

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K × 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 8x10b; D/A 1x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv753-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F753/HV753

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Values on all other Resets
Ban	k 1										
80h	INDF				IND	0F<7:0>				XXXX XXXX	uuuu uuuu
81h	OPTION_REG	RAPU	INTEDG	TOCS	TOSE	PSA		PS<2:0>		1111 1111	1111 1111
82h	PCL			•	PC	L<7:0>	•			0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR					FSR			1	XXXX XXXX	uuuu uuuu
85h	TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
86h	—			•	Unimp	lemented					
87h	TRISC	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111
88h	IOCAP	_	-	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
89h	IOCCP	_	_	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	00 0000	00 0000
8Ah	PCLATH	_		—		P	CLATH<4:0>			0 0000	0 0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	IOCIE	T0IF	INTF	IOCIF	0000 0000	0000 0000
8Ch	PIE1	TMR1GIE	ADIE	_	—	HLTMR2IE	HLTMR1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	PIE2	—	-	C2IE	C1IE	—	COG1IE	-	CCP1IE	00 -0-0	00 -0-0
8Eh	—				Unimp	emented			-	—	
8Fh	OSCCON	_	_	IRC	F<1:0>	_	HTS	LTS	_	01 -00-	uu -uu-
90h	FVR1CON0	FVREN	FVRRDY	FVROE	FVRBUFSS1	FVRBUFSS0	-	_	FVRBUFEN	0000 00	0000 00
91h	DAC1CON0	DACEN	DACFM	DACOE	—	DACPSS1	DACPSS0		—	000- 00	000- 00
92h	DAC1REFL		Least Signi	ficant bit of the	e left shifted resu	It or eight bits of	f the right shift	ed DAC setti	ng	0000 0000	0000 0000
93h	DAC1REFH		Most Significa	ant eight bits c	of the left shifted	DAC setting or f	irst bit of the r	ight shifted re	esult	0000 0000	0000 0000
94h	—				Unimp	plemented				—	_
95h	_				Unimp	lemented				—	
96h	OPA1CON	OPA1EN	-	_	OPA1UGM	OPA1NC	H<1:0>	OPA1F	PCH<1:0>	00 0000	00 0000
97h	—				Unimp	plemented				—	
98h	—				Unimp	plemented				—	—
99h	—				Unimp	plemented				—	—
9Ah	—				Unimp	plemented				—	—
9Bh	CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2ZLF	C2SP	C2HYS	C2SYNC	0000 0100	0000 0100
9Ch	CM2CON1	C2INTP	C2INTN		C2PCH<2:0>			C2NCH<2:0	>	0000 0000	0000 0000
9Dh	CM1CON0	C10N	C1OUT	C10E	C1POL	C1ZLF	C1SP	C1HYS	C1SYNC	0000 0100	0000 0100
9Eh	CM1CON1	C1INTP	C1INTN		C1PCH<2:0>			C1NCH<2:0	>	0000 0000	0000 0000
9Fh	CMOUT	—	—	—	—	_	—	MCOUT2	MCOUT1	00	00

TABLE 2-2: PIC16F753/HV753 SPECIAL REGISTERS SUMMARY BANK 1

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition shaded = unimplemented.

2.3.4 PIE1 REGISTER

The PIE1 register contains the Peripheral Interrupt Enable bits, as shown in Register 2-4.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 2-	4: PIE1: I	PERIPHERAL		JPT ENABLE	REGISTER 1		
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR1GIE	ADIE		_	HLTMR2IE	HLTMR1IE	TMR2IE	TMR1IE
bit 7						•	bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	TMR1GIE: AI	DC Interrupt En	able bit				
	1 = Enables t	he TMR1 gate	interrupt				
	0 = Disables f	the TMR1 gate	interrupt				
bit 6	ADIE: ADC Ir	nterrupt Enable	bit				
	1 = Enables t	he ADC interru	pt				
	0 = Disables t	the ADC interru	ıpt				
bit 5-4	Unimplemen	ted: Read as 'd	כ'				
bit 3	HLTMR2IE: ⊢	ILT2 Interrupt E	nable bit				
	1 = Enables t	he HLT2 interru	ıpt				
	0 = Disables t	the HLT2 interr	upt				
bit 2	HLTMR1IE: ⊢	ILT1 Interrupt E	nable bit				
	1 = Enables t	he HLT1 interru	ıpt				
	0 = Disables t	the HLT1 interr	upt				
bit 1	TMR2IE: Time	er2 Interrupt Er	nable bit				
	1 = Enables t	he Timer2 inter	rupt				
	0 = Disables t	the Timer2 inte	rrupt				
bit 0	TMR1IE: Time	er1 Interrupt Er	nable bit				
	1 = Enables t	he Timer1 inter	rupt				
	0 = Disables 1	the Timer1 inte	rrupt				

3.5 Writing the Flash Program Memory

A word of the Flash program memory may only be written to if the word is in an unprotected segment of memory.

Flash program memory must be written in four-word blocks. See Figure 3-2 and Figure 3-3 for more details. A block consists of four words with sequential addresses, with a lower boundary defined by an address, where PMADRL<1:0> = 0.0. All block writes to program memory are done as 16-word erase by fourword write operations. The write operation is edge-aligned and cannot occur across boundaries.

To write program data, it must first be loaded into the buffer registers (see Figure 3-2). This is accomplished by first writing the destination address to PMADRL and PMADRH and then writing the data to PMDATL and PMDATH. After the address and data have been set up, then the following sequence of events must be executed:

- 1. Write 55h, then AAh, to PMCON2 (Flash programming sequence).
- 2. Set the WR control bit of the PMCON1 register.

All four buffer register locations should be written to with correct data. If less than four words are being written to in the block of four words, then a read from the program memory location(s) not being written to must be performed. This takes the data from the program location(s) not being written and loads it into the PMDATL and PMDATH registers. Then the sequence of events to transfer data to the buffer registers must be executed.

To transfer data from the buffer registers to the program memory, the PMADRL and PMADRH must point to the last location in the four-word block (PMADRL<1:0> = 11). Then the following sequence of events must be executed:

- 1. Write 55h, then AAh, to PMCON2 (Flash programming sequence).
- 2. Set control bit WR of the PMCON1 register to begin the write operation.

The user must follow the same specific sequence to initiate the write for each word in the program block, writing each program word in sequence (000, 001, 010, 011). When the write is performed on the last word (PMADRL<1:0> = 11), a block of sixteen words is automatically erased and the content of the four-word buffer registers are written into the program memory.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase/write operation. The user must place two NOP instructions after the WR bit is set. Since data is being written to buffer registers, the writing of the first three words of the block appears to occur immediately. The processor will halt internal operations for the typical 4 ms, only during the cycle in

which the erase takes place (i.e., the last word of the sixteen-word block erase). This is not Sleep mode as the clocks and peripherals will continue to run. After the four-word write cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction. The above sequence must be repeated for the higher 12 words.

3.6 Protection Against Spurious Write

There are conditions when the device should not write to the program memory. To protect against spurious writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents program memory writes.

The write initiate sequence and the WREN bit help prevent an accidental write during brown-out, power glitch or software malfunction.

3.7 Operation During Code-Protect

When the device is code-protected, the CPU is able to read and write unscrambled data to the program memory.

3.8 Operation During Write Protect

When the program memory is write-protected, the CPU can read and execute from the program memory. The portions of program memory that are write-protected can be modified by the CPU using the PMCON registers, but the protected program memory cannot be modified using ICSP mode.

4.3 System Clock Output

The CLKOUT pin is available for general purpose I/O or system clock output. The CLKOUTEN bit of the Configuration Word controls the function of the CLKOUT pin.

When the CLKOUTEN bit is cleared, the CLKOUT pin is driven by the selected internal oscillator frequency divided by 4. The corresponding I/O pin always reads '0' in this configuration.

The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements.

When the CLKOUTEN bit is set, the system clock out function is disabled and the CLKOUT pin is available for general purpose I/O.

4.4 Oscillator Delay upon Wake-Up, Power-Up, and Base Frequency Change

In applications where the OSCTUNE register is used to shift the HFINTOSC frequency, the application should not expect the frequency to stabilize immediately. In this case, the frequency may shift gradually toward the new value. The time for this frequency shift is less than eight cycles of the base frequency.

A short delay is invoked upon power-up and when waking from sleep to allow the memory bias circuitry to stabilize. Table 4-1 shows examples where the oscillator delay is invoked.

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	INTOSC	31 kHz to 8 MHz	10 μ s internal delay to allow memory
Sleep/POR	EC	DC – 20 MHz	bias to stabilize.

TABLE 4-1: OSCILLATOR DELAY EXAMPLES

PIC16F753/HV753

FIGURE 7-6: TIMER1 GA	ATE SINGLE-PULSE AND TOGGLE COMBINED MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GTM	
T1GGO/ Se DONE Cour	t by software Cleared by hardware on falling edge of T1GVAL
T1G_IN	
т1СКІ	
T1GVAL	
TIMER1 N	N + 1 N + 2 N + 3 N + 4
TMR1GIF Cleared by s	Set by hardware on Cleared by software falling edge of T1GVAL Cleared by software
<u> </u>	

DS40001709D-page 90

© 2013-2016 Microchip Technology Inc.

PIC16F753/HV753

11.9 Buffer Updates

Changes to the phase, dead-band, and blanking count registers need to occur simultaneously during COG operation to avoid unintended operation that may occur as a result of delays between each register write. This is accomplished with the GxLD bit of the COGxCON0 register and double buffering of the phase, blanking, and dead-band count registers.

Before the COG module is enabled, writing the count registers loads the count buffers without need of the GxLD bit. However, when the COG is enabled, the count buffers updates are suspended after writing the count registers until after the GxLD bit is set. When the GxLD bit is set, the phase, dead-band, and blanking register values are transferred to the corresponding buffers synchronous with COG operation. The GxLD bit is cleared by hardware when the transfer is complete.

11.10 Alternate Pin Selection

The COGxOUT0, COGxOUT1 and COGxFLT functions can be directed to alternate pins with control bits of the APFCON register. Refer to Register 5-1.

Note: The default COG outputs have high drive strength capability, whereas the alternate outputs do not.

11.11 Operation During Sleep

The COG continues to operate in Sleep provided that the COG_clock, rising event, and falling event sources remain active.

The HFINTSOC remains active during Sleep when the COG is enabled and the HFINTOSC is selected as the COG_clock source.

11.12 Configuring the COG

The following steps illustrate how to properly configure the COG to ensure a synchronous start with the rising event input:

- 1. Configure the desired COGxFLT input, COGxOUT0 and COGxOUT1 pins with the corresponding bits in the APFCON register.
- 2. Clear all ANSELA register bits associated with pins that are used for COG functions.
- Ensure that the TRIS control bits corresponding to COGxOUT0 and COGxOUT1 are set so that both are configured as inputs. These will be set as outputs later.
- 4. Clear the GxEN bit, if not already cleared.
- 5. Set desired dead-band times with the COGxDBR and COGxDBF registers.
- 6. Set desired blanking times with the COGxBKR and COGxBKF registers.
- 7. Set desired phase delay with the COGxPHR and COGxPHF registers.
- 8. Select the desired shutdown sources with the COGxASD1 register.
- 9. Set up the following controls in COGxASD0 auto-shutdown register:
 - Select both output overrides to the desired levels (this is necessary, even if not using auto-shutdown because start-up will be from a shutdown state).
 - Set the GxASDE bit and clear the GxARSEN bit.
- 10. Select the desired rising and falling event sources with the COGxRIS and COGxFIS registers.
- 11. Select the desired rising and falling event modes with the COGxRSIM and COGxFSIM registers.
- 12. Configure the following controls in the COGxCON1 register:
 - Select the desired clock source
 - Select the desired dead-band timing sources
- 13. Configure the following controls in the COGxCON0 register:
 - Select the desired output polarities.
 - Set the output enables of the outputs to be used.
- 14. Set the GxEN bit.
- 15. Clear TRIS control bits corresponding to COGxOUT0 and COGxOUT1 to be used, thereby configuring those pins as outputs.
- 16. If auto-restart is to be used, set the GxARSEN bit and the GxASDE will be cleared automatically. Otherwise, clear the GxASDE bit to start the COG.

11.13 Register Definitions: COG Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0			
GxEN	GxOE1	GxOE0	GxPOL1	GxPOL0	GxLD	_	GxMD			
bit 7	·				•		bit C			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion				
bit 7	GxEN: COG>	c Enable bit								
	1 = Module is	s enabled								
hit G			t Enabla bit							
bit o	1 = COGXOL	IT1 is available	on associate	d I/O nin						
	0 = COGxOL	JT1 is not avail	able on assoc	ciated I/O pin						
bit 5	GxOE0: COG	SxOUT0 Outpu	t Enable bit							
	1 = COGxOL	xOUT0 is available on associated I/O pin								
	0 = COGxOL	JT0 is not avail	able on assoc	ciated I/O pin						
bit 4	GxPOL1: CO	GxOUT1 Outp	ut Polarity bit							
	1 = Output is inverted polarity									
hit 2			y ut Dolority bit							
DIL 3	1 - Output is	inverted polari	tv							
	0 = Output is	normal polarit	y							
bit 2	GxLD: COGx	Load Buffers	oit							
	1 = Phase, b	lanking, and de	ad-band buff	ers to be loade	d with register v	alues on next	input events			
	0 = Register	to buffer transf	er is complete	;						
bit 1	Unimplemen	ted: Read as '	0'							
bit 0	GxMD: COG	x Mode bit								
	1 = COG out	puts operate in	Push-Pull mo	ode						
	0 = COG out	puts operate in	Synchronous	smode						

REGISTER 11-1: COGxCON0: COG CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
	GxFIHLT2	GxFIHLT1	GxFIT2M	GxFIFLT	GxFICCP1	GxFIC2	GxFIC1	
bit 7							bit 0	
Legend:								
R = Readable b	pit	W = Writable b	pit	U = Unimplen	nented bit, read a	is '0'		
u = Bit is uncha	inged	x = Bit is unkn	own	-n/n = Value a	at POR and BOR	Value at all oth	er Resets	
'1' = Bit is set		'0' = Bit is clea	red	q = Value dep	ends on conditio	n		
bit 7	Unimplement	ed: Read as '0'						
bit 6	GxFIHLT2: CC	OGx Falling Eve	nt Input Sourc	e 6 Enable bit				
	1 = HL1mer2 0 = HITimer2	has no effect o	ed as a failing n the falling ev	event input				
bit 5	GxFIHLT1: CC	DGx Falling Eve	nt Input Sourc	e 5 Enable bit				
	1 = HLTimer1	output is enabl	ed as a falling	event input				
	0 = HLTimer1	has no effect o	n the falling ev	vent				
bit 4	GxFIT2M: CO	Gx Falling Ever	t Input Source	4 Enable bit				
	1 = 1 imer2 m 0 = 1 imer2 m	atch with PR2 is	PR2 is enabled as a failing event input PR2 has no effect on the failing event					
hit 3	GxFIFI T: COC	Sx Falling Event	Input Source	3 Enable bit				
Sit 0	1 = COGxFLT	Γ pin is enabled	as a falling ev	ent input				
	0 = COGxFLT	Γ pin has no effe	ect on the fallin	ig event				
bit 2	GxFICCP1: C	OGx Falling Eve	ent Input Sourc	ce 2 Enable bit				
	1 = CCP1 out	tput is enabled a	as a falling eve	ent input				
hit 1		s no effect on th	e lailing event	L Enchlo hit				
DICT	1 = Comparat	tor 2 output is e	nabled as a fa	l Enable bit Iling event inpu:	t			
	0 = Comparat	tor 2 output has	no effect on th	ne falling event	-			
bit 0	GxFIC1: COG	x Falling Event	Input Source () Enable bit				
	1 = Comparat	tor 1 output is e	nabled as a fa	lling event inpu	t			
	0 = Comparat	tor 1 output has	no effect on th	ne falling event				

REGISTER 11-5: COGxFIS: COG FALLING EVENT INPUT SELECTION REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	GxFMHLT2	GxFMHLT1	GxFMT2M	GxFMFLT	GxFMCCP1	GxFMC2	GxFMC1
bit 7		1					bit 0
Legend:							
R = Readable b	oit	W = Writable I	pit	U = Unimple	mented bit, read a	s '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value	at POR and BOR/	Value at all othe	er Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condition	n	
bit 7	Unimplement	ted: Read as '0'			1)		
DIT 6	GXFMHLT2: C	COGX Failing EV	ent Input Sour	ce 6 Mode bit	.,		
	1 = HLTimer2	low-to-high tra	nsition will caus	se a falling eve	ent after falling eve	ent phase delay	
	0 = HLTimer2	2 high level will o	cause an imme	diate falling ev	/ent		
	HLTimer2 has	<u>.</u> no effect on fal	ling event				
bit 5	GxFMHLT1: (COGx Falling Ev	vent Input Sour	ce 5 Mode bit	1)		
	GxFIHLT1 = 1	<u>.</u>		6 W			
	1 = HLIImer1 0 = HITimer1	l low-to-nign tra	nsition will caus	se a failing eve diate falling ev	ent atter falling eve vent	ent phase delay	
	GxFIHLT1 = 0	<u>:</u>		alate lainig e			
	HLTimer1 has	no effect on fal	ling event		、		
bit 4	GXENT2M = 1	OGx Falling Eve	ent Input Sourc	e 4 Mode bit ⁽¹)		
	1 = Timer2 m	atch with PR2 I	ow-to-high tran	sition will caus	se a falling event a	fter falling ever	it phase delay
	0 = Timer2 m	atch with PR2 h	nigh level will ca	ause an imme	diate falling event	-	
	$\frac{\text{GxFI12M} = 0}{\text{Timer2 match}}$	with PR2 has n	o effect on falli	na event			
bit 3	GxFMFLT: CC	OGx Falling Eve	nt Input Source	e 3 Mode bit			
	GxFIFLT = 1:						_
	$1 = COGxFL^{-1}$	T pin low-to-higi T pin high level	n transition will will cause an in	cause a falling nmediate fallir	g event after falling) event phase d	elay
	$\frac{\text{GxFIFLT} = 0}{\text{GxFIFLT} = 0}$	r pin ngn lover			ig overn		
	COGxFLT pin	has no effect of	n falling event				
bit 2	GxFMCCP1:	COGx Falling E	vent Input Sour	rce 2 Mode bit			
	1 = CCP1 lov	<u>⊥.</u> v-to-high transiti	ion will cause a	falling event	after falling event p	ohase delay	
	0 = CCP1 hig	gh level will caus	se an immediat	e falling event			
	$\frac{\text{GxFICCP1} = 0}{\text{CCP1} \text{ has no}}$	<u>):</u> effect on falling	event				
bit 1	GxFMC2: CO	Gx Falling Ever	t Input Source	1 Mode bit			
2	GxFIC2 = 1:	eg =					
	1 = Compara	tor 2 low-to-high	n transition will	cause a falling	g event after falling	g event phase d	elay
	0 = ComparaGxFIC2 = 0:	tor 2 high lever	will cause all il		ig evenit		
	Comparator 2	has no effect of	n falling event				
bit 0	GxFMC1: CO	Gx Falling Ever	t Input Source	0 Mode bit			
	$\frac{\text{GXFIC1} = 1:}{1 = \text{Compara}}$	tor 1 low-to-hiał	n transition will	cause a falling	a event after falling	i event phase d	elav
	0 = Compara	tor 1 high level	will cause an in	nmediate fallir	ng event	, p.//000 u	,
	$\frac{\text{GxFIC1} = 0}{\text{Comparator 1}}$	has no offect of	o falling overt				
	Comparator	nas no enect o	r alling event				

REGISTER 11-6: COGxFSIM: COG FALLING EVENT SOURCE INPUT MODE REGISTER

Note 1: These sources are pulses and therefore the only benefit of Edge mode over Level mode is that they can be delayed by falling event phase delay.

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	_	—	—	GxPHR<3:0>				
bit 7							bit 0	
Legend:								

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **GxPHR<3:0>:** Rising Edge Phase Delay Count Value bits

= Number of COGx clock periods to delay rising edge event

REGISTER 11-14: COGxPHF: COG FALLING EDGE PHASE DELAY COUNT REGISTER

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—	—	—	GxPHF<3:0>				
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **GxPHF<3:0>:** Falling Edge Phase Delay Count Value bits

= Number of COGx clock periods to delay falling edge event

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	ADFM	—		CHS	<3:0>		GO/DONE	ADON	109
ADCON1	—		ADCS<2:0>		—	—	_	ADPREF1	110
ANSELA	_	_	_	ANSA4	_	ANSA2	ANSA1	ANSA0	44
ADRESH ⁽²⁾	Most	Significant ei	ght bits of the	e left shifted A	VD result or t	wo bits of the	right shifted	result	111*
ADRESL ⁽²⁾	Lea	ast Significant	two bits of th	e left shifted	result or eigh	t bits of the ri	ght shifted re	sult	109*
PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	43
INTCON	GIE	PEIE	TOIE	INTE	IOCIE	T0IF	INTF	IOCIF	17
PIE1	TMR1GIE	ADIE			HLTMR2IE	HLTMR1IE	TMR2IE	TMR1IE	18
PIR1	TMR1GIF	ADIF			HLTMR2IF	HLTMR1IF	TMR2IF	TMR1IF	20
TRISA	_	_	TRISA5	TRISA4	TRISA3 ⁽¹⁾	TRISA2	TRISA1	TRISA0	43

TABLE 12-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module.

* Page provides register information.

Note 1: TRISA3 always reads '1'.

2: Read-only register.

REGISTER 14-2: DACxREFH: DAC REFERENCE HIGH REGISTER (DACxFM = 0)

					•				
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			DACF	R<8:1>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'			
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets					

bit 7-0 **DACR<8:1>**: DAC Reference Selection bits DACxOUT = (DACR<8:0> x (Vdac_ref)/512)

'0' = Bit is cleared

REGISTER 14-3: DACxREFL: DAC REFERENCE LOW REGISTER (DACxFM = 0)

R/W-0/0	U-0								
DACR0	—	—	—	—	—	—	—		
bit 7 bit 0									

Legend:

'1' = Bit is set

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 DACR0: DAC Reference Selection bits

DACxOUT = (DACR<8:0> x (Vdac_ref)/512)

bit 6-0 Unimplemented: Read as '0'

15.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from either comparator, C1 or C2, can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 15-2) and the Timer1 Block Diagram (Figure 7-1) for more information.

15.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0
 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register.

15.6 Comparator Positive Input Selection

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN0+ analog pin
- DAC Reference Voltage (DAC_REF)
- FVR Reference Voltage (FVR_REF)
- Vss (Ground)

See Section 13.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 14.0 "Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

15.7 Comparator Negative Input Selection

The CxNCH0 bit of the CMxCON0 register selects the analog input pin to the comparator inverting input.

Note: To use CxIN0+ and CxIN1x- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

15.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 22.0 "Electrical Specifications"** for more details.

15.9 Interaction with the COG Module

The comparator outputs can be brought to the COG module in order to facilitate auto-shutdown. If auto-restart is also enabled, the comparators can be configured as a closed loop analog feedback to the COG, thereby creating an analog controlled PWM.

15.10 Zero Latency Filter

In high-speed operation, and under proper circuit conditions, it is possible for the comparator output to oscillate. This oscillation can have adverse effects on the hardware and software relying on this signal. Therefore, a digital filter has been added to the comparator output to suppress the comparator output oscillation. Once the comparator output changes, the output is prevented from reversing the change for a nominal time of 20 ns. This allows the comparator output to stabilize without affecting other dependent devices. Refer to Figure 15-3.

REGIOTEI			ARATOR 02	CONTROL			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CxINTP	CxINTN		CxPCH<1:0>			CxNCH<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	eared				
bit 7	CxINTP: Con	nparator Interr	upt on Positive	Going Edge E	nable bit		
	1 = The CxIF	interrupt flag	will be set upo	n a positive go	ing edge of the	CxOUT bit	
	0 = No interr	upt flag will be	set on a positi	ve going edge	of the CxOUT	bit	
bit 6	CxINTN: Con	nparator Interr	upt on Negativ	e Going Edge	Enable bit		
	1 = The CxIF	Interrupt flag upt flag will be	will be set upo	n a negative go	oing edge of the	e CxOUT bit	
hit 5 2		· Comparator	Positivo Input (Channel Selec		Dit	
bit 5-5	0.00 - CxVP	connects to C	vIN+ nin				
	001 = CxVP	connects to d	ac_out				
	010 = CxVP	connects to F	VR				
	011 = CxVP	connects to S	lope Compens	ator Output			
h ii 0 0		connects to A	GND		-4 1-34-		
DIT 2-0		Comparator	Negative input	Channel Sele	CT DITS		
	$000 = \mathbf{C} \mathbf{X} \mathbf{V} \mathbf{N}$ $001 = \mathbf{C} \mathbf{X} \mathbf{V} \mathbf{N}$	connects to C	xINU- pin xIN1- pin				
	010 = CxVN	connects to C	xIN2- pin				
	011 = CxVN	connects to C	xIN3- pin				
	1xx = CxVN	connects to S	lope Compens	ator Output			

REGISTER 15-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 15-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
—			—	_	—	MCOUT2	MCOUT1
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 1 MCOUT2: Mirror Copy of C2OUT bit
- bit 0 MCOUT1: Mirror Copy of C1OUT bit

TABLE 19-4: INITIALIZATION CONDIT	TION FOR REGISTERS
-----------------------------------	--------------------

Register	Address	Power-on Reset	MCLR Reset WDT Reset Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
W	_	xxxx xxxx	<u>uuuu</u> uuuu	<u>uuuu</u> uuuu
INDF	00h/80h/ 100h/180h	xxxx xxxx	xxxx xxxx	սսսս սսսս
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h/82h/ 102h/182h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h/ 103h/183h	0001 1xxx	000q quuu ⁽⁴⁾	uuuq quuu ⁽⁴⁾
FSR	04h/84h/ 104h/184h	XXXX XXXX	սսսս սսսս	<u>uuuu</u> uuuu
PORTA	05h	xx xxxx	uu uuuu	uu uuuu
IOCAF	08h	00 0000	00 0000	uu uuuu
PCLATH	0Ah/8Ah/ 10Ah/18Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh/ 10Bh/18Bh	0000 0000	0000 0000	uuuu uuuu ⁽²⁾
PIR1	0Ch	000-0	000-0	uuu-u (2)
PIR2	0Dh	00 -0-0	00 -0-0	uu -u-u (2)
TMR1L	0Fh	xxxx xxxx	սսսս սսսս	սսսս սսսս
TMR1H	10h	XXXX XXXX	սսսս սսսս	սսսս սսսս
T1CON	11h	0000 00-0	uuuu uu-u	uuuu uu-u
T1GCON	12h	0000 0x00	0000 0x00	uuuu uuuu
CCPR1L ⁽¹⁾	13h	xxxx xxxx	սսսս սսսս	սսսս սսսս
CCPR1H ⁽¹⁾	14h	xxxx xxxx	սսսս սսսս	սսսս սսսս
CCP1CON ⁽¹⁾	15h	00 0000	00 0000	uu uuuu
ADRESL ⁽¹⁾	1Ch	xxxx xxxx	սսսս սսսս	սսսս սսսս
ADRESH ⁽¹⁾	1Dh	xxxx xxxx	սսսս սսսս	սսսս սսսս
ADCON0 ⁽¹⁾	1Eh	0000 0000	0000 0000	սսսս սսսս
ADCON1 ⁽¹⁾	1Fh	-000	-000	-uuu
OPTION_REG	81h/181h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h	11 1111	11 1111	uu uuuu
IOCAP	88h	00 0000	00 0000	uu uuuu
PIE1	8Ch	00000	00000	uuuuu
PIE2	8Dh	00-0	00-0	uu -u-u
OSCCON	8Fh	01 -00-	uu -uu-	uu -uu-
FVRCON	90h	0000	0000	uuuu
DACCON0	91h	0000	0000	uuuu
DACCON1	92h	0 0000	0 0000	u uuuu
CM2CON0	9Bh	0000 0100	0000 0100	սսսս սսսս
CM2CON1	9Ch	00000	00000	uuuuu

 $\label{eq:logend: logend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIRx will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 19-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

PIC16F	753		Standard Operating Conditions (unless otherwise stated)					
PIC16H	V753							
Param	Device Oberreteristics		T	Max.	Max.	11		Conditions
No.	Device Characteristics	win.	турт	85°C	125°C	Units	Vdd	Note
	Supply Current (IDD) ^(1, 2)							
D010		_	10	31	31	μA	2.0	Fosc = 31 kHz
		_	15	36	36	μA	3.0	LFINTOSC mode
		_	28	62	62	μA	5.0	
D010		—	75	158	158	μA	2.0	Fosc = 31 kHz
		—	151	192	192	μA	3.0	LFINTOSC mode
		_	201	385	385	μA	4.5	
D011		—	97	140	140	μA	2.0	Fosc = 1 MHz
		_	155	235	235	μA	3.0	EC Oscillator mode
		—	334	475	475	μA	5.0	
D011		—	135	225	225	μA	2.0	Fosc = 1 MHz
		—	260	370	370	μA	3.0	EC Oscillator mode
		_	395	595	595	μA	4.5	
D012		—	172	260	260	μA	2.0	Fosc = 1 MHz
		—	220	360	360	μA	3.0	HFINTOSC mode
		_	398	516	516	μA	5.0	
D012		—	210	338	338	μA	2.0	Fosc = 1 MHz
		_	334	432	432	μA	3.0	HFINTOSC mode
		_	461	680	680	μA	4.5	
D013		_	243	333	333	μA	2.0	Fosc = 4 MHz
		_	365	485	485	μA	3.0	EC Oscillator mode
		—	762	956	956	μA	5.0	
D013		_	261	385	385	μA	2.0	Fosc = 4 MHz
		—	490	620	620	μA	3.0	EC Oscillator mode
		—	710	1045	1045	μA	4.5	
ł	* These parameters are ch	aracteri	zed hut r	not tester	4			

TABLE 22-2: SUPPLY CURRENT (IDD)^(1,2)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

PIC16F753/HV753

FIGURE 23-5: IDD TYPICAL, EC OSCILLATOR, HIGH-POWER MODE, PIC16HV753 ONLY

FIGURE 23-8: IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC16F753 ONLY

