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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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5.   QFN-48 Package Specifications

Figure 5.1. QFN-48 Package Drawing (6x6 mm)

Table 5.1. QFN-48 Package Dimensions

Dimension Min Typ Max Dimension Min Typ Max

A 0.50 0.55 0.60 D2 3.35 3.50 3.65

A1 0.00 0.02 0.05 L 0.30 0.40 0.50

b 0.15 0.20 0.25 aaa 0.10

D 6.00 BSC bbb 0.07

D2 3.35 3.50 3.65 ccc 0.10

e 0.40 BSC ddd 0.05

E 6.00 BSC eee 0.08

Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body 

Components.
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8.1.  Program Memory
The CIP-51 core has a 64 kB program memory space. The C8051F97x family implements 32 kB, or 16 kB of this 
program memory space as in-system, re-programmable flash memory. The last address in the flash block (0x7FFF 
on 32 kB devices and 0x3FFF on 16 kB devices) serves as a security lock byte for the device, and provides read, 
write and erase protection. Addresses above the lock byte within the 64 kB address space are reserved.

Figure 8.2. Flash Program Memory Map

8.1.1. MOVX Instruction and Program Memory

The MOVX instruction in an 8051 device is typically used to access external data memory. On the C8051F97x 
devices, the MOVX instruction is normally used to read and write on-chip XRAM, but can be re-configured to write 
and erase on-chip flash memory space. MOVC instructions are always used to read flash memory, while MOVX 
write instructions are used to erase and write flash. This flash access feature provides a mechanism for the 
C8051F97x to update program code and use the program memory space for non-volatile data storage. Refer to 
Section “10. Flash Memory” on page 65 for further details.

8.2.  Data Memory
The C8051F97x device family includes up to 512 bytes of RAM data memory. 256 bytes of this memory is mapped 
into the internal RAM space of the 8051. On devices with 512 bytes total RAM, 256 additional bytes of memory are 
available as on-chip “external” memory. The data memory map is shown in Figure 8.1 for reference.

8.2.1. Internal RAM

There are 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 
128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect 
addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are 
addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The 
next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or as 128 bit locations accessible 
with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same 
address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The 
addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU 
accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will 
access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data 
memory. Figure 8.1 illustrates the data memory organization of the C8051F97x.
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12.  Device Identification and Unique Identifier

The C8051F97x has SFRs that identify the device family, derivative, and revision. These SFRs can be read by 
firmware at runtime to determine the capabilities of the MCU that is executing code. This allows the same firmware 
image to run on MCUs with different memory sizes and peripherals, and dynamically change functionality to suit 
the capabilities of that MCU.

In addition to the device identification registers, a 128-bit unique identifier (UID) is preprogrammed into all devices. 
The UID resides in the last sixteen bytes of XRAM. The UID can be read by firmware using MOVX instructions and 
through the debug port.

Firmware can overwrite the UID during normal operation, and the bytes in memory will be automatically reinitialized 
with the UID value after any device reset. Firmware using this area of memory should always initialize the memory 
to a known value, as any previous data stored at these locations will be overwritten and not retained through a 
reset.

Table 12.1. UID Implementation Information

Device External Memory (XRAM) Addresses

C8051F970
C8051F971
C8051F972

(MSB) 0x1FFF, 0x1FFE, 0x1FFD, 0x1FFC,
0x1FFB, 0x1FFA, 0x1FF9, 0x1FF8,
0x1FF7, 0x1FF6, 0x1FF5, 0x1FF4,
0x1FF3, 0x1FF2, 0x1FF1, 0x1FF0

 

(LSB)

C8051F973
C8051F974
C8051F975

(MSB) 0x0FFF, 0x0FFE, 0x0FFD, 0x0FFC,
0x0FFB, 0x0FFA, 0x0FF9, 0x0FF8,
0x0FF7, 0x0FF6, 0x0FF5, 0x0FF4,
0x0FF3, 0x0FF2, 0x0FF1, 0x0FF0

 

(LSB)
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16.10.  Power Control Registers

Register 16.1. PCON: Power Control

Bit 7 6 5 4 3 2 1 0

Name GF5 GF4 GF3 GF2 GF1 GF0 STOP IDLE

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = ALL; SFR Address: 0x87

Bit Name Function

7 GF5 General Purpose Flag 5.

This flag is a general purpose flag for use under firmware control.

6 GF4 General Purpose Flag 4.

This flag is a general purpose flag for use under firmware control.

5 GF3 General Purpose Flag 3.

This flag is a general purpose flag for use under firmware control.

4 GF2 General Purpose Flag 2.

This flag is a general purpose flag for use under firmware control.

3 GF1 General Purpose Flag 1.

This flag is a general purpose flag for use under firmware control.

2 GF0 General Purpose Flag 0.

This flag is a general purpose flag for use under firmware control.

1 STOP Stop Mode Select.

Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0.

0 IDLE Idle Mode Select.

Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0.
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18.11.  CS0 Conversion Accumulator
CS0 can be configured to accumulate multiple conversions on an input channel. The number of samples to be 
accumulated is configured using the CS0ACU2:0 bits (CS0CF2:0). The accumulator can accumulate 1, 4, 8, 16, 
32, or 64 samples. After the defined number of samples have been accumulated, the result is divided by either 1, 4, 
8, 16, 32, or 64 (depending on the CS0ACU[2:0] setting) and copied to the CS0DH:CS0DL SFRs. 

Table 18.1. Operation with Auto-Scan and Accumulate
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d CS0 Conversion 
Complete Interrupt 

Behavior

CS0 Greater Than Interrupt 
Behavior

CS0MX Behavior

N N CS0INT Interrupt 
serviced after 1 con-
version completes

Interrupt serviced after 1 conver-
sion completes if value in 

CS0DH:CS0DL is greater than 
CS0THH:CS0THL

CS0MX unchanged.

N Y CS0INT Interrupt 
serviced after M 

conversions com-
plete

Interrupt serviced after M conver-
sions complete if value in 

CS0DH:CS0DL (post accumu-
late and divide) is greater than 

CS0THH:CS0THL

CS0MX unchanged.

Y N CS0INT Interrupt 
serviced after 1 con-
version completes

Interrupt serviced after conver-
sion completes if value in 

CS0DH:CS0DL is greater than 
CS0THH:CS0THL;
Auto-Scan stopped

If greater-than comparator detects conversion 
value is greater than CS0THH:CS0THL, 

CS0MX is left unchanged; otherwise, CS0MX 
updates to the next channel (CS0MX + 1) and 
wraps back to CS0SS after passing CS0SE.

Y Y CS0INT Interrupt 
serviced after M 

conversions com-
plete

Interrupt serviced after M conver-
sions complete if value in 

CS0DH:CS0DL (post accumu-
late and divide) is greater than 
CS0THH:CS0THL; Auto-Scan 

stopped

If greater-than comparator detects conversion 
value is greater than CS0THH:CS0THL, 

CS0MX is left unchanged; otherwise, CS0MX 
updates to the next channel (CS0MX + 1) and 
wraps back to CS0SS after passing CS0SE.

Note: M = Accumulator setting (1x, 4x, 8x, 16x, 32x, 64x).
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010110 CS0.22 P2.6 P2.6 Reserved

010111 CS0.23 P2.7 P2.7 Reserved

011000 CS0.24 P3.0 P3.0 Reserved

011001 CS0.25 P3.1 P3.1 Reserved

011010 CS0.26 P3.2 P3.2 Reserved

011011 CS0.27 P3.3 Reserved Reserved

011100 CS0.28 P3.4 Reserved Reserved

011101 CS0.29 P3.5 Reserved Reserved

011110 CS0.30 P3.6 Reserved Reserved

011111 CS0.31 P3.7 Reserved Reserved

100000 CS0.32 P4.0 Reserved Reserved

100001 CS0.33 P4.1 Reserved Reserved

100010 CS0.34 P4.2 Reserved Reserved

100011 CS0.35 P4.3 Reserved Reserved

100100 CS0.36 P4.4 Reserved Reserved

100101 CS0.37 P4.5 Reserved Reserved

100110 CS0.38 P4.6 Reserved Reserved

100111 CS0.39 P4.7 Reserved Reserved

101000 CS0.40 P5.0 Reserved Reserved

101001 CS0.41 P5.1 Reserved Reserved

101010 CS0.42 P5.2 P5.2 P5.2

101011-111111 Reserved Reserved

Table 18.2. CS0 Input Multiplexer Channels (Continued)

ADC0MX Setting Signal Name QFN-48 Pin Name QFN-32 Pin Name QFN-24 Pin Name
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Register 18.3. CS0DH: Capacitive Sense 0 Data High Byte

Bit 7 6 5 4 3 2 1 0

Name CS0DH

Type R

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xEE

Bit Name Function

7:0 CS0DH CS0 Data High Byte.

Stores the high byte of the last completed 16-bit Capacitive Sense conversion.
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Register 21.8. DMA0NBAL: Memory Base Address Low

Bit 7 6 5 4 3 2 1 0

Name NBAL

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xC9

Bit Name Function

7:0 NBAL Memory Base Address Low.

This field sets low byte of the channel memory base address. This base address is the 
starting channel XRAM address if the channel's address offset DMA0NAO is reset to 0.

Note: This register is a DMA channel indirect register. Select the desired channel first using the DMA0SEL register.
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22.5.  MCU Mode Operation
MCU mode operation for the MAC is enabled when there is no DMA channel enabled for transferring data to or 
from any MAC0 register. When MCU mode operation is active, the MAC inputs and results are transferred to or 
from XRAM via software access to the SFRs. During MCU mode operation, a MAC operation is triggered by 
software writing 1 to the BUSY bit in the MAC0STA register. When the MAC operation has completed, hardware 
clears the BUSY bit to 0. The typical sequence of MCU mode operations is as follows:

1.  Firmware disables all MAC-specific DMA channels.

2.  Firmware initializes the control registers (MAC0CF0, MAC0CF1, MAC0CF2, MAC0ITER) appropriately.

3.  Firmware writes all the operand values:

Update MAC0A, MAC0B
Setup accumulator either by clearing it (via setting the CLRACC bit) or writing directly to MAC0ACC0-3 and 

MAC0OVR

4.  Firmware writes 1 to the BUSY bit.

5.  MAC0 completes the MAC operation in 1 SYSCLK cycle, clears BUSY bit to 0, and sets both the MACINT 
and ACCRDY bits to 1.

22.6.  DMA Mode Operation
DMA mode operation is a powerful mode that can be used process large array of data using the MAC0 module. 
Alternatively, it can be used to implement digital filters efficiently. DMA mode operation for the MAC0 is enabled 
when there is at least one DMA channel enabled for transferring data to or from any MAC0 register.

During DMA mode operation, the BUSY bit must be set to 1 to generate DMA requests. The complete flowchart of 
DMA mode operation is given in Figure 22.4.
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22.11.3. Initializing Memory Block Using DMA0 and MAC0

This example demonstrates a sophisticated example of initializing a block of memory in XRAM with value 0x55.

// Memory block to initialize
volatile SEGMENT_VARIABLE(memblock[500], U8, SEG_XDATA);

SFRPAGE = DMA0_PAGE; // Change Page register to DMA0 Page
DMA0SEL = 0; // Select DMA channel 0
DMA0EN &= ~0x01; // Disable DMA channel 0
DMA0INT &= ~0x01; // Clear interrupt bit for channel 0
DMA0NCF = 0x05; // Select MAC0 Accumulator to XRAM transfer
DMA0NCF |= (LSB << 4); // Use LSB to spec endian bit for compiler independence
DMA0NBA = (U16)&memblock[0]; // XRAM base address
DMA0NAO = 0; // XRAM offset
DMA0NSZ = 500; // Transfer 500 bytes
DMA0EN |= 0x01; // Enable DMA channel 0

// No need to change page register as MAC0 and DMA0 registers are in same page.
MAC0CF0 = 0x28; // Clear accumulator, Multiply Only mode
MAC0CF1 = 0x0A; // Select unsigned mode, constant A and constant B
MAC0CF2 = 0x04; // Disable rounding, saturation and alignment logic

// 2-byte DMA transaction from MAC0 Accumulator to XRAM
MAC0A = 1; // Load MAC0A with 1 decimal
MAC0B = 0x5555; // Load MAC0B with 0x5555 hexadecimal
MAC0ITER = 1; // Set to 1 iteration
MAC0STA = 1; // Set BUSY to start MAC operation

while (!(DMA0INT & 1)); // Poll for DMA Channel 0 completion interrupt

// All 500 bytes in memblock[] will be initialized to 0x55
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Register 22.8. MAC0BH: Operand B High Byte

Bit 7 6 5 4 3 2 1 0

Name MAC0BH

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xAF

Bit Name Function

7:0 MAC0BH MAC0 B High Byte.

This field is the upper 8 bits of the MAC0 B input.
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Register 26.7. P0MDOUT: Port 0 Output Mode

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0xF; SFR Address: 0xD9

Table 26.10. P0MDOUT Register Bit Descriptions

Bit Name Function

7 B7 Port 0 Bit 7 Output Mode.

0: P0.7 output is open-drain.
1: P0.7 output is push-pull.

6 B6 Port 0 Bit 6 Output Mode.

0: P0.6 output is open-drain.
1: P0.6 output is push-pull.

5 B5 Port 0 Bit 5 Output Mode.

0: P0.5 output is open-drain.
1: P0.5 output is push-pull.

4 B4 Port 0 Bit 4 Output Mode.

0: P0.4 output is open-drain.
1: P0.4 output is push-pull.

3 B3 Port 0 Bit 3 Output Mode.

0: P0.3 output is open-drain.
1: P0.3 output is push-pull.

2 B2 Port 0 Bit 2 Output Mode.

0: P0.2 output is open-drain.
1: P0.2 output is push-pull.

1 B1 Port 0 Bit 1 Output Mode.

0: P0.1 output is open-drain.
1: P0.1 output is push-pull.

0 B0 Port 0 Bit 0 Output Mode.

0: P0.0 output is open-drain.
1: P0.0 output is push-pull.
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Register 26.13. P1MDIN: Port 1 Input Mode

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 1 1 1 1 1 1 1 1

SFR Page = 0xF; SFR Address: 0xED

Table 26.16. P1MDIN Register Bit Descriptions

Bit Name Function

7 B7 Port 1 Bit 7 Input Mode.

0: P1.7 pin is configured for analog mode.
1: P1.7 pin is configured for digital mode.

6 B6 Port 1 Bit 6 Input Mode.

0: P1.6 pin is configured for analog mode.
1: P1.6 pin is configured for digital mode.

5 B5 Port 1 Bit 5 Input Mode.

0: P1.5 pin is configured for analog mode.
1: P1.5 pin is configured for digital mode.

4 B4 Port 1 Bit 4 Input Mode.

0: P1.4 pin is configured for analog mode.
1: P1.4 pin is configured for digital mode.

3 B3 Port 1 Bit 3 Input Mode.

0: P1.3 pin is configured for analog mode.
1: P1.3 pin is configured for digital mode.

2 B2 Port 1 Bit 2 Input Mode.

0: P1.2 pin is configured for analog mode.
1: P1.2 pin is configured for digital mode.

1 B1 Port 1 Bit 1 Input Mode.

0: P1.1 pin is configured for analog mode.
1: P1.1 pin is configured for digital mode.

0 B0 Port 1 Bit 0 Input Mode.

0: P1.0 pin is configured for analog mode.
1: P1.0 pin is configured for digital mode.

Note: Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
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Register 26.28. P4: Port 4 Pin Latch

Bit 7 6 5 4 3 2 1 0

Name B7 B6 B5 B4 B3 B2 B1 B0

Type RW RW RW RW RW RW RW RW

Reset 1 1 1 1 1 1 1 1

SFR Page = 0x0; SFR Address: 0xE2

Table 26.31. P4 Register Bit Descriptions

Bit Name Function

7 B7 Port 4 Bit 7 Latch.

0: P4.7 is low. Set P4.7 to drive low.
1: P4.7 is high. Set P4.7 to drive or float high.

6 B6 Port 4 Bit 6 Latch.

0: P4.6 is low. Set P4.6 to drive low.
1: P4.6 is high. Set P4.6 to drive or float high.

5 B5 Port 4 Bit 5 Latch.

0: P4.5 is low. Set P4.5 to drive low.
1: P4.5 is high. Set P4.5 to drive or float high.

4 B4 Port 4 Bit 4 Latch.

0: P4.4 is low. Set P4.4 to drive low.
1: P4.4 is high. Set P4.4 to drive or float high.

3 B3 Port 4 Bit 3 Latch.

0: P4.3 is low. Set P4.3 to drive low.
1: P4.3 is high. Set P4.3 to drive or float high.

2 B2 Port 4 Bit 2 Latch.

0: P4.2 is low. Set P4.2 to drive low.
1: P4.2 is high. Set P4.2 to drive or float high.

1 B1 Port 4 Bit 1 Latch.

0: P4.1 is low. Set P4.1 to drive low.
1: P4.1 is high. Set P4.1 to drive or float high.

0 B0 Port 4 Bit 0 Latch.

0: P4.0 is low. Set P4.0 to drive low.
1: P4.0 is high. Set P4.0 to drive or float high.

Notes:
1. Writing this register sets the port latch logic value for the associated I/O pins configured as digital I/O.
2. Reading this register returns the logic value at the pin, regardless if it is configured as output or input.
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29.3.5. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 µs, the bus is 
designated as free. When the SMB0FTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA 
remain high for more than 10 SMBus clock source periods (as defined by the timer configured for the SMBus clock 
source). If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. A 
clock source is required for free timeout detection, even in a slave-only implementation.

29.4.  Using the SMBus
The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for 
serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following 
application-independent features:

Byte-wise serial data transfers

Clock signal generation on SCL (Master Mode only) and SDA data synchronization

Timeout/bus error recognition, as defined by the SMB0CF configuration register

START/STOP timing, detection, and generation

Bus arbitration

Interrupt generation

Status information

Optional hardware recognition of slave address and automatic acknowledgement of address/data

SMBus interrupts are generated for each data byte or slave address that is transferred. When hardware 
acknowledgement is disabled, the point at which the interrupt is generated depends on whether the hardware is 
acting as a data transmitter or receiver. When a transmitter (i.e., sending address/data, receiving an ACK), this 
interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data 
(i.e., receiving address/data, sending an ACK), this interrupt is generated before the ACK cycle so that software 
may define the outgoing ACK value. If hardware acknowledgement is enabled, these interrupts are always 
generated after the ACK cycle. See Section 29.5 for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end 
of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control register) to find 
the cause of the SMBus interrupt. Table 29.5 provides a quick SMB0CN decoding reference.

29.4.1. SMBus Configuration Register

The SMBus Configuration register (SMB0CF) is used to enable the SMBus Master and/or Slave modes, select the 
SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is set, the SMBus is 
enabled for all master and slave events. Slave events may be disabled by setting the INH bit. With slave events 
inhibited, the SMBus interface will still monitor the SCL and SDA pins; however, the interface will NACK all 
received addresses and will not generate any slave interrupts. When the INH bit is set, all slave events will be 
inhibited following the next START (interrupts will continue for the duration of the current transfer).

Table 29.1. SMBus Clock Source Selection

SMBCS SMBus0 Clock Source

00 Timer 0 Overflow

01 Timer 1 Overflow

10 Timer 2 High Byte Overflow

11 Timer 2 Low Byte Overflow
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30.5.2. I2C Read Sequence (CPU mode)

Figure 30.6 shows the details of how the I2C0STAT status bits change during an I2C Read data transfer.

Figure 30.6. Typical I2C Read Sequence in CPU Mode

Note that the I2C Master MUST always generate a NACK before it can generate a repeated START bit or a STOP 
bit. This is because the NACK will cause the I2C Slave to release the SDA line for the I2C Master to generate the 
START or STOP bit.

30.5.3. I2C Write Sequence (DMA mode)

Figure 30.7 shows the details of how the I2C0STAT status bits change during an I2C Write data transfer.
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I2C0 module – CPU mode – clock stretch – Read
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1 SLA+R wakes CPU from sleep.  SLA is ACK if BUSY was 0.

2 INT generated.  CPU writes DB0 into I2C0DOUT.  SCL is held until CPU clears I2C0INT. CPU clears I2C0INT, releasing SCL

3 SCL held low; NACK bit reads ‘0’; CPU writes DB1 into I2C0DOUT and clears I2C0INT

4
NACK switches I2C slave to IDLE state and generates INT. Any following DB are ignored. If RpStart follows after NACK, the 
START sticky bit will be set, but no interrupt.

5 STOP generates interrupt.  No Clock Stretch.  CPU clears I2C0INT

5

a b c d e f g

a I2C0STAT = x1101001; CPU clears START. CPU writes DB0 into I2C0DOUT and clears I2C0INT

b I2C0STAT = x1100001; CPU writes DB1 into I2C0DOUT and clears I2C0INT

c I2C0STAT = x1100001; CPU writes DB2 into I2C0DOUT and clears I2C0INT

d I2C0STAT = x0110001; CPU prepares for STOP or RpStart and clears I2C0INT and clears NACK

e

f

g

I2C0STAT = x0110001; CPU prepares for STOP or RpStart and clears I2C0INT and clears NACK

I2C0STAT = x0100100; CPU clears STOP and clears I2C0INT

I2C0STAT = x1101001; CPU clears START. CPU writes DB3 into I2C0DOUT and clears I2C0INT

I2C0 int

I2C0 int

I2C0 int

I2C0 int

I2C0 int

I2C0 int

I2C0 int

* At a, b, c, d, e, f : Bits are set/cleared at 9th SCL falling edge.  CPU clears I2C0INT to release SCL

R R

N
o 

In
t

x

N
o 

In
t

x

x I2C0STAT = x1001000 at 8th SCL rising edgeNo int

S = START
P = STOP
A = ACK
N = NACK
R = Read
W = Write
Sr = repeated START
Shaded blocks are generated by 
Slave device
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Register 32.11. TMR2L: Timer 2 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2L

Type RW

Reset 0 0 0 0 0 0 0 0

SFR Page = 0x0; SFR Address: 0xCC

Table 32.13. TMR2L Register Bit Descriptions

Bit Name Function

7:0 TMR2L Timer 2 Low Byte.

In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8-bit 
mode, TMR2L contains the 8-bit low byte timer value.
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33.1.  PCA Counter/Timer
The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 
16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H 
into a “snapshot” register; the following PCA0H read accesses this “snapshot” register. Reading the PCA0L 
Register first guarantees an accurate reading of the entire 16-bit PCA0 counter. Reading PCA0H or PCA0L 
does not disturb the counter operation. The CPS2–CPS0 bits in the PCA0MD register select the timebase for the 
counter/timer as shown in Table 33.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to 
logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 
enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the 
CPU vectors to the interrupt service routine, and must be cleared by software. Clearing the CIDL bit in the 
PCA0MD register allows the PCA to continue normal operation while the CPU is in Idle mode.

Figure 33.2. PCA Counter/Timer Block Diagram

Table 33.1. PCA Timebase Input Options

CPS2 CPS1 CPS0 Timebase

0 0 0 System clock divided by 12
0 0 1 System clock divided by 4
0 1 0 Timer 0 overflow
0 1 1 High-to-low transitions on ECI (max rate = system clock divided by 4)
1 0 0 System clock
1 0 1 External oscillator source divided by 81

1 1 0 SmaRTClock oscillator source divided by 82

1 1 1 Reserved
Notes:

1. External oscillator source divided by 8 is synchronized with the system clock.
2. SmaRTClock oscillator source divided by 8 is synchronized with the system clock.
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33.2.  PCA0 Interrupt Sources
Figure 33.3 shows a diagram of the PCA interrupt tree. There are five independent event flags that can be used to 
generate a PCA0 interrupt. They are: the main PCA counter overflow flag (CF), which is set upon a 16-bit overflow 
of the PCA0 counter, an intermediate overflow flag (COVF), which can be set on an overflow from the 8th, 9th, 
10th, or 11th bit of the PCA0 counter, and the individual flags for each PCA channel (CCF0, CCF1, and CCF2), 
which are set according to the operation mode of that module. These event flags are always set when the trigger 
condition occurs. Each of these flags can be individually selected to generate a PCA0 interrupt, using the 
corresponding interrupt enable flag (ECF for CF, ECOV for COVF, and ECCFn for each CCFn). PCA0 interrupts 
must be globally enabled before any individual interrupt sources are recognized by the processor. PCA0 interrupts 
are globally enabled by setting the EA bit and the EPCA0 bit to logic 1.

Figure 33.3. PCA Interrupt Block Diagram
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Equation 33.5. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCA0L overflows while there is a match between PCA0CPH2 and PCA0H. 
Software may force a WDT reset by writing a 1 to the CCF2 flag (PCA0CN.2) while the WDT is enabled.

33.4.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

1. Disable the WDT by writing a 0 to the WDTE bit.

2. Select the desired PCA clock source (with the CPS2–CPS0 bits).

3. Load PCA0CPL2 with the desired WDT update offset value.

4. Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).

5. Enable the WDT by setting the WDTE bit to 1.

6. Reset the WDT timer by writing to PCA0CPH2.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is 
enabled by setting the WDTE or WDLCK bits in the PCA0MD register. When WDLCK is set, the WDT cannot be 
disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit. 

The WDT is enabled following any reset. The PCA0 counter clock defaults to the system clock divided by 12, 
PCA0L defaults to 0x00, and PCA0CPL2 defaults to 0x00. Using Equation 33.5, this results in a WDT timeout 
interval of 256 PCA clock cycles, or 3072 system clock cycles. Table 33.3 lists some example timeout intervals for 
typical system clocks.

Table 33.3. Watchdog Timer Timeout Intervals1

System Clock (Hz) PCA0CPL2 Timeout Interval (ms)

24,500,000 255 32.1

24,500,000 128 16.2

24,500,000 32 4.1

3,062,5002 255 257

3,062,5002 128 129.5

3,062,5002 32 33.1

32,000 255 24576

32,000 128 12384

32,000 32 3168

Notes:
1. Assumes SYSCLK/12 as the PCA clock source, and a PCA0L value of 

0x00 at the update time.
2. Internal SYSCLK reset frequency = Internal Oscillator divided by 8.

Offset 256 PCA0CPL2  256 PCA0L– +=


