

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f753-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

.

IADI	ABLE 2-3: PICTOF/33/HV/33 SPECIAL REGISTERS SUMMART BANK 2										
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Value on all other Resets
Ban	Bank 2										
100h	INDF				INDF	<7:0>				XXXX XXXX	XXXX XXXX
101h	TMR0				TMR)<7:0>				XXXX XXXX	uuuu uuuu
102h	PCL				PCL	<7:0>				0000 0000	0000 0000
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
104h	FSR			•	FSR	<7:0>	•	•		xxxx xxxx	uuuu uuuu
105h	LATA	—	_	LATA5	LATA4	_	LATA2	LATA1	LATA0	xx -xxx	uu -uuu
106h	—				Unimple	emented				_	_
107h	LATC	_	_	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xx xxxx	uu uuuu
108h	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
109h	IOCCN	—	_	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	00 0000	00 0000
10Ah	PCLATH	_		—		F	PCLATH<4:0:	>		0 0000	0 0000
10Bh	INTCON	GIE	PEIE	TOIE	INTE	IOCIE	T0IF	INTF	IOCIF	0000 0000	0000 0000
10Ch	WPUA	—	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111
10Dh	WPUC	_		WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	11 1111	11 1111
10Eh	SLRCONC	_		SLRC5	SLRC4	-	—	_	_	00	00
10Fh	PCON	—	-	_	_	—	—	POR	BOR	qq	uu
110h	TMR2		TMR2<7:0>							0000 0000	0000 0000
111h	PR2		PR2<7:0>						1111 1111	1111 1111	
112h	T2CON	—		T2OUTF	PS<3:0>		TMR2ON	T2CKF	PS<1:0>	-000 0000	-000 0000
113h	HLTMR1		F	Iolding Registe	er for the 8-bit	Hardware Lim	nit Timer1 Co	unt		0000 0000	0000 0000
114h	HLTPR1			HL	TMR1 Module	e Period Regis	ster			1111 1111	1111 1111
115h	HLT1CON0	—		H1OUT	PS<3:0>		H1ON	H1CKF	PS<1:0>	-000 0000	-000 0000
116h	HLT1CON1	H1FES	H1RES	_		H1ERS<2:0>		H1FEREN	H1REREN	11-0 0000	11-0 0000
117h	HLTMR2		Holding Register for the 8-bit Hardware Limit Timer2 Count						0000 0000	0000 0000	
118h	HLTPR2		HLTMR2 Module Period Register							1111 1111	1111 1111
119h	HLT2CON0	_		H2OUTPS<3:0> H2ON H2CKPS<1:0>				-000 0000	-000 0000		
11Ah	HLT2CON1	H2FES	H2RES — H2ERS<2:0> H2FEREN H2REREN				11-0 0000	11-0 0000			
11Bh	_		Unimplemented							_	—
11Ch	_				Unimple	emented				_	_
11Dh	—				Unimple	emented				_	_
11Eh	SLPCCON0	SC1EN	_	—	SC1POL	SC1TS	S<1:0>	—	SC1INS	0-00 00-0	0-00 00-0
11Fh	SLPCCON1		_	_	SC1RNG		SC1ISI	ET<3:0>		0 0000	0 0000
Logor	\mathbf{n} , \mathbf{n} = Unimplemented locations read as (i) \mathbf{u} = unchanged \mathbf{x} = unknown \mathbf{a} = value depends on condition shaded = unimplemented										

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition shaded = unimplemented.

2.3.7 PIR2 REGISTER

The PIR2 register contains the Peripheral Interrupt flag bits, as shown in Register 2-7.

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global					
	Enable bit, GIE of the INTCON register.					
	User software should ensure the					
	appropriate interrupt flag bits are clear prior					
	to enabling an interrupt.					

REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 1

U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
—	—	C2IF	C1IF	—	COG1IF		CCP1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5	C2IF: Comparator 1 Interrupt Flag bit
	1 = Comparator output (C2OUT bit) has changed (must be cleared in software)
	0 = Comparator output (C2OUT bit) has not changed
bit 4	C1IF: Comparator 1 Interrupt Flag bit
	1 = Comparator output (C1OUT bit) has changed (must be cleared in software)
	0 = Comparator output (C1OUT bit) has not changed
bit 3	Unimplemented: Read as '0'
bit 2	COG1IF: COG 1 Interrupt Flag bit
	1 = COG1 has generated an auto-shutdown interrupt
	0 = COG1 has NOT generated an auto-shutdown interrupt
bit 1	Unimplemented: Read as '0'
bit 0	CCP1IF: ECCP Interrupt Flag bit
	Capture Mode
	1 = A TMR1 register capture occurred (must be cleared in software)
	0 = No TMR1 register capture occurred
	Compare Mode
	 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred
	PWM mode
	Unused in this mode

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0
Legend:							

REGISTER 5-15: WPUC: WEAK PULL-UP PORTC REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

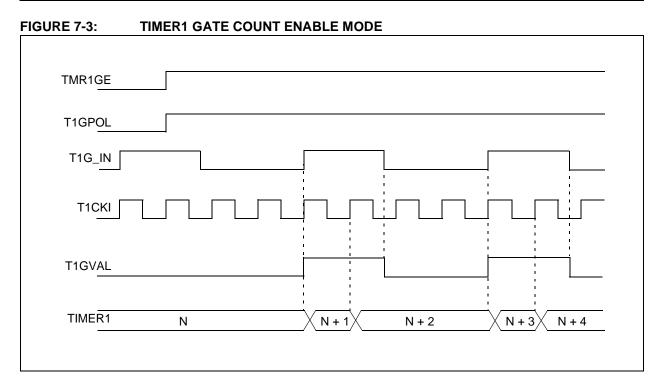
bit 5-0 WPUC<5:0>: Weak Pull-up Control bits^(1,2,3) 1 = Pull-up enabled

0 = Pull-up disabled

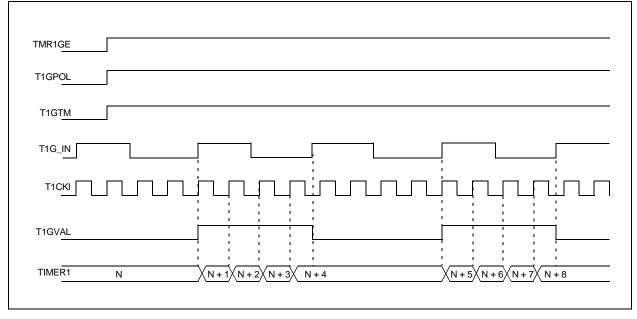
Note 1: Global RAPU must be enabled for individual pull-ups to be enabled.

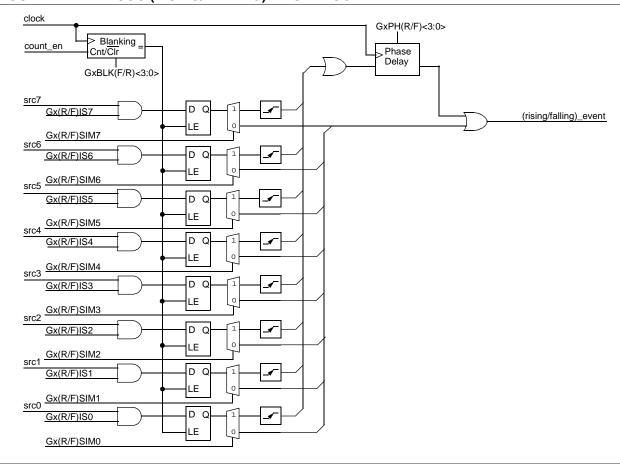
- 2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISC = 0).
- **3:** The RC3 pull-up is enabled when configured as MCLR in the Configuration Word, otherwise it is disabled as an input and reads as '0'.

REGISTER 5-16: IOCCP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER


U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7-6 Unimplemented: Read as '0'


bit 5-0 **IOCCP<5:0>:** Interrupt-on-Change Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

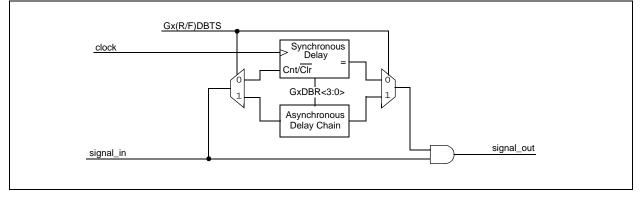
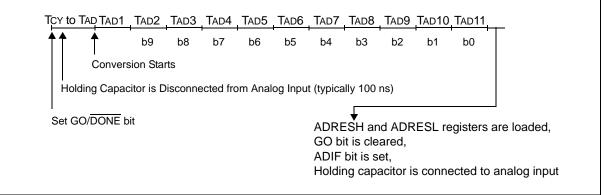

FIGURE 7-4: TIMER1 GATE TOGGLE MODE

FIGURE 11-2: COG (RISING/FALLING) INPUT BLOCK

						DAM O/C	D 444 0/2
R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
GxRDBTS	GxFDBTS	—	—	—	—	GxCS	i<1:0>
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	q = Value depends on condition		
bit 6	 1 = Delay chain and COGxDBR are used for dead-band timing generation 0 = COGx_clk and COGxDBR are used for dead-band timing generation GxFDBTS: COGx Falling Event Dead-band Timing Source Select bit 1 = Delay chain and COGxDF are used for dead-band timing generation 0 = COGx_clk and COGxDBF are used for dead-band timing generation 						
bit 5-2	Unimplemented: Read as '0'						
bit 1-0	GxCS<1:0>: COGx Clock Source Select bits 11 = Reserved 10 = HFINTOSC (stays active during Sleep) 01 = Fosc/4 00 = Fosc						

REGISTER 11-2: COGxCON1: COG CONTROL REGISTER 1

ADC Clock Period (TAD)		Device Frequency (Fosc)			
ADC Clock Source	ADCS<2:0>	20 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	100 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	100	200 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs ⁽²⁾	4.0 μs
Fosc/8	001	400 ns ⁽²⁾	1.0 μs ⁽²⁾	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	101	800 ns ⁽²⁾	2.0 μs	4.0 μs	16.0 μs ⁽³⁾
Fosc/32	010	1.6 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾
Fosc/64	110	3.2 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾
FRC	x11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)


TABLE 12-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (VDD \geq 3.0V)

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 4 μ s for VDD > 3.0V.

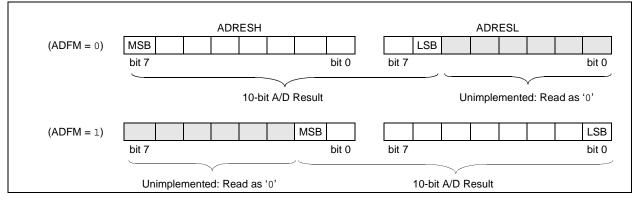
- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

FIGURE 12-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

12.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.


This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the Interrupt Service Routine.

12.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON0 register controls the output format.

Figure 12-4 shows the two output formats.

12.2 ADC Operation

12.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the		
	same instruction that turns on the ADC.		
	Refer to Section 12.2.6 "A/D Conver-		
	sion Procedure".		

12.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF flag bit
- Update the ADRESH:ADRESL registers with new conversion result

12.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete Analog-to-Digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion. Additionally, a 2 TAD delay is required before another acquisition can be initiated. Following this delay, an input acquisition is automatically started on the selected channel.

Note:	A device Reset forces all registers to their		
	Reset state. Thus, the ADC module is		
	turned off and any pending conversion is		
	terminated.		

12.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

12.2.5 SPECIAL EVENT TRIGGER

The CCP Special Event Trigger allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Section 10.0 "Capture/Compare/PWM Modules" for more information.

12.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 12-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 12-4. The maximum recommended impedance for analog sources is 10 k Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed),

an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 12-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 12-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$

$$= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{I}{2047}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} \ charged \ to \ within \ 1/2 \ lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{CHOLD} \qquad ;[2] \ V_{CHOLD} \ charge \ response \ to \ V_{APPLIED}$$

$$V_{APPLIED}\left(1-e^{\frac{-1}{RC}}\right) = V_{APPLIED}\left(1-\frac{1}{2047}\right) \quad (combining [1] and [2])$$

Solving for TC:

$$Tc = -CHOLD(RIC + RSS + RS) \ln(1/2047)$$

= $-10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$
= $1.37us$

Therefore:

$$TACQ = 2\mu s + 1.37\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.67\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

18.2 Instruction Descriptions

ADDLW	Add literal and W
Syntax:	[label] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Clear

BTFSC

Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

AND W with f

ANDWF

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3 Bit 10/2		Bit 9/1	Bit 8/0	Register on Page	
CONFIG ⁽¹⁾	13:8	_	_	DEBUG	CLKOUTEN	WRT<	<1:0>	BOREI	N<1:0>	150	
CONFIG	7:0	—	CP	MCLRE	PWRTE	WDTE			FOSC0	150	

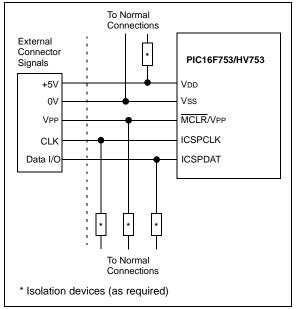
TABLE 19-9: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Legend: — = unimplemented location, read as '1'. Shaded cells are not used by Watchdog Timer.

Note 1: See Register 19-1 for operation of all Configuration Word register bits.

19.10 In-Circuit Serial Programming™

The PIC16F753/HV753 microcontrollers can be serially programmed while in the end application circuit. This is simply done with five connections for:


- clock
- data
- power
- ground
- programming voltage

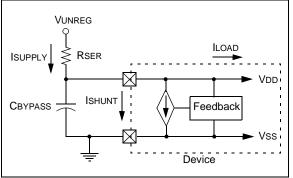
This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the ICSPDAT and ICSPCLK pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the *PIC16F753/HV753 Flash Memory Programming Specification* (DS41686) for more information. ICSPDAT becomes the programming data and ICSPCLK becomes the programming clock. Both ICSPDAT and ICSPCLK are Schmitt Trigger inputs in Program/Verify mode.

A typical In-Circuit Serial Programming connection is shown in Figure 19-11.

FIGURE 19-11: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION


Note: To erase the device, VDD must be above the Bulk Erase VDD minimum given in the *PIC16F753/HV753* Flash Memory *Programming Specification* (DS41686).


20.0 SHUNT REGULATOR (PIC16HV753 ONLY)

The PIC16HV753 devices include a permanent internal 5 volt (nominal) shunt regulator in parallel with the VDD pin. This eliminates the need for an external voltage regulator in systems sourced by an unregulated supply. All external devices connected directly to the VDD pin will share the regulated supply voltage and contribute to the total VDD supply current (ILOAD).

20.1 Regulator Operation

A shunt regulator generates a specific supply voltage by creating a voltage drop across a pass resistor RSER. The voltage at the VDD pin of the microcontroller is monitored and compared to an internal voltage reference. The current through the resistor is then adjusted, based on the result of the comparison, to produce a voltage drop equal to the difference between the supply voltage VUNREG and the VDD of the microcontroller. See Figure 20-1 for voltage regulator schematic.

An external current limiting resistor, RSER, located between the unregulated supply, VUNREG, and the VDD pin, drops the difference in voltage between VUNREG and VDD. RSER must be between RMAX and RMIN as defined by Equation 20-1.

EQUATION 20-1: RSER LIMITING RESISTOR

$$RMAX = \frac{(VUMIN - 5V)}{1.05 \cdot (1 MA + ILOAD)}$$

$$RMIN = \frac{(VUMAX - 5V)}{0.95 \bullet (50 \text{ MA})}$$

Where:

- RMAX = maximum value of RSER (ohms)
- RMIN = minimum value of RSER (ohms)
- VUMIN = minimum value of VUNREG
- VUMAX = maximum value of VUNREG
- VDD = regulated voltage (5V nominal)
- ILOAD = maximum expected load current in mA including I/O pin currents and external circuits connected to VDD.
- 1.05 = compensation for +5% tolerance of RSER
- 0.95 = compensation for -5% tolerance of RSER

20.2 Regulator Considerations

The supply voltage VUNREG and load current are not constant. Therefore, the current range of the regulator is limited. Selecting a value for RSER must take these three factors into consideration.

Since the regulator uses the band gap voltage as the regulated voltage reference, this voltage reference is permanently enabled in the PIC16HV753 devices.

The shunt regulator will still consume current when below operating voltage range for the shunt regulator.

20.3 Design Considerations

For more information on using the shunt regulator and managing current load, see Application Note *AN1035*, *Designing with HV Microcontrollers* (DS01035).

21.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

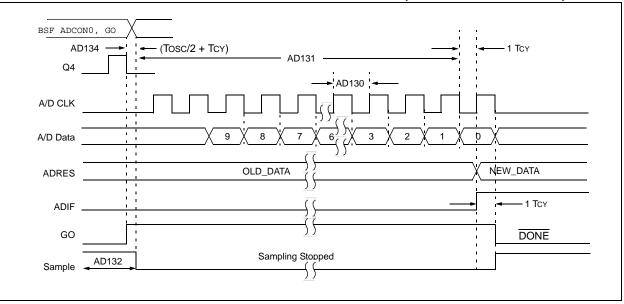
Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

21.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

PIC16F753		Standard Operating Conditions (unless otherwise stated) Sleep mode								
PIC16H	V753									
Param Device		Min.	Тур†	Max.	Max.	Units	Conditions			
No.	Characteristics	IVIIII.	турт	85°C	125°C	Units	Vdd	Note		
	Power-down Bas	e Curre	ent (IPD) ⁽²	2)						
D020			0.05	0.50	3.50	μA	2.0	WDT, BOR, Comparator, VREF and		
		—	0.15	1.00	4.00	μA	3.0	T1OSC disabled		
		_	0.35	1.50	5.00	μA	5.0			
D020			70	130	140	μA	2.0			
		_	140	175	185	μA	3.0			
		_	175	230	250	μA	4.5			
	Power-down Bas	e Curre	ent (IPD) ⁽²	2, 3)						
D021			0.96	1.30	3.72	μA	2.0	WDT Current ⁽¹⁾		
			1.05	2.10	6.50	μA	3.0			
			1.87	2.92	6.86	μA	5.0			
D021			66	127	141	μA	2.0			
			137	172	176	μA	3.0	7		
			176	228	233	μA	4.5			
D022			4	7	10	μA	3.0	BOR Current ⁽¹⁾		
			5	8	11	μA	5.0			
D022			140	175	180	μA	3.0			
			178	230	236	μA	4.5			
D023			160	345	375	μA	2.0	CxSP = 1, Comparator Current ⁽¹⁾ ,		
			180	370	405	μA	3.0	single comparator enabled		
			220	410	445	μA	5.0			
D023			225	380	380	μA	2.0			
			250	420	420	μA	3.0	7		
			381	500	500	μA	4.5			
D024		_	50	105	115	μA	2.0	CxSP = 0, Comparator Current ⁽¹⁾ ,		
			55	110	120	μA	3.0	single comparator enabled		
			70	120	132	μA	5.0	7		
D024		—	115	200	200	μA	2.0			
		_	150	220	220	μA	3.0			
			240	277	277	μA	4.5	1		


TABLE 22-3: POWER-DOWN CURRENTS (IPD) (1,2)

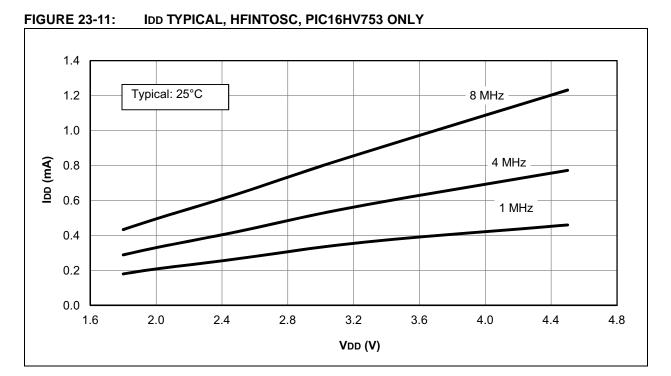
These parameters are characterized but not tested.

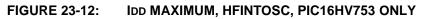
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

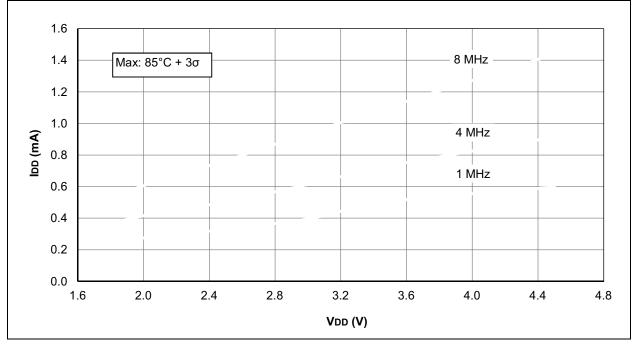
Note 1: The peripheral △ current can be determined by subtracting the base IPD current from this limit. Max values should be used when calculating total current consumption.

- 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.
- 3: Shunt regulator is always ON and always draws operating current.

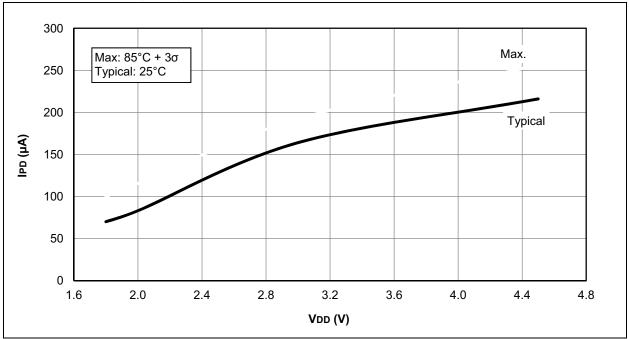
FIGURE 22-11: PIC16F753/HV753 A/D CONVERSION TIMING (ADC CLOCK FROM FRC)

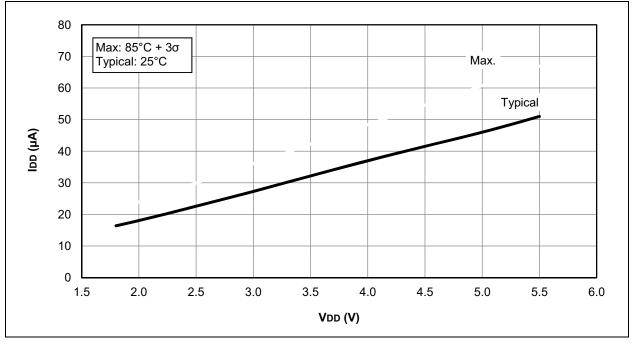

TABLE 22-19: OPERATIONAL AMPLIFIER (OPA)

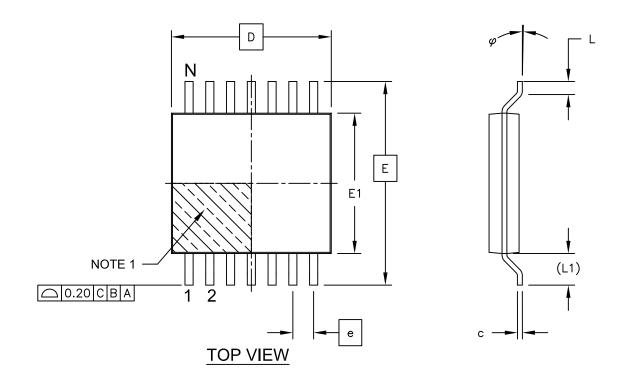

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated): VDD = 3.0 Temperature 25°C, High-Power Mode						
Param No.	Symbol	Parameters	Min.	Тур†	Max.	Units	Conditions		
OPA12	GBWP	Gain Bandwidth Product	-	3	—	MHz			
OPA13*	Ton	Turn on Time		—	10	μs			
OPA14*	Рм	Phase Margin		60		degrees			
OPA15*	Sr	Slew Rate	2	—	—	V/µs			

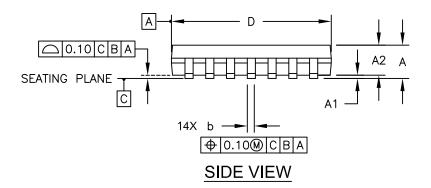

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

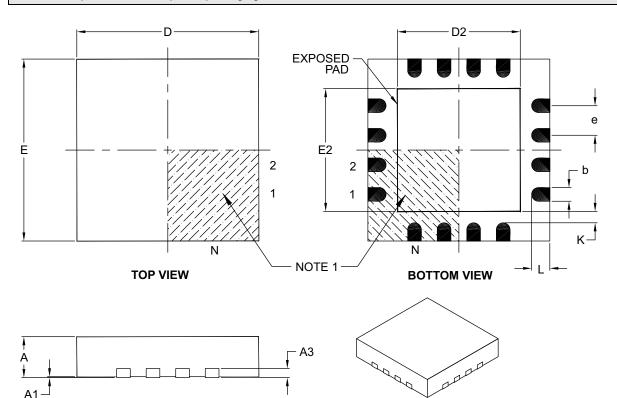






14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-087C Sheet 1 of 2

16-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS					
	Dimension Limits	MIN	NOM	MAX			
Number of Pins	N		16				
Pitch	e	0.65 BSC					
Overall Height	A	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3		0.20 REF				
Overall Width	E		4.00 BSC				
Exposed Pad Width	E2	2.50	2.65	2.80			
Overall Length	D		4.00 BSC				
Exposed Pad Length	D2	2.50	2.65	2.80			
Contact Width	b	0.25	0.30	0.35			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	К	0.20	-	_			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-127B