

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 8x10b; D/A 1x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16hv753t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3.3 INTCON REGISTER

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, IOCIE change and external RA2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

bit 7	TUE		IOOIL	1011		bit 0
bit 7	TOL		IOOIL	1011		bit 0
GIE PEIE	TUIE		IOOIL	1011		10011
	TOIE	INTE	IOCIE	TOIE	INTE	IOCIE
R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	T0IE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: RA2/INT External Interrupt Enable bit 1 = Enables the RA2/INT external interrupt 0 = Disables the RA2/INT external interrupt
bit 3	IOCIE: Interrupt-on-Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the IOC change interrupt 0 = Disables the IOC change interrupt
bit 2	T0IF: Timer0 Overflow Interrupt Flag bit ⁽²⁾ 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 1	INTF: RA2/INT External Interrupt Flag bit 1 = The RA2/INT external interrupt occurred (must be cleared in software) 0 = The RA2/INT external interrupt did not occur
bit 0	IOCIF: Interrupt-on-Change Interrupt Flag bit 1 = An IOC pin has changed state and generated an interrupt 0 = No pin interrupts have been generated

Note 1: IOC register must also be enabled.

2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

3.5 Writing the Flash Program Memory

A word of the Flash program memory may only be written to if the word is in an unprotected segment of memory.

Flash program memory must be written in four-word blocks. See Figure 3-2 and Figure 3-3 for more details. A block consists of four words with sequential addresses, with a lower boundary defined by an address, where PMADRL<1:0> = 0.0. All block writes to program memory are done as 16-word erase by fourword write operations. The write operation is edge-aligned and cannot occur across boundaries.

To write program data, it must first be loaded into the buffer registers (see Figure 3-2). This is accomplished by first writing the destination address to PMADRL and PMADRH and then writing the data to PMDATL and PMDATH. After the address and data have been set up, then the following sequence of events must be executed:

- 1. Write 55h, then AAh, to PMCON2 (Flash programming sequence).
- 2. Set the WR control bit of the PMCON1 register.

All four buffer register locations should be written to with correct data. If less than four words are being written to in the block of four words, then a read from the program memory location(s) not being written to must be performed. This takes the data from the program location(s) not being written and loads it into the PMDATL and PMDATH registers. Then the sequence of events to transfer data to the buffer registers must be executed.

To transfer data from the buffer registers to the program memory, the PMADRL and PMADRH must point to the last location in the four-word block (PMADRL<1:0> = 11). Then the following sequence of events must be executed:

- 1. Write 55h, then AAh, to PMCON2 (Flash programming sequence).
- 2. Set control bit WR of the PMCON1 register to begin the write operation.

The user must follow the same specific sequence to initiate the write for each word in the program block, writing each program word in sequence (000, 001, 010, 011). When the write is performed on the last word (PMADRL<1:0> = 11), a block of sixteen words is automatically erased and the content of the four-word buffer registers are written into the program memory.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase/write operation. The user must place two NOP instructions after the WR bit is set. Since data is being written to buffer registers, the writing of the first three words of the block appears to occur immediately. The processor will halt internal operations for the typical 4 ms, only during the cycle in

which the erase takes place (i.e., the last word of the sixteen-word block erase). This is not Sleep mode as the clocks and peripherals will continue to run. After the four-word write cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction. The above sequence must be repeated for the higher 12 words.

3.6 Protection Against Spurious Write

There are conditions when the device should not write to the program memory. To protect against spurious writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents program memory writes.

The write initiate sequence and the WREN bit help prevent an accidental write during brown-out, power glitch or software malfunction.

3.7 Operation During Code-Protect

When the device is code-protected, the CPU is able to read and write unscrambled data to the program memory.

3.8 Operation During Write Protect

When the program memory is write-protected, the CPU can read and execute from the program memory. The portions of program memory that are write-protected can be modified by the CPU using the PMCON registers, but the protected program memory cannot be modified using ICSP mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PMCON1	_	_	_	—	—	WREN	WR	RD	27
PMCON2			Prog	ram Memory	Control Regis	ster 2			27
PMADRL				PMAD	RL<7:0>				26
PMADRH		_		_	—	_	PMADF	RH<1:0>	26
PMDATL	PMDATL<7:0>							26	
PMDATH		_	PMDATH<5:0>					26	
INTCON	GIE	PEIE	TOIE	INTE	IOCIE	TOIF	INTF	IOCIF	17

TABLE 3-1: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory module.
* Page provides register information.

TABLE 3-2: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	—	DEBUG	CLKOUTEN	WRT	<1:0>	BORE	N<1:0>	450
CONFIG	7:0	_	CP	MCLRE	PWRTE	WDTE	_	_	FOSC0	150

Legend: — = unimplemented location, read as '1'. Shaded cells are not used by Flash program memory.

Note 1: See Configuration Word register (Register 19-1) for operation of all register bits.

7.3 Timer1 Prescaler

Timer1 has four prescaler options allowing one, two, four or eight divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

7.4 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 7.4.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

7.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

7.5 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 gate count enable.

Timer1 gate can also be driven by multiple selectable sources.

7.5.1 TIMER1 GATE COUNT ENABLE

The Timer1 gate is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 gate is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate (T1G) input is active, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 gate input is inactive, no incrementing will occur and Timer1 will hold the current count. See Figure 7-3 for timing details.

TABLE 7-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

7.5.2 TIMER1 GATE SOURCE SELECTION

The Timer1 gate source can be selected from one of four different sources. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 7-4: TIMER1 GATE SOURCES

T1GSS	Timer1 Gate Source			
11	SYNCC2OUT			
10	SYNCC1OUT			
01	Overflow of Timer0			
	(TMR0 increments from FFh to 00h)			
00	Timer1 Gate Pin			

8.0 TIMER2 MODULE

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16, 1:64)
- Software programmable postscaler (1:1 to 1:16)

See Figure 8-1 for a block diagram of Timer2.

8.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register.

The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen:

- TMR2 is reset to 00h on the next increment cycle.
- The Timer2 postscaler is incremented

The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register.

FIGURE 8-1: TIMER2 BLOCK DIAGRAM

The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.

Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a '1'. Timer2 is turned off by clearing the TMR2ON bit to a '0'.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the T2OUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when:

- A write to TMR2 occurs.
- A write to T2CON occurs.
- Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset).

Note: TMR2 is not cleared when T2CON is written.

11.4 Output Control

Upon disabling, or immediately after enabling the COG module, the complementary drive is configured with COGxOUT0 drive inactive and COGxOUT1 drive active.

11.4.1 OUTPUT ENABLES

Each COG output pin has an individual output enable control. Output enables are selected with the GxOE0 and GxOE1 bits of the COGxCON0 register (Register 11-1). When an output enable control is cleared, the module asserts no control over the pin. When an output enable is set, the override value or PWM waveform is applied to the pin per the port priority selection.

The device pin output enable control bits are independent of the GxEN bit of the COGxCON0 register, which enables the COG. When GxEN is cleared, and shutdown is not active, the Reset state PWM levels are present on the COG output pins. The PWM levels are affected by the polarity controls. If shutdown is active when GxEN is cleared, the shutdown override levels will be present on the COG output pins. Note that setting the GxASE bit while the GxEN bit is cleared will activate shutdown which can only be cleared by either a rising event while the GxEN bit is set, or a device Reset.

11.4.2 POLARITY CONTROL

The polarity of each COG output can be selected independently. When the output polarity bit is set, the corresponding output is active-low. Clearing the output polarity bit configures the corresponding output as active-high. However, polarity does not affect the shutdown override levels.

Output polarity is selected with the GxPOL0 and GxPOL1 bits of the COGxCON0 register (Register 11-1).

11.5 Dead-Band Control

The dead-band control provides for non-overlapping PWM output signals to prevent shoot-through current in the external power switches.

The COG contains two dead-band timers. One dead-band timer is used for rising event dead-band control. The other is used for falling event dead-band control. Timer modes are selectable as either:

- Asynchronous delay chain
- Synchronous counter

The dead-band Timer mode is selected for the COGxOUT0 and COGxOUT1 dead-band times with the respective GxRDBTS and GxFDBTS bits of the COGxCON1 register (Register 11-2).

11.5.1 ASYNCHRONOUS DELAY CHAIN DEAD-BAND DELAY

Asynchronous dead-band delay is determined by the time it takes the input to propagate through a series of delay elements. Each delay element is a nominal five nanoseconds.

Set the COGxDBR register (Register 11-9) value to the desired number of delay elements in the COGxOUT0 dead band. Set the COGxDBF register (Register 11-10) value to the desired number of delay elements in the COGxOUT1 dead band. When the value is zero, dead-band delay is disabled.

11.5.2 SYNCHRONOUS COUNTER DEAD-BAND DELAY

Synchronous counter dead band is timed by counting COG_clock periods from zero up to the value in the dead-band count register. Use Equation 11-1 to calculate dead-band times.

Set the COGxDBR count register value to obtain the desired dead-band time of the COGxOUT0 output. Set the COGxDBF count register value to obtain the desired dead-band time of the COGxOUT1 output. When the value is zero, dead-band delay is disabled.

11.5.3 SYNCHRONOUS COUNTER DEAD-BAND TIME UNCERTAINTY

When the rising and falling events that trigger the dead-band counters come from asynchronous inputs, it creates uncertainty in the synchronous counter dead-band time. The maximum uncertainty is equal to one COG_clock period. Refer to Equation 11-1 for more detail.

When event input sources are asynchronous with no phase delay, use the asynchronous delay chain dead-band mode to avoid the dead-band time uncertainty.

11.13 Register Definitions: COG Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
GxEN	GxOE1	GxOE0	GxPOL1	GxPOL0	GxLD	_	GxMD
bit 7	·				•		bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7	GxEN: COG>	c Enable bit					
	1 = Module is	s enabled					
hit G			t Enabla bit				
bit o	1 = COGXOL	IT1 is available	on associate	d I/O nin			
	0 = COGxOL	JT1 is not avail	able on assoc	ciated I/O pin			
bit 5	GxOE0: COG	SxOUT0 Outpu	t Enable bit				
	1 = COGxOL	JT0 is available	on associate	d I/O pin			
	0 = COGxOL	JT0 is not avail	able on assoc	ciated I/O pin			
bit 4	GxPOL1: CO	GxOUT1 Outp	ut Polarity bit				
	1 = Output is	inverted polari	ty				
hit 2			y ut Dolority bit				
DIL 3	1 - Output is	inverted polari	tv				
	0 = Output is	normal polarit	y				
bit 2	GxLD: COGx	Load Buffers	oit				
1 = Phase, blanking, and dead-band buffers to be loaded with register values on nex						input events	
	0 = Register to buffer transfer is complete						
bit 1	Unimplemen	ted: Read as '	0'				
bit 0	GxMD: COG	x Mode bit					
	1 = COG out	puts operate in	Push-Pull mo	ode			
	0 = COG out	puts operate in	Synchronous	smode			

REGISTER 11-1: COGxCON0: COG CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	GxFMHLT2	GxFMHLT1	GxFMT2M	GxFMFLT	GxFMCCP1	GxFMC2	GxFMC1
bit 7		1					bit 0
Legend:							
R = Readable b	oit	W = Writable I	pit	U = Unimple	mented bit, read a	s '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value	at POR and BOR/	Value at all othe	er Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condition	n	
bit 7	Unimplement	ted: Read as '0'			1)		
DIT 6	GXFMHL12: C GXFIHLT2 = 1	COGX Failing EV	ent Input Sour	ce 6 Mode bit	.,		
	1 = HLTimer2	low-to-high tra	nsition will caus	se a falling eve	ent after falling eve	ent phase delay	
	0 = HLTimer2	2 high level will o	cause an imme	diate falling ev	/ent		
	HLTimer2 has	<u>.</u> no effect on fal	ling event				
bit 5	GxFMHLT1: (COGx Falling Ev	vent Input Sour	ce 5 Mode bit	1)		
	GxFIHLT1 = 1	<u>.</u>		6 H.			
	1 = HLIImer1 0 = HITimer1	l low-to-nign tra	nsition will caus	se a failing eve diate falling ev	ent atter falling eve vent	ent phase delay	
	GxFIHLT1 = 0	<u>:</u>		alate lainig e			
	HLTimer1 has	no effect on fal	ling event		、		
bit 4	GXENT2M = 1	OGx Falling Eve	ent Input Sourc	e 4 Mode bit ⁽¹)		
	1 = Timer2 m	atch with PR2 I	ow-to-high tran	sition will caus	se a falling event a	fter falling ever	it phase delay
	0 = Timer2 m	atch with PR2 h	nigh level will ca	ause an imme	diate falling event	-	
	$\frac{\text{GxFI12M} = 0}{\text{Timer2 match}}$	with PR2 has n	o effect on falli	na event			
bit 3	GxFMFLT: CC	OGx Falling Eve	nt Input Source	e 3 Mode bit			
	GxFIFLT = 1:						_
	$1 = COGxFL^{-1}$	T pin low-to-higi T pin high level	n transition will will cause an in	cause a falling nmediate fallir	g event after falling) event phase d	elay
	$\frac{\text{GxFIFLT} = 0}{\text{GxFIFLT} = 0}$	r pin ngn lover			ig overn		
	COGxFLT pin	has no effect of	n falling event				
bit 2	GxFMCCP1:	COGx Falling E	vent Input Sour	rce 2 Mode bit			
	1 = CCP1 lov	<u>⊥.</u> v-to-high transiti	ion will cause a	falling event	after falling event p	ohase delay	
	0 = CCP1 hig	gh level will caus	se an immediat	e falling event			
	$\frac{\text{GxFICCP1} = 0}{\text{CCP1} \text{ has no}}$	<u>):</u> effect on falling	event				
bit 1	GxFMC2: CO	Gx Falling Ever	t Input Source	1 Mode bit			
2	GxFIC2 = 1:	eg =					
	1 = Compara	tor 2 low-to-high	n transition will	cause a falling	g event after falling	g event phase d	elay
	0 = ComparaGxFIC2 = 0:	tor 2 high lever	will cause all il		ig event		
	Comparator 2	has no effect of	n falling event				
bit 0	GxFMC1: CO	Gx Falling Ever	t Input Source	0 Mode bit			
	$\frac{\text{GXFIC1} = 1:}{1 = \text{Compara}}$	tor 1 low-to-hiał	n transition will	cause a falling	a event after falling	i event phase d	elav
	0 = Compara	tor 1 high level	will cause an in	nmediate fallir	ng event	, p.//000 u	,
	$\frac{\text{GxFIC1} = 0}{\text{Comparator 1}}$	has no offect of	o falling overt				
	Comparator	nas no enect o	r alling event				

REGISTER 11-6: COGxFSIM: COG FALLING EVENT SOURCE INPUT MODE REGISTER

Note 1: These sources are pulses and therefore the only benefit of Edge mode over Level mode is that they can be delayed by falling event phase delay.

REGISTER 11-11: COGxBKR: COG RISING EVENT BLANKING COUNT REGISTER

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	—		GxBKI	R<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4	Unimplemented: Read as '
---------	--------------------------

bit 3-0

bit 3-0

GxBKR<3:0>: Rising Event Blanking Count Value bits

= Number of COGx clock periods to inhibit falling event inputs

REGISTER 11-12: COGxBKF: COG FALLING EVENT BLANKING COUNT REGISTER

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	—	GxBKF<3:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4 Unimplemented: Read as '0'

GxBKF<3:0>: Falling Event Blanking Count Value bits

= Number of COGx clock periods to inhibit rising event inputs

15.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 15-1) contain Control and Status bits for the following:

- Enable
- Output selection
- Output pin enable
- Output polarity
- Speed/Power selection
- Hysteresis enable
- Output synchronization

The CMxCON1 registers (see Register 15-2) contain Control bits for the following:

- Interrupt edge polarity (rising and/or falling)
- Positive input channel selection
- Negative input channel selection

15.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

15.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCOUTx bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the PORT data latch. Setting
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

15.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 15-1 shows the output state versus input conditions, including polarity control.

TABLE 15-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

15.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

15.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See **Section 22.0 "Electrical Specifications**" for more information.

15.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 7.5 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

16.4 Register Definitions: OPA Control

REGISTER 16-1: OPAxCON0: OP AMP CONTROL REGISTER

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OPAxEN	—	—	OPAxUGM	OPAxNCH<1:0>		OPAxPCH<1:0>	
bit 7			•	•			bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7	OPAxEN: OP	Ax Enable bit					
	1 = OPAx is e	enabled					
	0 = OPAx is d	lisabled					
bit 6-5	Unimplemen	ted: Read as '	0'				
bit 4	OPAxUGM: (DPAx Unity Gai	n Mode Enabl	le bit			
	1 = OPAx is ir	n Unity gain mo	ode				
	0 = OPAx is n	ot in Unity gair	n mode - opera	ates as a three	-terminal op arr	np	
bit 3-2	OPAxNCH<1	:0>: OPAx Neg	ative Input Sc	ource Selection	n bit		
	11 = OPAx- c	onnects to FVF	R_buffer1				
	10 = OPAx- c	onnects to DA	C1_output				
	0x = OPAx - c	onnects to OP/	AxIN- pin				
bit 1-0	OPAxPCH<1	:0>: OPAx Pos	itive Input Sou	urce Selection	bit		
	11 = OPAx+ o	connects to FV	R_buffer1				
	10 = OPAx + c	connects to DA	C1_output				
	01 = OPAX + 0	connects to SL					
	UU = UPAX + C	connects to OP	AXIN+ pin				

TABLE 16-1: REGISTERS ASSOCIATED WITH THE OPA MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OPA1CON0	OPA1EN	—	—	OPA1UGM	OPA1NCH<1:0>		OPA1NCH<1:0> OPA1PCH<1:0>		134
TRISC	—	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	49
ANSELC	—	_	_	—	ANSC3	ANSC2	ANSC1	ANSC0	50

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for the OPA module.

18.0 INSTRUCTION SET SUMMARY

The PIC16F753/HV753 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 18-1, while the various opcode fields are summarized in Table 18-1.

Table 18-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

18.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended consequence of clearing the condition that set the IOCIF flag.

TABLE 18-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 18-1: GENERAL FORMAT FOR INSTRUCTIONS

REGISTER 19-1: CONFIGURATION WORD

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
		DEBUG	CLKOUTEN	WRT	<1:0>	BORE	N<1:0>	
		bit 13					bit 8	
U-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1	U-1	R/P-1	
_	CP	MCLRE	PWRTE	WDTE	—	—	FOSC0	
bit 7							bit 0	
Legend:								
R = Readab	le bit	P = Programma	ible bit	U = Unimpleme	nted bit, read as	"1" 		
0' = Bit is cl	eared	'1' = Bit is set		-n = Value wher	h blank or after B	ulk Erase		
bit 13	DEBUG: Debu 1 = Backgroun 0 = Backgroun	g Mode Enable b d debugger is dis d debugger is en	it (2) abled abled					
bit 12	CLKOUTEN: C 1 = Clock out fr 0 = General pu	Clock Out Enable unction disabled. rpose I/O disable	bit CLKOUT pin ac d. CLKOUT pin	ts as I/O pin acts as CLKOUT				
bit 11-10	WRT<1:0>: Flash Program Memory Self-Write Enable bit 11 = Write protection off 10 = 000h to FFh write-protected, 100h to 3FFh may be modified by PMCON1 control 01 = 000h to 1FFh write-protected, 200h to 3FFh may be modified by PMCON1 control 00 = 000h to 3FFh write-protected, entire program is write-protected							
bit 8-9	BOREN<1:0>: 11 = BOR enal 10 = BOR enal 0x = BOR disa	Brown-out Reserved bled bled during opera bled	t Enable bits tion and disable	d in Sleep				
bit 7	Unimplemente	ed: Read as '1'						
bit 6	CP : Code Prote 1 = Program m 0 = Program m	ection bit emory code prote emory code prote	ection is disabled	d I				
bit 5	MCLRE: MCLF 1 = <u>MCLR</u> pin i 0 = MCLR pin i	R/VPP Pin Function s MCLR function s input function,	n Select bit <u>and w</u> eak intern MCLR function is	al pull-up is enat s internally disabl	bled ed			
bit 4	PWRTE: Powe 1 = PWRT dis 0 = PWRT en	PWRTE : Power-up Timer Enable bit ⁽¹⁾ 1 = PWRT disabled 0 = PWRT enabled						
bit 3	WDTE: Watcho 1 = WDT enal 0 = WDT disa	dog Timer Enable bled bled	bit					
bit 2-1	Unimplemente	ed: Read as '1'						
bit 0	FOSC: Oscillat 1 = EC oscilla 0 = Internal os	or Selection bits tor selected: CLk scillator: I/O funct	(IN on RA5/CLK ion on RA5/CLK	IN IN				
Note 1: 2:	Enabling Brown-ou The Configuration builty write this bit lo	t Reset does not bit is managed au ocation. However,	automatically en tomatically by th the user should	able Power-up Ti e device develop ensure that this	imer. ment tools. The location has bee	user should not n programmed t	attempt to man- o a '1' and the	

	DC C	HARACTERISTICS	Standard Operating Conditions (unless otherwise stated)					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
	VIL	Input Low Voltage						
		I/O PORT:						
D030		with TTL buffer	—	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D030A			—	—	0.15 Vdd	V	$2.0V \leq V\text{dd} \leq 4.5V$	
D031		with Schmitt Trigger buffer	—	—	0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$	
	Vih	Input High Voltage						
		I/O PORT:						
D040		with TTL buffer	2.0	—	_	V	$4.5V \le VDD \le 5.5V$	
D040A			0.25 VDD + 0.8	—	_	V	$2.0V \leq V \text{DD} \leq 4.5 \text{V}$	
D041		with Schmitt Trigger buffer	0.8 Vdd	_	_	V	$2.0V \leq V \text{DD} \leq 5.5 V$	
D042		MCLR	0.8 Vdd		_	V		
	lı∟	Input Leakage Current ⁽¹⁾					L	
D060		I/O ports	_	± 0.1	± 1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C	
D061		RA3/MCLR ⁽²⁾	_	± 0.7	± 5	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance, 85°C	
D063			_	± 0.1	± 5	μA	EC Configuration	
	IPUR	Weak Pull-up Current ⁽³⁾	·		•		•	
D070*			50	250	400	μA	VDD = 5.0V, VPIN = VSS	
	Vol	Output Low Voltage	•					
D080		I/O Ports (excluding RC4, RC5)	_	_	0.6	V	$\begin{split} & \text{IOL} = 7 \text{ mA}, \text{ VDD} = 4.5 \text{V} \\ & -40^\circ\text{C} \leq \text{Ta} \leq +125^\circ\text{C} \\ & \text{IOL} = 8.5 \text{ mA}, \text{ VDD} = 4.5 \text{V} \\ & -40^\circ\text{C} \leq \text{Ta} \leq +85^\circ\text{C} \end{split}$	
		I/O Ports RC4 and RC5	_	_	0.6	V	$\begin{array}{l} \text{IOL} = 14 \text{ mA}, \text{ VDD} = 4.5 \text{V} \\ \text{-40}^\circ\text{C} \leq \text{TA} \leq +125^\circ\text{C} \\ \text{IOL} = 17 \text{ mA}, \text{ VDD} = 4.5 \text{V} \\ \text{-40}^\circ\text{C} \leq \text{TA} \leq +85^\circ\text{C} \end{array}$	
	Voh	Output High Voltage						
D090		I/O Ports (excluding RC4, RC5)	VDD-0.7	_		V	$\begin{array}{l} \mbox{IOH} = -2.5 \mbox{ mA}, \mbox{VDD} = 4.5 \mbox{V} \\ -40^{\circ} \mbox{C} \leq \mbox{Ta} \leq +125^{\circ} \mbox{C} \\ \mbox{IOH} = -3 \mbox{ mA}, \mbox{VDD} = 4.5 \mbox{V} \\ -40^{\circ} \mbox{C} \leq \mbox{Ta} \leq +85^{\circ} \mbox{C} \end{array}$	
		I/O Ports RC4 and RC5	VDD-0.7	_		V	$\begin{array}{l} \mbox{IOH} = -5 \mbox{ mA}, \mbox{ VDD} = 4.5 \mbox{V} \\ -40^{\circ} \mbox{C} \leq \mbox{Ta} \leq +125^{\circ} \mbox{C} \\ \mbox{IOH} = -6 \mbox{ mA}, \mbox{ VDD} = 4.5 \mbox{V} \\ -40^{\circ} \mbox{C} \leq \mbox{Ta} \leq +85^{\circ} \mbox{C} \end{array}$	

TABLE 22-4: I/O PORTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: This specification applies to all weak pull-up pins, including the weak pull-up found on RA3/MCLR. When RA3/MCLR is configured as MCLR Reset pin, the weak pull-up is always enabled.

FIGURE 23-8: IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC16F753 ONLY

PIC16F753/HV753

FIGURE 23-21: IPD, BROWN-OUT RESET (BOR), PIC16F753 ONLY

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

MILLIMETERS

	Dimens
Number of Pins	
D'1 1	

			-		
Dimension Lin	nits	MIN	NOM	MAX	
Number of Pins	N	14			
Pitch	е		1.27 BSC		
Overall Height	А	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	Е		6.00 BSC		
Molded Package Width	E1	3.90 BSC			
Overall Length	D	8.65 BSC			
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.04 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.10	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Units

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		5.40		
Contact Pad Width	Х			0.60	
Contact Pad Length	Y			1.50	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	3.90			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support