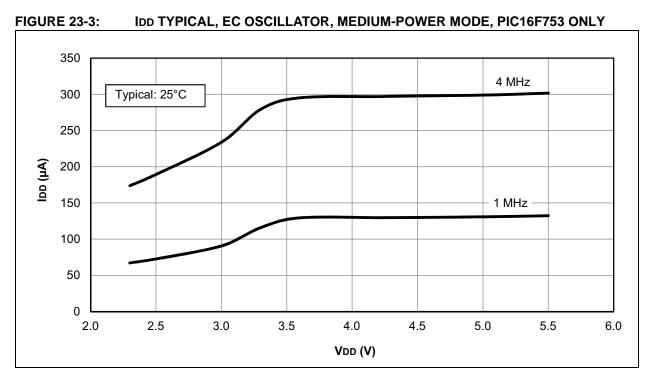
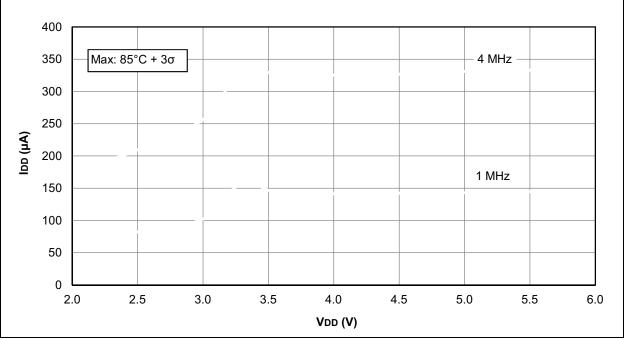
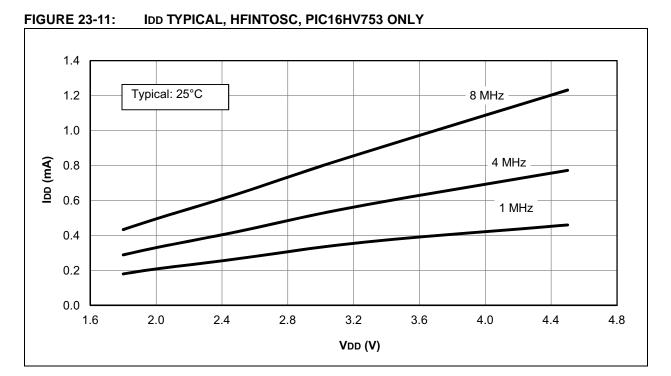
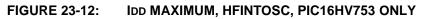
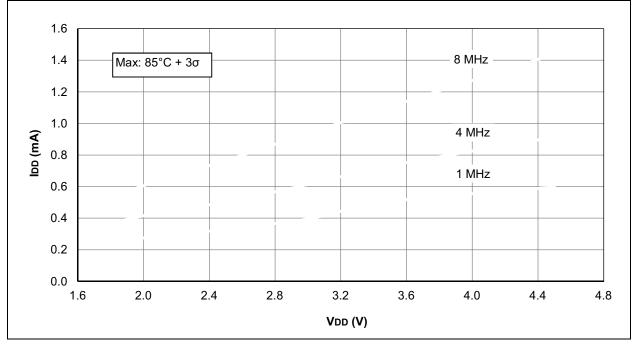
2: Required only if single-supply programming is disabled.

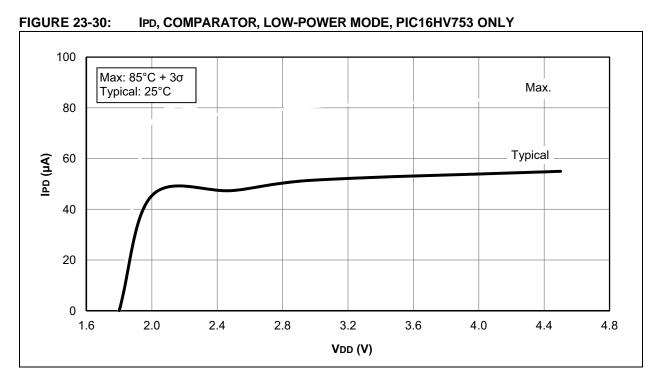
TABLE 22-11:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------	---

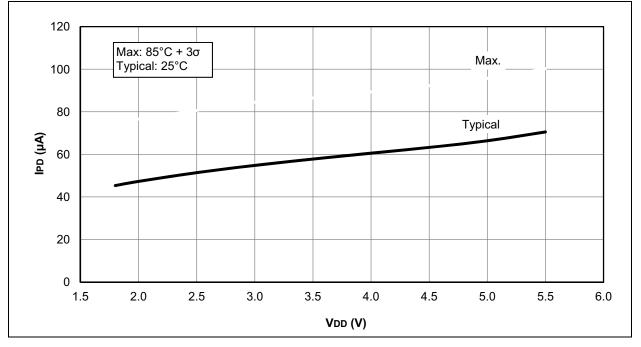
Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.		Characteristic		Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width No Prescaler With Prescaler		No Prescaler	0.5 Tcy + 20	—	-	ns	
				10		-	ns		
41* TTOL		T0CKI Low Pulse Width No Prescaler With Prescaler		0.5 Tcy + 20	—	_	ns		
				10	—		ns		
42*	T⊤0P	T0CKI Period	d		Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous	6	30	_	_	ns	
46*	TT1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30	_	_	ns	
47*	Ττ1Ρ	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
			Asynchronous	3	60	—	_	ns	
49*	TCKEZT- MR1	Delay from E Increment	xternal Clock Edge to Timer		2 Tosc	—	7 Tosc	_	Timers in Sync mode

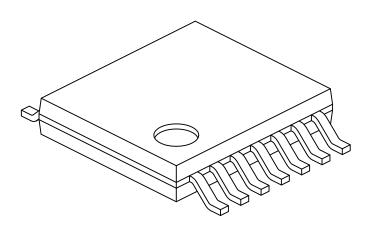
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


FIGURE 23-4: IDD MAXIMUM, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16F753 ONLY





14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	14				
Pitch	е	0.65 BSC				
Overall Height	А	-				
Molded Package Thickness	A2	0.80	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Overall Width	E	6.40 BSC				
Molded Package Width	E1	4.30	4.40	4.50		
Molded Package Length	D	4.90	5.00	5.10		
Foot Length	L	0.45	0.60	0.75		
Footprint	(L1)	1.00 REF				
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.19	-	0.30		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2