

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 8x10b; D/A 1x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv753-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	6
2.0	Memory Organization	9
3.0	Flash Program Memory Self-Read/Self-Write Control	25
4.0	Oscillator Module	34
5.0	I/O Ports	39
6.0	Timer0 Module	54
7.0	Timer1 Module with Gate Control	57
8.0	Timer2 Module	68
9.0	Hardware Limit Timer (HLT) Module	70
10.0	Capture/Compare/PWM Modules	74
11.0	Complementary Output Generator (COG) Module	81
12.0	Analog-to-Digital Converter (ADC) Module	. 104
13.0	Fixed Voltage Reference (FVR)	. 115
14.0	Digital-to-Analog Converter (DAC) Module	. 117
15.0	Comparator Module	. 123
16.0	Operational Amplifier (OPA) Module	. 132
17.0	Slope Compensation (SC) Module	. 135
18.0	Instruction Set Summary	. 140
19.0	Special Features of the CPU	. 149
20.0	Shunt Regulator (PIC16HV753 Only)	. 168
21.0	Development Support	. 169
22.0	Electrical Specifications	. 173
23.0	DC and AC Characteristics Graphs and Charts	. 197
24.0	Packaging Information	. 215
Appe	ndix A: Data Sheet Revision History	. 226
The I	Aicrochip Website	. 227
Custo	omer Change Notification Service	. 227
Custo	omer Support	. 227
Prod	uct Identification System	. 228

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Values on all other Resets
Ban	k 3										
180h	INDF				IND)F<7:0>				xxxx xxxx	uuuu uuuu
181h	OPTION_REG	RAPU	INTEDG	TOCS	TOSE	TOSE PSA PS<2:0>					1111 1111
182h	PCL				PC	CL<7:0>				0000 0000	0000 0000
183h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
184h	FSR				FS	R<7:0>		•		XXXX XXXX	uuuu uuuu
185h	ANSELA	_	_	_	ANSA4	_	ANSA2	ANSA1	ANSA0	1 -111	1 -111
186h	—				Unim	plemented	-	•		_	_
187h	ANSELC	_	_	_		ANSC3	ANSC2	ANSC1	ANSC0	0000	0000
188h	APFCON	_	_	_	T1GSEL	—	—	—	—	0	0
189h	OSCTUNE	_	_	_			TUN<4:0>	•		0 0000	0 0000
18Ah	PCLATH	_	_	_		PCLATH<4:0>					0 0000
18Bh	INTCON	GIE	PEIE	TOIE	INTE	IOCIE	TOIF	INTF	IOCIF	0000 0000	0000 0000
18Ch	PMCON1	_	_	_		_	WREN	WR	RD	000	000
18Dh	PMCON2		Program Memory Control Register 2								
18Eh	PMADRL				PMA	DRL<7:0>				0000 0000	0000 0000
18Fh	PMADRH	_	—	_	—	—	—	PMADF	RH<1:0>	00	00
190h	PMDATL		-		PMD	ATL<7:0>				0000 0000	0000 0000
191h	PMDATH	_	—			PMDATH	1<5:0>			00 0000	00 0000
192h	COG1PHR	_	—	_	—		G1PHF	R<3:0>		xxxx	uuuu
193h	COG1PHF	—	—	—	—		G1PHF	<3:0>		xxxx	uuuu
194h	COG1BKR	_	—	_	—		G1BKF	<3:0>		xxxx	uuuu
195h	COG1BKF	_	—	_	—		G1BKF	<3:0>		xxxx	uuuu
196h	COG1DBR	_	—	_	—		G1DBF	<3:0>		xxxx	uuuu
197h	COG1DBF	—	—	—	—		G1DBF	<3:0>		xxxx	uuuu
198h	COG1CON0	G1EN	G1OE1	G1OE0	G1POL1	G1POL0	G1LD	—	G1MD	0000 00-0	0000 00-0
199h	COG1CON1	G1RDBTS	G1FDBTS	_	_	_	_	G1C5	S<1:0>	0000	0000
19Ah	COG1RIS	_	G1RIHLT2	G1RIHLT1	G1RIT2M	G1RIFLT	G1RICCP1	G1RIC2	G1RIC1	0000 0000	0000 0000
19Bh	COG1RSIM	—	G1RMHLT2	G1RMHLT1	G1RMT2M	G1RMFLT	G1RMCCP1	G1RMC2	G1RMC1	0000 0000	0000 0000
19Ch	COG1FIS	_	G1FIHLT2	G1FIHLT1	G1FIT2M	G1FIFLT	G1FICCP1	G1FIC2	G1FIC1	0000 0000	0000 0000
19Dh	COG1FSIM	_	G1FMHLT2	G1FMHLT1	G1FMT2M	G1FMFLT	G1FMCCP1	G1FMC2	G1FMC1	0000 0000	0000 0000
19Eh	COG1ASD0	C1ASDE	C1ARSEN	G1AS	D1L<1:0>	G1ASD0	L<1:0>	_	_	0000 00	0000 00
19Fh	COG1ASD1	_	_	_	G1ASDSHLT2	G1ASDSHLT1	G1ASDSC2	G1ASDSC1	G1ASDSFLT	0000 0000	0000 0000

TABLE 2-4:PIC16F753/HV753 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition shaded = unimplemented

3.3 Register Definitions: Flash Program Memory Control

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PMDA	TL<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable bi	t	U = Unimplem	nented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	n

REGISTER 3-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

bit 7-0 PMDATL<7:0>: Eight Least Significant Data bits to Write or Read from Program Memory

REGISTER 3-2: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PMADRL<7:0>										
bit 7	bit 7 bit 0									

Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 7-0 PMADRL<7:0>: Eight Least Significant Address bits for Program Memory Read/Write Operation

REGISTER 3-3: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			PMDA	TH<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **PMDATH<5:0>**: Six Most Significant Data bits from Program Memory

REGISTER 3-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	-	PMADR	H<1:0>
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemen	nted bit, read as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							

bit 7-2 Unimplemented: Read as '0'

PMADRH<1:0>: Specifies the two Most Significant Address bits or High bits for Program Memory Reads.

bit 1-0

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
	—	—	—	—	WREN	WR	RD
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
S = Bit can only be set $x = Bit$ is unknown $-n/n = Value$ at POR and BOR/Value at all other Resets						ther Resets	
'1' = Bit is set '0' = Bit is cleared HC = Bit is cleared by hardware							
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2	WREN: Progr	ram/Erase Ena	ble bit				
	1 = Allows pr	ogram/erase c	ycles				
	0 = Inhibits p	rogramming/er	asing of progr	ram Flash			
bit 1	WR: Write Co	ontrol bit	,				
	1 = Initiates a	a program Flas	h program/era	ase operation	hardwara anco	oporation is co	mploto
	The WR	bit can only be	set (not clear	ed) in software		operation is co	inpiete.
	0 = Program/	/erase operatio	n to the Flash	is complete a	nd inactive		
bit 0	RD: Read Co	ntrol bit					
	1 = Initiates a	a program Flas	h read. Read	takes one cycl	e. RD is cleared	in hardware. T	he RD bit can
	only be s	et (not cleared) in software.	d			
	0 = Does not	initiate a prog	am Fiash rea	u			

REGISTER 3-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

REGISTER 3-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER

REGIOTER 5-0.						•	
W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Progr	am Memor	y Control Regist	ter 2		
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable b	it	U = Unimpler	mented bit, read	l as '0'	
S = Bit can only b	e set	x = Bit is unkno	own	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clear	red				

bit 7-0 Flash Memory Unlock Pattern bits:

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

4.5.1 OSCTUNE REGISTER

The oscillator is factory-calibrated, but can be adjusted in software by writing to the OSCTUNE register (Register 4-2). The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

REGISTER 4-2: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—				TUN<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0

TUN<4	I:0>: Frequency Tuning bits
01111	= Maximum frequency
01110	=
•	
•	
•	
00001	=
00000	= Oscillator module is running at the calibrated frequency.
11111	=
•	
•	
•	

10000 = Minimum frequency

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—	_	IRCF	IRCF<1:0>		HTS	LTS	—	37
OSCTUNE	_	_	_	TUN<4:0>				38	

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by clock sources.

TABLE 4-3: SUMMARY OF CONFIGURATION WORD CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3 Bit 10/2		Bit 9/1	Bit 8/0	Register on Page
	13:8		_	DEBUG	CLKOUTEN	WRT<1:0>		BOREI	N<1:0>	450
CONFIG	7:0	_	CP	MCLRE	PWRTE	WDTE	_		FOSC0	150

Legend: — = unimplemented location, read as '1'. Shaded cells are not used by clock sources.

Note 1: See Configuration Word register (Register 19-1) for operation of all register bits.

6.2 Register Definitions: Option and Timer0 Control

R/W-1	R/W-1	R/W	-1	R/W-1	R/W-1	R/W	/-1	R/W-1	R/W-1
RAPU	INTEDG	T0C	S	TOSE	PSA		Р	S<2:0>	
bit 7									bit 0
l egend:									
R = Readabl	e hit	W = Wri	table bit		U = Unimpl	emented b	it read as	ʻ O '	
-n = Value at	POR	'1' = Bit	is set		0' = Bit is c	leared	x =	Bit is unkr	าดพท
					- 21110 (2.1.10 0.111	
bit 7	RAPU: PO	RTA Pull-up	Enable b	bit					
	1 = PORTA 0 = PORTA	pull-ups ar pull-ups ar	e disableo e enableo	d I by individi	ual PORT la	atch values	in WPU re	gister	
bit 6	INTEDG: In 1 = Interrup 0 = Interrup	nterrupt Edg ot on rising e ot on falling	e Select l edge of IN edge of II	bit IT pin NT pin					
bit 5	TOCS: TMF 1 = Transiti 0 = Internal	R0 Clock Sc on on T0CF instruction	ource Sele (I pin cycle cloo	ect bit ck (Fosc/4))				
bit 4	T0SE: TMF 1 = Increme 0 = Increme	R0 Source E ent on high- ent on low-t	dge Sele to-low tra o-high tra	ct bit nsition on T nsition on T	TOCKI pin TOCKI pin				
bit 3	PSA: Presc 1 = Prescal 0 = Prescal	caler Assigr ler is assigr ler is assigr	ment bit ed to the ed to the	WDT Timer0 mo	dule				
bit 2-0	PS<2:0>: F	Prescaler Ra	ate Select	bits					
	В	it Value T	MR0 Rate	WDT Rate					
	_	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128	_				
TABLE 6-1:	SUMMA	RY OF RE	GISTER	S ASSOC	IATED W	ІТН ТІМЕ	R0	1	
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on

REGISTER 6-1: OPTION REG: OPTION REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TMR0	TMR0<7:0>								54*
INTCON	GIE	PEIE	TOIE	INTE	IOCIE	T0IF	INTF	IOCIF	17
OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA		PS<2:0>		56
TRISA	_	_	TRISA5	TRISA4	TRISA3 ⁽¹⁾	TRISA2	TRISA1	TRISA0	43

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

* Page provides register information.

Note 1: TRISA3 always reads '1'.

FIGURE 7-4: TIMER1 GATE TOGGLE MODE

12.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 12-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 12-4. The maximum recommended impedance for analog sources is 10 k Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed),

an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 12-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 12-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$

$$= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{I}{2047}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} \ charged \ to \ within \ 1/2 \ lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{CHOLD} \qquad ;[2] \ V_{CHOLD} \ charge \ response \ to \ V_{APPLIED}$$

$$V_{APPLIED}\left(1-e^{\frac{-1}{RC}}\right) = V_{APPLIED}\left(1-\frac{1}{2047}\right) \quad (combining [1] and [2])$$

Solving for TC:

$$Tc = -CHOLD(RIC + RSS + RS) \ln(1/2047)$$

= $-10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$
= $1.37us$

Therefore:

$$TACQ = 2\mu s + 1.37\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.67\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	ADFM	—		CHS	<3:0>		GO/DONE	ADON	109
ADCON1	—		ADCS<2:0> —			—	_	ADPREF1	110
ANSELA	_	— — ANSA4 — ANSA2			ANSA2	ANSA1	ANSA0	44	
ADRESH ⁽²⁾	2) Most Significant eight bits of the left shifted A/D result or two bits of the right shifted result								111*
ADRESL ⁽²⁾	Lea	ast Significant	two bits of th	e left shifted	result or eigh	t bits of the ri	ght shifted re	sult	109*
PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	43
INTCON	GIE	PEIE	TOIE	INTE	IOCIE	T0IF	INTF	IOCIF	17
PIE1	TMR1GIE	ADIE			HLTMR2IE	HLTMR1IE	TMR2IE	TMR1IE	18
PIR1	TMR1GIF	ADIF			HLTMR2IF	HLTMR1IF	TMR2IF	TMR1IF	20
TRISA	_	_	TRISA5	TRISA4	TRISA3 ⁽¹⁾	TRISA2	TRISA1	TRISA0	43

TABLE 12-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module.

* Page provides register information.

Note 1: TRISA3 always reads '1'.

2: Read-only register.

14.5 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DACxCON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

14.6 Effects of a Reset

A device Reset affects the following:

- DAC is disabled
- DAC output voltage is removed from the DACXOUT pin
- The DACR<8:0> range select bits are cleared

16.0 OPERATIONAL AMPLIFIER (OPA) MODULE

The Operational Amplifier (OPA) is a standard threeterminal device requiring external feedback to operate. The OPA module has the following features:

- External Connections to I/O Ports
- Selectable Unity Gain Bandwidth Product Option
- Low-Leakage Inputs
- Factory-Calibrated Input Offset Voltage

16.1 OPAxCON0 Register

The OPAxCON0 register, shown in Register 16-1, controls the OPA module.

The OPA module is enabled by setting the OPAxEN bit of the OPAxCON register. When enabled, the OPA forces the output driver of the OPAxOUT pin into tristate to prevent contention between the driver and the OPA output.

The OPAxUGM bit of the OPAxCON register enables the Unity Gain Bandwidth mode (voltage follower) of the amplifier. In Unity Gain mode, the OPAxNCH<1:0> inputs are disabled. The default mode is normal threeterminal operation.

Note: When the OPA module is enabled, the OPAxOUT pin is driven by the op amp output, not by the PORT digital driver. Refer to Section 22.0 "Electrical Specifications" for the op amp output drive capability.

16.2 Effects of a Reset

A device Reset forces all registers to their Reset state. This disables the OPA module.

16.3 OPA Module Performance

Common AC and DC performance specifications for the OPA module:

- Common Mode Voltage Range
- Leakage Current
- Input Offset Voltage
- Open Loop Gain
- Gain Bandwidth Product

Common mode voltage range is the specified voltage range for the OPAx+ and OPAx- inputs, for which the OPA module will perform within its specifications. The OPA module is designed to operate with input voltages between Vss and VDD. Behavior for Common mode voltages greater than VDD or below Vss is not guaranteed.

Leakage current is a measure of the small source or sink currents on the OPAx+ and OPAx- inputs. To minimize the effect of leakage currents, the effective impedances connected to the OPAx+ and OPAx- inputs should be kept as small as possible and equal. Input offset voltage is a measure of the voltage difference between the OPAx+ and OPAx- inputs in a closed loop circuit with the OPA in its linear region. The offset voltage will appear as a DC offset in the output equal to the input offset voltage, multiplied by the gain of the circuit.

The input offset voltage is also affected by the Common mode voltage. The OPA is factory-calibrated to minimize the input offset voltage of the module. Open loop gain is the ratio of the output voltage to the differential input voltage (OPAx+) - (OPAx-). The gain is greatest at DC and falls off with frequency.

Gain Bandwidth Product or GBWP is the frequency at which the open loop gain falls off to 0 dB. The lower GBWP is optimized for systems requiring low-frequency response and low-power consumption.

17.3 Inputs

The SC module connects to the following inputs:

- COG1
- COG2
- Comparator C1
- Comparator C2

17.4 Outputs

The SC module connects to the following outputs:

- Comparator C1
- Comparator C2
- Op amp

17.5 Operation During Sleep

The SC module is unaffected by Sleep.

17.6 Effects of a Reset

The SC module resets to a disabled condition.

RETFIE	Return from Interrupt	RETLW	Return with literal in W		
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RETLW k		
Operands:	None	Operands:	$0 \le k \le 255$		
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$	Operation:	$k \rightarrow (W);$ TOS \rightarrow PC		
Status Affected:	None	Status Affected:	None		
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INT-	Description:	The W register is loaded with th 8-bit literal 'k'. The program counter is loaded from the top o the stack (the return address). This is a 2-cycle instruction.		
	CON<7>). This is a 2-cycle	Words:	1		
	Instruction.	Cycles:	2		
Words: Cycles: <u>Example:</u>	1 2 RETFIE	Example:	CALL TABLE;W contains ;table offset ;value		
	After Interrupt PC = TOS GIE = 1	TABLE	GOTO DONE • • ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • • RETLW kn ;End of table		
		DONE			

Before Instruction W = 0x07After Instruction W = value of k8

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS \rightarrow PC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruc- tion.					

19.6.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worstcase conditions (i.e., VDD = Min., Temperature = Max., Max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

FIGURE 19-9: WATCHDOG TIMER WITH SHARED PRESCALE BLOCK DIAGRAM

TABLE 19-7: WDT STATUS

Conditions	WDT
WDTE = 0	
CLRWDT Command	Cleared
Exit Sleep	

TABLE 19-8: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS<2:0>		56	

Legend: Shaded cells are not used by the Watchdog Timer.

19.10 In-Circuit Serial Programming™

The PIC16F753/HV753 microcontrollers can be serially programmed while in the end application circuit. This is simply done with five connections for:

- clock
- data
- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the ICSPDAT and ICSPCLK pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the *PIC16F753/HV753 Flash Memory Programming Specification* (DS41686) for more information. ICSPDAT becomes the programming data and ICSPCLK becomes the programming clock. Both ICSPDAT and ICSPCLK are Schmitt Trigger inputs in Program/Verify mode.

A typical In-Circuit Serial Programming connection is shown in Figure 19-11.

FIGURE 19-11: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

Note: To erase the device, VDD must be above the Bulk Erase VDD minimum given in the *PIC16F753/HV753* Flash Memory *Programming Specification* (DS41686).

TABLE 22-4: I/O PORTS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
		Capacitive Loading Specs on Output Pins								
D101*	COSC2	OSC2 pin	—	—	15	pF	In XT, HS, LP modes when			
D101A*	CIO	All I/O pins	_	_	50	pF	external clock is used to drive OSC1			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: This specification applies to all weak pull-up pins, including the weak pull-up found on RA3/MCLR. When RA3/MCLR is configured as MCLR Reset pin, the weak pull-up is always enabled.

TABLE 22-5: MEMORY PROGRAMMING SPECIFICATIONS

Param. No.	Sym.	Characteristic	Min.	Typ† Max.		Units	Conditions	
		Program Memory Programming Specifications						
D110	VIHH	Voltage on MCLR/VPP pin	10.0	_	13.0	V	(Note 2)	
D112	VBE	VDD for Bulk Erase	4.5	—	VDDMAX	V		
D113	VPEW	VDD for Write or Row Erase	4.5		VDDMAX	V		
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	300	1000	μA		
		Program Flash Memory						
D121	Eр	Cell Endurance	10K	100K	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)	
D121A	Eр	Cell Endurance	1K	10K	—	E/W	-40°C ≤ TA ≤ +125°C (Note 1)	
D122	Vprw	VDD for Read/Write	VDDMIN	_	VDDMAX	V		
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms		
D124	Tretd	Characteristic Retention	40		_	Year	Provided no other specifications are violated	
D125	EHEFC	High-Endurance Flash Cell	N/A	_	_	E/W	0°C to +60°C, Lower byte last 128 addresses	

Standard Operating Conditions (unless otherwise stated)

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions
OS06	Twarm	Internal Oscillator Switch when running	—			2	Tosc	
OS07	INTosc	Internal Calibrated INTOSC Frequency ⁽¹⁾ (4 MHz)	±1%	3.96	4.0	4.04	MHz	VDD = 3.5V, TA = 25°C
			±2%	3.92	4.0	4.08	MHz	$2.5V \le VDD \le 5.5V$, $0^{\circ}C \le TA \le +85^{\circ}C$
			±5%	3.80	4.0	4.20	MHz	$2.0V \le VDD \le 5.5V$, -40°C \le TA \le +85°C (Ind.), -40°C \le TA \le +125°C (Ext.)
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±1%	7.92	8	8.08	MHz	Vdd = 3.5V, TA = 25°C
			±2%	7.84	8	8.16	MHz	$2.5V \le VDD \le 5.5V$, $0^{\circ}C \le TA \le +85^{\circ}C$
			±5%	7.60	8	8.40	MHz	$2.0V \le VDD \le 5.5V$, -40°C \le TA \le +85°C (Ind.), -40°C \le TA \le +125°C (Ext.)
OS09	LFosc	Internal LFINTOSC Frequency	—	—	31	—	kHz	
OS10*	TIOSC ST	HFINTOSC Wake-up from	_	_	12	24	μS	$V DD = 2.0V - 40^{\circ}C \le TA \le +85^{\circ}C$
		Sleep Start-up Time		—	7	14	μs	$VDD = 3.0V - 40^{\circ}C \le TA \le +85^{\circ}C$
				_	6	11	μS	$VDD = 5.0V - 40^{\circ}C \le TA \le +85^{\circ}C$

TABLE 22-8: OSCILLATOR PARAMETERS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

FIGURE 22-11: PIC16F753/HV753 A/D CONVERSION TIMING (ADC CLOCK FROM FRC)

TABLE 22-19: OPERATIONAL AMPLIFIER (OPA)

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated): VDD = 3.0 Temperature 25°C, High-Power Mode					
Param No.	Symbol	Parameters	Min.	Тур†	Max.	Units	Conditions		
OPA12	GBWP	Gain Bandwidth Product	_	3		MHz			
OPA13*	TON	Turn on Time	—		10	μS			
OPA14*	Рм	Phase Margin	_	60	_	degrees			
OPA15*	SR	Slew Rate	2	_	_	V/µs			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

