

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 8x10b; D/A 1x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv753t-i-ml

Email: info@E-XFL.COM

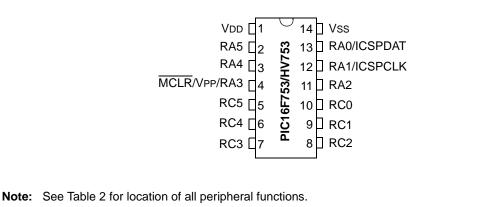
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Complementary Output Generator (COG):
 - Complementary Waveforms from selectable sources
 - Two I/O (50 mA) for direct MOSFET drive
 - Rising and/or Falling edge dead-band control
 - Phase control, Blanking control
 - Auto-shutdown
 - Slope Compensation Circuit for use with SMPS power supplies

TABLE 1:	PIC16F753/HV753	FAMILY TYPES

Device	Data Sheet Index	Program Memory Flash (words)	Self-Read/Write Flash Memory	Data SRAM (bytes)	I/OS ⁽²⁾	10-bit ADC (ch)	Comparators	Timers (8/16-bit)	ССР	Complementary Output Generator (COG)	DAC	Op Amp	Shunt Regulator	Debug ⁽¹⁾	XLP
PIC12F752	(1)	1K	Y	64	6	4	2	3/1	1	Y	5-bit	Ν	Ν	Н	Y
PIC12HV752	(1)	1K	Y	64	6	4	2	3/1	1	Y	5-bit	Ν	Y	Н	Y
PIC16F753	(2)	2K	Y	128	12	8	2	3/1	1	Y	9-bit	Y	Ν	I/H	Y
PIC16HV753	(2)	2K	Y	128	12	8	2	3/1	1	Y	9-bit	Y	Y	I/H	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, Requires Debug Header.


2: One pin is input-only.

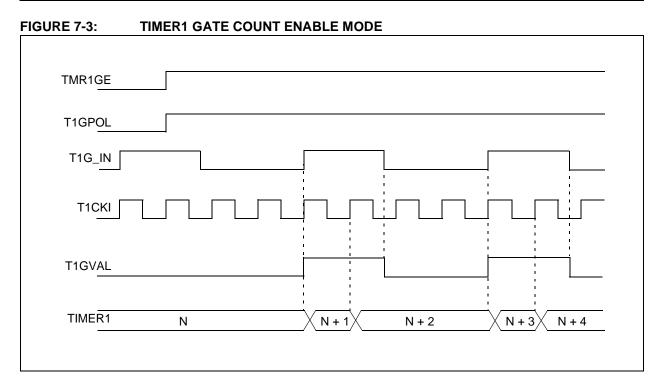
Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS40001576 PIC12F752/HV752 Data Sheet, 8-Pin Flash-Based, 8-Bit CMOS Microcontrollers.
- 2: DS40001709 PIC16F753/HV753 Data Sheet, 14/16-Pin Flash-based, 8-Bit CMOS Microcontrollers.

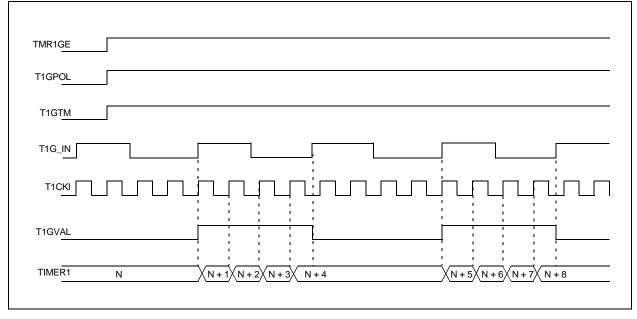
Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

FIGURE 1: 14-PIN PDIP, SOIC, TSSOP DIAGRAM

						L	
U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
_	—	—	—		WREN	WR	RD
bit 7	·				•	•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
S = Bit can o	nly be set	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared	HC = Bit is cl	eared by hardw	are	
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2	WREN: Prog	ram/Erase Ena	ble bit				
	•	rogram/erase c	•				
		rogramming/er	asing of progi	am Flash			
bit 1	WR: Write Co						
		a program Flas					
	•			•	hardware once	operation is co	mplete.
		bit can only be /erase operatio	•	,			
bit 0	•	•					
bit 0 RD: Read Control bit 1 = Initiates a program Flash read. Read takes one cycle. RD is cleared in hardware. The RD b				he RD bit can			
only be set (not cleared) in software.							
		initiate a progi		d			


REGISTER 3-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

REGISTER 3-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER


REGISTER 3-0.	FINICC	INZ. FROGRAM			ZREGISTER	•	
W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Progra	m Memor	y Control Regist	er 2		
bit 7							bit 0
Legend:							
R = Readable bit	= Readable bit W = Writable bit			U = Unimplen	nented bit, read	l as '0'	
S = Bit can only b	e set	x = Bit is unknow	wn -n/n = Value at POR and BOR/Value at all other Res		other Resets		
'1' = Bit is set		'0' = Bit is cleare	d				

bit 7-0 Flash Memory Unlock Pattern bits:

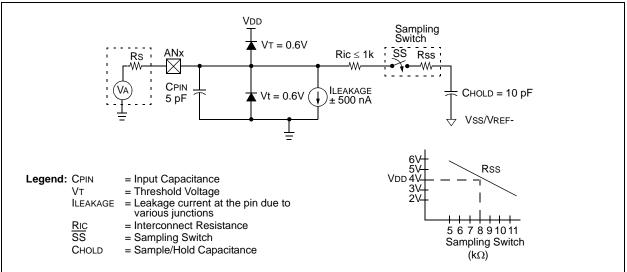
To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

FIGURE 7-4: TIMER1 GATE TOGGLE MODE

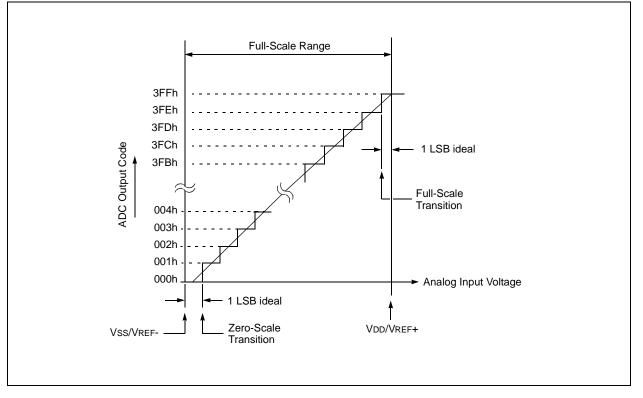
						DAM O/C	D 444 0/2
R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
GxRDBTS	GxFDBTS	—	—	—	—	GxCS	i<1:0>
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on conditi	on	
1 = Delay chain and COGxDBR are used for dead-band timing generation 0 = COGx_clk and COGxDBR are used for dead-band timing generation bit 6 GxFDBTS: COGx Falling Event Dead-band Timing Source Select bit 1 = Delay chain and COGxDF are used for dead-band timing generation 0 = COGx_clk and COGxDF are used for dead-band timing generation 0 = COGx_clk and COGxDF are used for dead-band timing generation							
bit 5-2	Unimplemen	ted: Read as '	כ'				
bit 1-0	1-0 GxCS<1:0>: COGx Clock Source Select bits 11 = Reserved 10 = HFINTOSC (stays active during Sleep) 01 = Fosc/4 00 = Fosc						

REGISTER 11-2: COGxCON1: COG CONTROL REGISTER 1

12.2.6 A/D CONVERSION PROCEDURE


This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (See TRIS register)
 - Configure pin as analog
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Select result format
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/\overline{DONE} bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - **Note 1:** The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: See Section 12.4 "A/D Acquisition Requirements".


EXAMPLE 12-1: A/D CONVERSION

```
;This code block configures the ADC
; for polling, Vdd reference, Frc clock
;and RA0 input.
;Conversion start & polling for completion
; are included.
  BANKSEL TRISA
                     ;
 BSF TRISA,0
                    ;Set RA0 to input
 BANKSEL ADCON1
                    ;
 MOVLW B'01110000' ;ADC Frc clock,
 IORWF ADCON1 ; and RAO as analog
 BANKSEL ADCON0
                     ;
 MOVLW B'10000001' ;Right justify,
 MOVWF ADCON0 ;Vdd Vref, AN0, On
 CALL
         SampleTime ;Acquisiton delay
         ADCON0,GO ;Start conversion
 BSF
TEST AGAIN
 BTFSC ADCON0,GO ; Is conversion done?
         TEST AGAIN ;No, test again
 GOTO
  BANKSEL ADRESH
                    ;
 MOVF ADRESH,W ;Read upper 2 bits
         RESULTHI ;Store in GPR space
 MOVWE
 BANKSEL ADRESL ;
MOVF ADRESL,W ;Read lower 8 bits
MOVWF RESULTLO ;Store in GPR space
```


REGISTER 14-2: DACxREFH: DAC REFERENCE HIGH REGISTER (DACxFM = 0)

	-	-	-			- /	
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			DACR	<8:1>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is unch	u = Bit is unchanged x = Bit is unknown		wn	-n/n = Value at POR and BOR/Value at all other Reset			

bit 7-0 **DACR<8:1>**: DAC Reference Selection bits DACxOUT = (DACR<8:0> x (Vdac_ref)/512)

'0' = Bit is cleared

REGISTER 14-3: DACxREFL: DAC REFERENCE LOW REGISTER (DACxFM = 0)

R/W-0/0	U-0						
DACR0	—	—	—	—	—	—	—
bit 7							bit 0

Legend:

'1' = Bit is set

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 DACR0: DAC Reference Selection bits

DACxOUT = (DACR<8:0> x (Vdac_ref)/512)

bit 6-0 Unimplemented: Read as '0'

16.0 OPERATIONAL AMPLIFIER (OPA) MODULE

The Operational Amplifier (OPA) is a standard threeterminal device requiring external feedback to operate. The OPA module has the following features:

- External Connections to I/O Ports
- Selectable Unity Gain Bandwidth Product Option
- Low-Leakage Inputs
- Factory-Calibrated Input Offset Voltage

16.1 OPAxCON0 Register

The OPAxCON0 register, shown in Register 16-1, controls the OPA module.

The OPA module is enabled by setting the OPAxEN bit of the OPAxCON register. When enabled, the OPA forces the output driver of the OPAxOUT pin into tristate to prevent contention between the driver and the OPA output.

The OPAxUGM bit of the OPAxCON register enables the Unity Gain Bandwidth mode (voltage follower) of the amplifier. In Unity Gain mode, the OPAxNCH<1:0> inputs are disabled. The default mode is normal threeterminal operation.

Note: When the OPA module is enabled, the OPAxOUT pin is driven by the op amp output, not by the PORT digital driver. Refer to Section 22.0 "Electrical Specifications" for the op amp output drive capability.

16.2 Effects of a Reset

A device Reset forces all registers to their Reset state. This disables the OPA module.

16.3 OPA Module Performance

Common AC and DC performance specifications for the OPA module:

- Common Mode Voltage Range
- Leakage Current
- Input Offset Voltage
- Open Loop Gain
- Gain Bandwidth Product

Common mode voltage range is the specified voltage range for the OPAx+ and OPAx- inputs, for which the OPA module will perform within its specifications. The OPA module is designed to operate with input voltages between Vss and VDD. Behavior for Common mode voltages greater than VDD or below Vss is not guaranteed.

Leakage current is a measure of the small source or sink currents on the OPAx+ and OPAx- inputs. To minimize the effect of leakage currents, the effective impedances connected to the OPAx+ and OPAx- inputs should be kept as small as possible and equal. Input offset voltage is a measure of the voltage difference between the OPAx+ and OPAx- inputs in a closed loop circuit with the OPA in its linear region. The offset voltage will appear as a DC offset in the output equal to the input offset voltage, multiplied by the gain of the circuit.

The input offset voltage is also affected by the Common mode voltage. The OPA is factory-calibrated to minimize the input offset voltage of the module. Open loop gain is the ratio of the output voltage to the differential input voltage (OPAx+) - (OPAx-). The gain is greatest at DC and falls off with frequency.

Gain Bandwidth Product or GBWP is the frequency at which the open loop gain falls off to 0 dB. The lower GBWP is optimized for systems requiring low-frequency response and low-power consumption.

18.2 Instruction Descriptions

ADDLW	Add literal and W
Syntax:	[label] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Clear

BTFSC

Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

AND W with f

ANDWF

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.
	C = 0 $W > f$

C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0>>f<3:0>
DC = 0 DC = 1	$W < 3:0 > \le f < 3:0 >$

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

19.5 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and STATUS registers). This must be implemented in software.

Temporary holding registers W_TEMP and STATUS_TEMP should be placed in the last 16 bytes of GPR (see Figure 2-2). These 16 locations are common to all banks and do not require banking. This makes context save and restore operations simpler. The code shown in Example 19-1 can be used to:

- Store the W register
- Store the STATUS register
- · Execute the ISR code
- Restore the Status (and Bank Select Bit register)
- · Restore the W register

Note:	The PIC16F753/HV753 does not require			
	saving the PCLATH. However, if			
	computed GOTOs are used in both the ISR			
	and the main code, the PCLATH must be			
	saved and restored in the ISR.			

EXAMPLE 19-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF	W_TEMP STATUS,W	;Copy W to TEMP register ;Swap status to be saved into W ;Swaps are used because they do not affect the status bits
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:(ISR)		;Insert user code here
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W ;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

19.6 Watchdog Timer (WDT)

The Watchdog Timer is a free running timer, using LFINTOSC oscillator as its clock source. The WDT is enabled by setting the WDTE bit of the Configuration Word (default setting). When WDTE is set, the LFINTOSC will always be enabled to provide a clock source to the WDT module.

During normal operation, a WDT time-out generates a device Reset. If the device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation.

The WDT can be permanently disabled by programming the Configuration bit, WDTE, as clear (Section 19.1 "Configuration Bits").

19.6.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the prescaler, if assigned to the WDT, and prevent it from timing out and generating a device Reset.

The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

22.0 ELECTRICAL SPECIFICATIONS

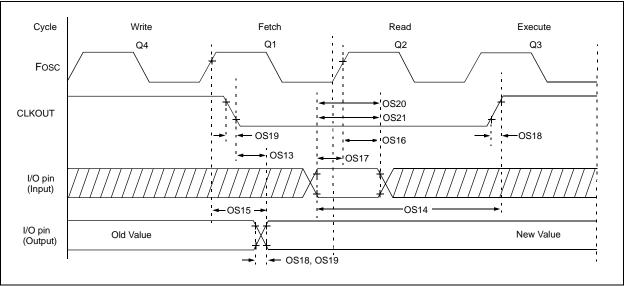
Absolute Maximum Ratings^(†)

nbient temperature under bias40°	to +125°C
prage temperature	
Itage on pins with respect to Vss	
on VDD pin	
-0.3 ^v	V to +6.5V
PIC16F753	V to +6.5V
on MCLR0.3V	to +13.5V
on all other pins0.3V to (Vi	dd + 0.3V)
aximum current	
on Vss pin ⁽¹⁾	
$-40^{\circ}C \le TA \le +85^{\circ}C$	95 mA
$-40^{\circ}C \leq TA \leq +125^{\circ}C$	95 mA
on Vdd pin ⁽¹⁾	
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	95 mA
$-40^{\circ}C \leq TA \leq +125^{\circ}C \dots$	95 mA
on RA1, RA4, RA5	25 mA
on RC4, RC5	50 mA
amp current, Ικ (VPIN < 0 or VPIN >VDD)	± 20 mA
1: Maximum current rating requires even load distribution across I/O pins. Maximum current ratin limited by the device package power dissipation characteristics. See Table 22-6 to calculate de limitations.	

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

PIC16F7	753	Standard Operating Conditions (unless otherwise stated)							
PIC16HV753									
Param No.		Min.	Тур†	Max. 85°C	Max. 125°C	Units	Conditions		
	Device Characteristics						Vdd	Note	
	Supply Current (IDD) ^(1, 2)								
D014			318	382	382	μΑ	2.0	Fosc = 4 MHz	
			450	502	502	μA	3.0	HFINTOSC mode	
			825	100	100	μΑ	5.0		
D014			330	485	485	μΑ	2.0	Fosc = 4 MHz	
			526	658	658	μΑ	3.0	HFINTOSC mode	
			775	980	980	μΑ	4.5		
D015			505	595	595	μΑ	2.0	Fosc = 8 MHz	
			740	1200	1200	μΑ	3.0	HFINTOSC mode	
			1.5	1.8	1.8	mA	5.0		
D015			500	690	690	μA	2.0	Fosc = 8 MHz	
			800	1100	1100	μΑ	3.0	HFINTOSC mode	
			1.23	1.7	1.7	mA	4.5		
D016			2.6	3.08	3.08	mA	4.5	Fosc = 20 MHz	
			2.97	3.53	3.53	mA	5.0	EC Oscillator mode	
D016		_	2.6	3.3	3.3	mA	4.5	Fosc = 20 MHz EC Oscillator mode	

TABLE 22-2: SUPPLY CURRENT (IDD)^(1,2) (CONTINUED)


* These parameters are characterized but not tested.

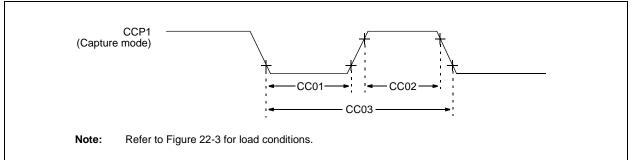
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

FIGURE 22-5: CLKOUT AND I/O TIMING

TABLE 22-9:	CLKOUT AND I/O TIMING PARAMETERS
--------------------	---


Standar	Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур †	Max.	Unit s	Conditions	
OS13	ΤcκL2ιoV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	20	ns		
OS14	ТюV2скН	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	—	_	ns		
OS15	TosH2IOV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 5.0V	
OS16	TosH2ıol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in setup time)	50			ns	VDD = 5.0V	
OS17	TIOV20SH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	_	ns		
OS18	TIOR	Port output rise time	—	40 15	72 32	ns ns	VDD = 2.0V VDD = 5.0V	
						115	VDD = 5.0V	
OS19	TIOF	Port output fall time	—	28 15	55 30	ns ns	VDD = 2.0V VDD = 5.0V	
OS20*	TINP	INT pin input high or low time	25	_	_	ns		
OS21*	TIOC	Interrupt-on-change new input level time	Тсү		_	ns		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

FIGURE 22-9: PIC16F753/HV753 CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 22-12: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standar	Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Character	Characteristic		Тур†	Max.	Units	Conditions
CC01*	TccL	CCP1 Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns	
			With Prescaler	20	_		ns	
CC02*	TccH	CCP1 Input High Time	No Prescaler	0.5Tcy + 20	_		ns	
			With Prescaler	20			ns	
CC03*	TccP	CCP1 Input Period		<u>3Tcy + 40</u> N	—		ns	N = prescale value (1, 4 or 16)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 22-13: COMPARATOR SPECIFICATIONS⁽¹⁾

Standard Operating Conditions (unless otherwise stated) VDD = $5.0V$, $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristics	Min.	Тур†	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage ⁽³⁾		± 10 ± 10	± 20 ± 20	mV mV	CxSP = 1 CxSP = 0
CM02	VICM	Input Common Mode Voltage ⁽²⁾	0	_	Vdd - 1.5	V	
CM03	CMRR	Common Mode Rejection Ratio	_	55	_	dB	
CM04A*	Trt ⁽²⁾	Response Time	_	55	70	ns	CxSP = 1
			_	65	100	ns	CxSP = 0
CM05*	TMC20V	Comparator Mode Change to Output Valid	—	—	10	μS	
CM06	CHYSTER	Comparator Hysteresis	_	20	50	mV	

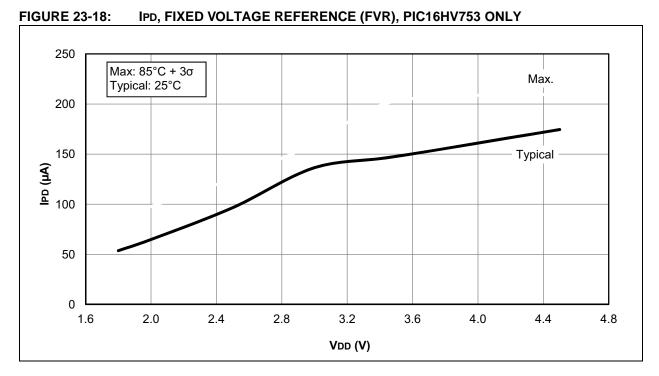
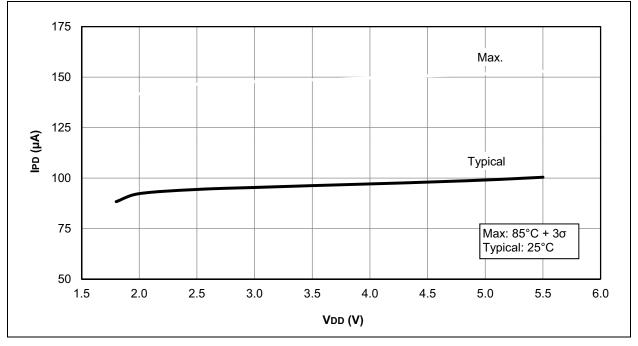
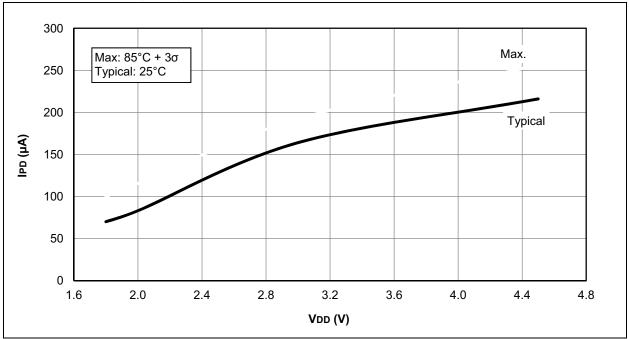
* These parameters are characterized but not tested.

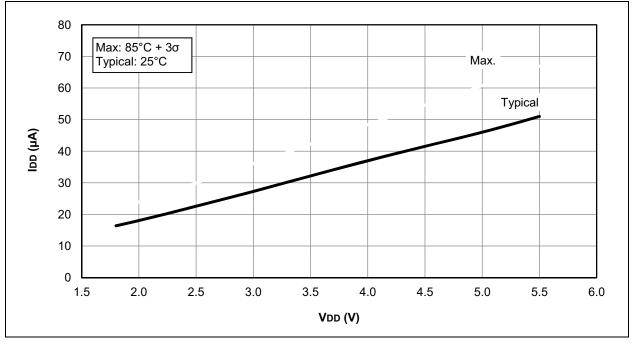
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

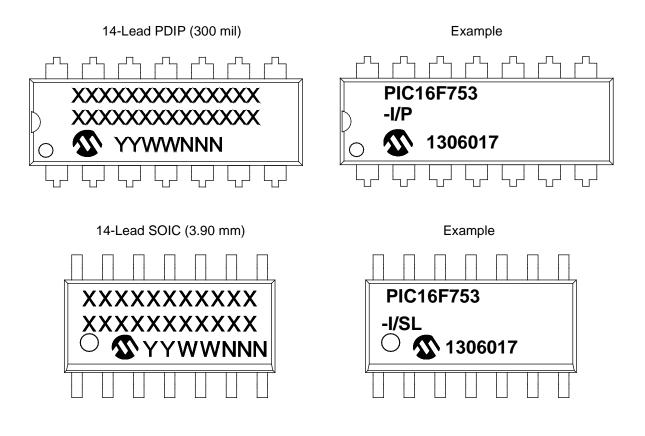
Note 1: See Section 23.0 "DC and AC Characteristics Graphs and Charts" and Section 22.0 "Electrical Specifications" for operating characterization.

 Response time is measured with one comparator input at (VDD - 1.5V)/2 - 100 mV to (VDD - 1.5V)/ 2 + 20 mV. The other input is at (VDD -1.5V)/2.

3: Input offset voltage is measured with one comparator input at (VDD - 1.5V)/2.


FIGURE 23-19: IPD, FIXED VOLTAGE REFERENCE (FVR), PIC16F753 ONLY



24.0 PACKAGING INFORMATION

24.1 Package Marking Information

Legend:	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	carried over	nt the full Microchip part number cannot be marked on one line, it will be er to the next line, thus limiting the number of available characters for pecific information.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - <u>X</u> <u>/XX XXX</u> ☐ ☐ ☐ Tape and Reel Temperature Package Pattern Option Range	Examples: a) PIC16F753-I/ML301 Tape and Reel, Industrial temperature, QFN 4x43 package,
Device:	PIC16F753 PIC16HV753	QTP pattern #301 b) PIC16F753-E/P Extended temperature PDIP package c) PIC16F753-E/SL
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	 Extended temperature, SOIC package d) PIC16HV753-E/ST
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	Extended temperature, TSSOP 4.4 mm package
Package:	P = 14-lead Plastic Dual In-line (PDIP) SL = 14-lead Plastic Small Outline (3.90 mm) (SOIC) ST = 14-lead Plastic Thin Shrink Small Outline (4.4 mm) (TSSOP) ML = 16-lead Plastic Quad Flat, No Lead Package (4x4x0.9 mm) (QFN)	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

06/23/16