
Silicon Labs - C8051F970-A-GM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Not For New Designs

Core Processor CIP-51™

Core Size 8-Bit

Speed 25MHz

Connectivity I²C/SMBus, I²C Slave, SPI, UART/USART

Peripherals CapSense, DMA, POR, PWM, WDT

Number of I/O 43

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 8K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 43x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-WFQFN Exposed Pad

Supplier Device Package 48-QFN (6x6)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f970-a-gm

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f970-a-gm-4405623
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Rev 1.1 54

8. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two
separate memory spaces: program memory and data memory. Program and data memory share the same address
space but are accessed via different instruction types. The memory organization of the C8051F97x device family is
shown in Figure 8.1.

Figure 8.1. C8051F97x Memory Map (32 kB Flash Version Shown)

PROGRAM/DATA MEMORY
(FLASH)

(Direct and Indirect Addressing)

0x00

0x7F

Upper 128 RAM
(Indirect Addressing

Only)0x80

0xFF Special Function
Registers

(Direct Addressing Only)

DATA MEMORY (RAM)

 32 General Purpose Registers
0x1F
0x20

0x2F
32 Bit-Addressable Bytes

Lower 128 RAM
(Direct and Indirect
Addressing)

0x30

INTERNAL DATA ADDRESS SPACE

EXTERNAL DATA ADDRESS SPACE

XRAM - 8192 Bytes
(accessible using MOVX instruction)

0x0000

0x1FFF

Same 8192 bytes as 0x0000 to 0x1FFF,
wrapped on 8192-byte boundaries

0x2000

0xFFFF

32 kB FLASH

(In-System
Programmable in 512

Byte Sectors)

0x0000

0x7FFF Lock Byte

0x7FFE

75 Rev 1.1

11.2. External Memory Interface Registers

f

Register 11.1. EMI0CN: External Memory Interface Control

Bit 7 6 5 4 3 2 1 0

Name PGSEL

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xB9

Bit Name Function

7:0 PGSEL XRAM Page Select.

The XRAM Page Select field provides the high byte of the 16-bit external data memory
address when using an 8-bit MOVX command, effectively selecting a 256-byte page of
RAM.
0x00: 0x0000 to 0x00FF
0x01: 0x0100 to 0x01FF
...
0xFE: 0xFE00 to 0xFEFF
0xFF: 0xFF00 to 0xFFFF

Rev 1.1 78

Register 12.2. REVID: Revision Identifcation

Bit 7 6 5 4 3 2 1 0

Name REVID

Type R

Reset X X X X X X X X

SFR Page = 0xF; SFR Address: 0xE2

Table 12.3. REVID Register Bit Descriptions

Bit Name Function

7:0 REVID Revision ID.

This read-only register returns the 8-bit revision ID.
00000000: Reserved.
00000001: Revision A
00000010-11111111: Reserved.

97 Rev 1.1

16.3. Stop Mode
Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter stop mode as soon as the instruction that
sets the bit completes execution. In Stop mode the precision internal oscillator and CPU are stopped; the state of
the low power oscillator and the external oscillator circuit is not affected. Each analog peripheral (including the
external oscillator circuit) may be shut down individually prior to entering stop mode. Stop mode can only be
terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins
program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the stop mode. The
Missing Clock Detector should be disabled if the CPU is to be put to in stop mode for longer than the MCD timeout.

Stop mode is a legacy 8051 power mode; it will not result in optimal power savings. Sleep or suspend mode will
provide more power savings if the MCU needs to be inactive for a long period of time.

Note: To ensure the MCU enters a low power state upon entry into stop mode, the one-shot circuit should be enabled by
clearing the BYPASS bit (FLSCL.6).

16.4. Suspend Mode
Setting the Suspend Mode Select bit (PMU0CF.6) causes the system clock to be gated off and all internal
oscillators disabled. All digital logic (timers, communication peripherals, interrupts, CPU, etc.) stops functioning
until one of the enabled wake-up sources occurs.

The following wake-up sources can be configured to wake the device from suspend mode:

SmaRTClock oscillator fail

SmaRTClock alarm

Port Match event

I2C0 address match

CS0 comparator threshold event
Note: Upon wake-up from suspend mode, PMU0 requires two system clocks in order to update the PMU0CF wake-up flags.

All flags will read back a value of '0' during the first two system clocks following a wake-up from suspend mode.
The state of the wake-up source's interrupt indicator bit is not valid until 6 clock cycles after the device returns from
suspend mode. If firmware needs to check a wake-up source's interrupt flag, firmware should insert instructions to wait 6
clock cycles between the call to enter suspend mode and the instruction that polls the interrupt flag.

In addition, a noise glitch on RST that is not long enough to reset the device will cause the device to exit suspend.
In order for the MCU to respond to the pin reset event, software must not place the device back into suspend mode
for a period of 15 µs. The PMU0CF register may be checked to determine if the wake-up was due to a falling edge
on the RST pin. If the wake-up source is not due to a falling edge on RST, there is no time restriction on how soon
software may place the device back into suspend mode. A 4.7 k pullup resistor to VDD is recommend for RST to
prevent noise glitches from waking the device.

16.5. Sleep Mode
Setting the Sleep Mode Select bit (PMU0CF.6) turns off the internal 1.8 V regulator (VREG0) and switches the
power supply of all on-chip RAM to the VDD pin (see Figure 16.2). Power to most digital logic on the chip is
disconnected; only PMU0 and the SmaRTClock remain powered. All analog peripherals (ADC0, External
Oscillator, etc.) should be disabled prior to entering sleep mode.

GPIO pins configured as digital outputs will retain their output state during sleep mode. They will maintain the same
current drive capability in sleep mode as they have in normal active mode.

GPIO pins configured as digital inputs can be used during sleep mode as wakeup sources using the port match
feature. They will maintain the same input level specifications in sleep mode as they have in normal active mode.

C8051F97x devices support a wakeup request for external devices. Upon exit from sleep mode, the wake-up
request signal is driven low, allowing other devices in the system to wake up from their low power modes. The
wakeup request signal is low when the MCU is awake and high when the MCU is asleep.

Rev 1.1 142

18.14.1. Pin Configuration for CS0 Measurements Method

A port pin selected as CS0 input should be configured as follows:

1. Set to analog mode input by clearing to 0 the corresponding bit in register PnMDIN.

2. Force the Priority Crossbar Decoder to skip the pin by setting 1 to the corresponding bit in register PnSKIP.

3. Enable or disable the auto-ground for the pin by clearing 0 or setting 1 to the corresponding bit in the port latch
(Pn), respectively. Auto-grounding means that the pin will be grounded when CS0 measurement is not being
performed on the pin.

4. Set to 1 the corresponding bits in AMUX0Pn that CS0 will be taking measurements on.

5. If only a single channel is to be sensed, setup the CS0 Multiplexer to select the appropriate pin for
measurement. If automatic scanning is used, setup CS0SS and CS0SE registers. If multiple channels are to be
binded, the CS0MC

Important Notes:

 When CS0 is active, ADC0 must not be enabled even if ADC0 is not going to perform an operation.

 Similarly, when ADC0 is active, CS0 should not be enabled.

See Section “26. Port I/O (Port 0, Port 1, Port 2, Port 3, Port 4, Port 5, Port 6, Crossbar, and Port Match)” on
page 277 for more Port I/O configuration details.

Rev 1.1 156

5:0 CS0MX CS0 Mux Channel Select.

Selects a single input channel for Capacitive Sense conversion.
000000: Select CS0.0.
000001: Select CS0.1.
000010: Select CS0.2.
000011: Select CS0.3.
000100: Select CS0.4.
000101: Select CS0.5.
000110: Select CS0.6.
000111: Select CS0.7.
001000: Select CS0.8.
001001: Select CS0.9.
001010: Select CS0.10.
001011: Select CS0.11.
001100: Select CS0.12.
001101: Select CS0.13.
001110: Select CS0.14.
001111: Select CS0.15.
010000: Select CS0.16.
010001: Select CS0.17.
010010: Select CS0.18.
010011: Select CS0.19.
010100: Select CS0.20.
010101: Select CS0.21.
010110: Select CS0.22.
010111: Select CS0.23.
011000: Select CS0.24.
011001: Select CS0.25.
011010: Select CS0.26.
011011: Select CS0.27.
011100: Select CS0.28.
011101: Select CS0.29.
011110: Select CS0.30.
011111: Select CS0.31.
100000: Select CS0.32.
100001: Select CS0.33.
100010: Select CS0.34.
100011: Select CS0.35.
100100: Select CS0.36.
100101: Select CS0.37.
100110: Select CS0.38.
100111: Select CS0.39.
101000: Select CS0.40.
101001: Select CS0.41.
101010: Select CS0.42.
101011-111111: Reserved.

Bit Name Function

183 Rev 1.1

Register 20.7. SFRPAGE: SFR Page

Bit 7 6 5 4 3 2 1 0

Name SFRPAGE

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = ALL; SFR Address: 0xA7

Table 20.8. SFRPAGE Register Bit Descriptions

Bit Name Function

7:0 SFRPAGE SFR Page.

Specifies the SFR Page used when reading, writing, or modifying special function regis-
ters.

Rev 1.1 253

25. SmaRTClock (Real Time Clock, RTC0)

C8051F97x devices include an ultra low power 32-bit SmaRTClock Peripheral (Real Time Clock) with alarm. The
SmaRTClock has a dedicated 32 kHz oscillator that can be configured for use with or without a crystal. No external
resistor or loading capacitors are required. The on-chip loading capacitors are programmable to 16 discrete levels
allowing compatibility with a wide range of crystals. The SmaRTClock can operate directly from a 0.9–3.6 V battery
voltage and remains operational even when the device goes into its lowest power down mode. C8051F97x devices
also support an ultra low power internal LFO that reduces sleep mode current.

The SmaRTClock allows a maximum of 36 hour 32-bit independent time-keeping when used with a 32.768 kHz
Watch Crystal. The SmaRTClock provides an Alarm and Missing SmaRTClock events, which could be used as
reset or wakeup sources. See Section “27. Reset Sources and Supply Monitor” on page 322 and Section
“16. Power Management” on page 94 for details on reset sources and low-power mode wake-up sources,
respectively.

Figure 25.1. SmaRTClock Block Diagram

SmaRTClock Oscillator

SmaRTClock

C
IP

-5
1

C
P

U

XTAL4 XTAL3

RTC0CN

CAPTUREn

RTC0XCF

RTC0XCN

ALARMn

RTC0ADR

RTC0DAT

Interface
RegistersInternal

Registers

SmaRTClock State Machine
Wake-Up

32-Bit
SmaRTClock

Timer

Programmable Load Capacitors
Power/
Clock
Mgmt

Interrupt

LFO

Rev 1.1 265

Register 25.2. RTC0DAT: RTC Data

Bit 7 6 5 4 3 2 1 0

Name RTC0DAT

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xAD

Bit Name Function

7:0 RTC0DAT RTC Data.

Holds data transferred to/from the internal RTC register selected by RTC0ADR.

Note: Read-modify-write instructions (orl, anl, etc.) should not be used on this register.

276 Rev 1.1

Register 25.13. ALARM3: RTC Alarm Programmed Value 3

Bit 7 6 5 4 3 2 1 0

Name ALARM3

Type RW

Reset 0 0 0 0 0 0 0 0

Indirect Address: 0x0B

Bit Name Function

7:0 ALARM3 RTC Alarm Programmed Value 3.

The ALARM3-ALARM0 registers are used to set an alarm event for the RTC timer. The
RTC alarm should be disabled (RTC0AEN=0) when updating these registers.

329 Rev 1.1

28.1. Signal Descriptions
The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

28.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used
to serially transfer data from the master to the slave. This signal is an output when SPI0 is operating as a master
and an input when SPI0 is operating as a slave. Data is transferred most-significant bit first. When configured as a
master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire mode.

28.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is
used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operating as a
master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit first. The MISO pin
is placed in a high-impedance state when the SPI module is disabled and when the SPI operates in 4-wire mode as
a slave that is not selected. When acting as a slave in 3-wire mode, MISO is always driven by the MSB of the shift
register.

28.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to
synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 generates this
signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is not selected
(NSS = 1) in 4-wire slave mode.

28.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0 bits in the
SPI0CN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is
disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select signal
is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-point
communication between a master and one slave.

2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled
as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a master, a 1-to-
0 transition of the NSS signal disables the master function of SPI0 so that multiple master devices can be
used on the same SPI bus.

3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an output.
The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration should only
be used when operating SPI0 as a master device.

See Figure 28.2, Figure 28.3, and Figure 28.4 for typical connection diagrams of the various operational modes.
Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or 3-wire slave
mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will be mapped to a pin
on the device.

371 Rev 1.1

30.5.2. I2C Read Sequence (CPU mode)

Figure 30.6 shows the details of how the I2C0STAT status bits change during an I2C Read data transfer.

Figure 30.6. Typical I2C Read Sequence in CPU Mode

Note that the I2C Master MUST always generate a NACK before it can generate a repeated START bit or a STOP
bit. This is because the NACK will cause the I2C Slave to release the SDA line for the I2C Master to generate the
START or STOP bit.

30.5.3. I2C Write Sequence (DMA mode)

Figure 30.7 shows the details of how the I2C0STAT status bits change during an I2C Write data transfer.

SLA A

I2C0 module – CPU mode – clock stretch – Read

Sleep Active

S ADB0 ADB1 NDB2 Sr SLA A NDB3 P

In
t

1

2 3

In
t

4

In
t

In
t

In
t

In
t

In
t

1 SLA+R wakes CPU from sleep. SLA is ACK if BUSY was 0.

2 INT generated. CPU writes DB0 into I2C0DOUT. SCL is held until CPU clears I2C0INT. CPU clears I2C0INT, releasing SCL

3 SCL held low; NACK bit reads ‘0’; CPU writes DB1 into I2C0DOUT and clears I2C0INT

4
NACK switches I2C slave to IDLE state and generates INT. Any following DB are ignored. If RpStart follows after NACK, the
START sticky bit will be set, but no interrupt.

5 STOP generates interrupt. No Clock Stretch. CPU clears I2C0INT

5

a b c d e f g

a I2C0STAT = x1101001; CPU clears START. CPU writes DB0 into I2C0DOUT and clears I2C0INT

b I2C0STAT = x1100001; CPU writes DB1 into I2C0DOUT and clears I2C0INT

c I2C0STAT = x1100001; CPU writes DB2 into I2C0DOUT and clears I2C0INT

d I2C0STAT = x0110001; CPU prepares for STOP or RpStart and clears I2C0INT and clears NACK

e

f

g

I2C0STAT = x0110001; CPU prepares for STOP or RpStart and clears I2C0INT and clears NACK

I2C0STAT = x0100100; CPU clears STOP and clears I2C0INT

I2C0STAT = x1101001; CPU clears START. CPU writes DB3 into I2C0DOUT and clears I2C0INT

I2C0 int

I2C0 int

I2C0 int

I2C0 int

I2C0 int

I2C0 int

I2C0 int

* At a, b, c, d, e, f : Bits are set/cleared at 9th SCL falling edge. CPU clears I2C0INT to release SCL

R R

N
o

In
t

x

N
o

In
t

x

x I2C0STAT = x1001000 at 8th SCL rising edgeNo int

S = START
P = STOP
A = ACK
N = NACK
R = Read
W = Write
Sr = repeated START
Shaded blocks are generated by
Slave device

Rev 1.1 372

Figure 30.7. Typical I2C Write Sequence in DMA Mode

SLA A

I2C0 module – DMA mode – clock stretch – Write

Sleep Active

S ADB0 ADB1 ADB2 Sr SLA A ADB3 P

In
t

1

2 3

N
o

In
t

N
o

In
t

In
t

In
t

1 SLA+W wakes CPU from sleep mode.

2 INT generated. CPU configures DMA for I2C Write. SCL is held low until CPU clears I2C0INT.

3 DMA fetches DB0 from I2C0DIN and asserts i2c_dma_ack which releases SCL

4 DMA generates “done” interrupt. SCL is released by assertion of i2c_dma_ack. CPU disables DMA for I2C Write.

STOP generates interrupt. No Clock Stretch. CPU clears I2C0INT5

4 5

a b c f g

a I2C0STAT = x1101010; CPU clears START; CPU configures DMA for 4 bytes of I2C Write transfer and clears I2C0INT

b

c

f

g

h

I2C0STAT = x1000000; DMA transfers DB0 from I2C0DIN to XRAM

I2C0STAT = x1000000; DMA transfers DB1 from I2C0DIN to XRAM

I2C0STAT = x1101010; CPU clears START; CPU configures DMA for I2C Write and clears I2C0INT

In
t

h

I2C0STAT = x0100100; CPU clears STOP and I2C0INT.

I2C0STAT = x1000000; DMA transfers DB3 from I2C0DIN to XRAM. CPU services DMA done interrupt

No int

No int

DMA int

I2C0 int

I2C0 int

I2C0 int

* At a, f: Bits are set at 9th SCL falling edge. CPU clears I2C0INT to release SCL
* At b, c, d, f, g: i2c_dma_req asserted on 9th SCL falling edge. I2c_dma_ack releases SCL

W W
N

o
In

t

x

N
o

In
t

x

In
t

e

N
o

In
t

d

x I2C0STAT = x1001000 at 8th SCL rising edgeNo int

d I2C0STAT = x1000000; DMA transfers DB2 from I2C0DIN to XRAMNo int

e I2C0STAT = x0100000; CPU services end of transaction and clears I2C0INTI2C0 int

S = START
P = STOP
A = ACK
N = NACK
R = Read
W = Write
Sr = repeated START
Shaded blocks are generated by
Slave device

Rev 1.1 380

31. Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced
baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section
“31.1. Enhanced Baud Rate Generation” on page 380). Received data buffering allows UART0 to start reception of
a second incoming data byte before software has finished reading the previous data byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0). The
single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access
the transmit register. Reads of SBUF0 always access the buffered receive register; it is not possible to
read data from the transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI is set in SCON0),
or a data byte has been received (RI is set in SCON0). The UART0 interrupt flags are not cleared by hardware
when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing soft-
ware to determine the cause of the UART0 interrupt (transmit complete or receive complete).

Figure 31.1. UART0 Block Diagram

31.1. Enhanced Baud Rate Generation
The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the
RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 31.2), which is not user-accessible. Both TX
and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when
Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START
condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of
the TX Timer state.

UART0

SBUF (8 LSBs)

Input Shift
Register

RX
Baud Rate
Generator
(Timer 1)

START
Detection

Output Shift
Register

TX

TB8
(9th bit)

RB8
(9th bit)

Control /
Configuration

TI, RI
Interrupts

TX Clk

RX Clk

390 Rev 1.1

32.1. Timer 0 and Timer 1
Timer 0 and Timer 1 are each implemented as a16-bit register accessed as two separate bytes: a low byte (TL0 or
TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and
Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register.
Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register. Both counter/timers operate in one of
four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the Counter/Timer Mode register
(TMOD). Each timer can be configured independently for the operating modes described below.

Rev 1.1 395

32.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers operate in auto-
reload mode as shown in Figure 32.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload
value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when
configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, SmaRTClock divided by 8 or
Comparator 0 output. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the
clock defined by the Timer 2 External Clock Select bits (T2XCLK[1:0] in TMR2CN), as follows:

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from
0xFF to 0x00. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If
Timer 2 interrupts are enabled and TF2LINT (TMR2CN.5) is set, an interrupt is generated each time either TMR2L
or TMR2H overflows. When TF2LINT is enabled, software must check the TF2H and TF2L flags to determine the
source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be man-
ually cleared by software.

Figure 32.5. Timer 2 8-Bit Mode Block Diagram

T2MH T2XCLK[1:0] TMR2H Clock
Source

T2ML T2XCLK[1:0] TMR2L Clock
Source

0 00 SYSCLK / 12 0 00 SYSCLK / 12
0 01 SmaRTClock / 8 0 01 SmaRTClock / 8
0 10 Reserved 0 10 Reserved
0 11 Comparator 0 0 11 Comparator 0
1 X SYSCLK 1 X SYSCLK

TCLK

TMOD
T
1
M
1

T
1
M
0

C
/
T
1

G
A
T
E
1

G
A
T
E
0

C
/
T
0

T
0
M
1

T
0
M
0

 T
C

O
N

TF0
TR0

TR1
TF1

IE1
IT1
IE0
IT0

Interrupt
TL0

(8 bits)

ReloadTH0
(8 bits)

0

1

0

1SYSCLK

Pre-scaled Clock

IT01CF
I
N
1
S
L
1

I
N
1
S
L
0

I
N
1
S
L
2

I
N
1
P
L

I
N
0
P
L

I
N
0
S
L
2

I
N
0
S
L
1

I
N
0
S
L
0

TR0

GATE0

IN0PL
XOR

/INT0

T0

Crossbar

CKCON
T
3
M
H

T
3
M
L

S
C
A
0

S
C
A
1

T
0
M

T
2
M
H

T
2
M
L

T
1
M

Rev 1.1 411

Register 32.10. TMR2RLH: Timer 2 Reload High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2RLH

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xCB

Table 32.12. TMR2RLH Register Bit Descriptions

Bit Name Function

7:0 TMR2RLH Timer 2 Reload High Byte.

When operating in one of the auto-reload modes, TMR2RLH holds the reload value for
the high byte of Timer 2 (TMR2H). When operating in capture mode, TMR2RLH is the
captured value of TMR2H.

425 Rev 1.1

33.3.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register
(PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to
logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not
automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by
software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare
registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to
PCA0CPHn sets ECOMn to 1.

Figure 33.5. PCA Software Timer Mode Diagram

Match16-bit Comparator

PCA0H

PCA0CPHn

Enable

PCA0LPCA
Timebase

PCA0CPLn

0 0 0 0

0

1

x

ENB

ENB

0

1

Write to
PCA0CPLn

Write to
PCA0CPHn

Reset

PCA0CPMn
P
W
M
1
6
n

E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

x

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

PCA Interrupt

Rev 1.1 446

Register 33.14. PCA0CPH2: PCA Channel 2 Capture Module High Byte

Bit 7 6 5 4 3 2 1 0

Name PCA0CPH2

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xEC

Table 33.17. PCA0CPH2 Register Bit Descriptions

Bit Name Function

7:0 PCA0CPH2 PCA Channel 2 Capture Module High Byte.

The PCA0CPH2 register holds the high byte (MSB) of the 16-bit capture module. This
register address also allows access to the high byte of the corresponding PCA channel's
auto-reload value for 9 to 11-bit PWM mode. The ARSEL bit in register PCA0PWM con-
trols which register is accessed.

Note: A write to this register will set the module's ECOM bit to a 1.

Rev 1.1 447

34. C2 Interface

C8051F97x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and
in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal
(C2CK) and a bidirectional C2 data signal (C2D) to transfer information between the device and a host system.
Details on the C2 protocol can be found in the C2 Interface Specification.

34.1. C2 Pin Sharing
The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and flash
programming may be performed. C2CK is shared with the RST pin, while the C2D signal is shared with a port I/O
pin. This is possible because C2 communication is typically performed when the device is in the halt state, where
all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely “borrow” the
C2CK and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the
user application. A typical isolation configuration is shown in Figure 34.1.

Figure 34.1. Typical C2 Pin Sharing

The configuration in Figure 34.1 assumes the following:

1. The user input (b) cannot change state while the target device is halted.

2. The RST pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

C2D

C2CK/Reset (a)

Input (b)

Output (c)

C2 Interface Master

C8051Fxxx

