

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM7TDMI
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	74MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	Keypad, LCD, Touchscreen
Ethernet	-
SATA	-
USB	-
Voltage - I/O	2.5V, 2.7V, 3.0V, 3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	Hardware ID
Package / Case	256-LFBGA
Supplier Device Package	256-PBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/cirrus-logic/ep7311-cb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FEATURES (cont)

- LCD controller
 - Interfaces directly to a single-scan panel monochrome STN LCD
 - Interfaces to a single-scan panel color STN LCD with minimal external glue logic
- Full JTAG boundary scan and Embedded ICE[®] support

Integrated Peripheral Interfaces

- 32-bit SDRAM Interface up to 2 external banks
- 8/32/16-bit SRAM/FLASH/ROM Interface
- Multimedia Codec Port
- Two Synchronous Serial Interfaces (SSI1, SSI2)
- CODEC Sound Interface
- 8×8 Keypad Scanner
- 27 General Purpose Input/Output pins
- Dedicated LED flasher pin from the RTC
- Internal Peripherals
 - Two 16550 compatible UARTs
 - IrDA Interface
 - Two PWM Interfaces
 - Real-time Clock
 - Two general purpose 16-bit timers

OVERVIEW (cont.)

The EP7311 is designed for low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of 2.5 V-3.3 V. The device has three basic power states: operating, idle and standby.

One of its notable features is MaverickKey unique IDs. These are factory programmed IDs in response to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital

- Interrupt Controller
- Boot ROM
- Package
 - 208-Pin LQFP
 - 256-Ball PBGA
 - 204-Ball TFBGA
- The fully static EP7311 is optimized for low power dissipation and is fabricated on a 0.25 micron CMOS process
- Development Kits
 - EDB7312: Development Kit with color STN LCD on board.
 - EDB7312-LW: EDB7312 with Lynuxworks' BlueCat Linux Tools and software for Windows host (free 30 day BlueCat support from Lynuxworks).
 - EDB7312-LL: EDB7312 with Lynuxworks' BlueCat Linux Tools and software for Linux host (free 30 day BlueCat support from Lynuxworks).
 - Note: * BlueCat available separately through Lynuxworks only. * Use the EDB7312 Development Kit for all the EP73xx devices.

media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs consist of two registers, one 32-bit series register and one random 128-bit register that may be used by an OEM for an authentication mechanism.

Simply by adding desired memory and peripherals to the highly integrated EP7311 completes a low-power system solution. All necessary interface logic is integrated on-chip.

CODEC Interface

The EP7311 includes an interface to telephony-type CODECs for easy integration into voice-over-IP and other voice communications systems. The CODEC interface is multiplexed to the same pins as the MCP and SSI2.

Pin Mnemonic	I/O	Pin Description
PCMCLK	0	Serial bit clock
PCMOUT	0	Serial data out
PCMIN	I	Serial data in
PCMSYNC	0	Frame sync

Table F. CODEC Interface Pin Assignments

Note: See Table R on page 11 for information on pin multiplexes.

SSI2 Interface

An additional SPI/Microwire1-compatible interface is available for both master and slave mode communications. The SSI2 unit shares the same pins as the MCP and CODEC interfaces through a multiplexer.

- Synchronous clock speeds of up to 512 kHz
- Separate 16 entry TX and RX half-word wide FIFOs
- Half empty/full interrupts for FIFOs
- Separate RX and TX frame sync signals for asymmetric traffic

Pin Mnemonic	I/O	Pin Description
SSICLK	I/O	Serial bit clock
SSITXDA	0	Serial data out
SSIRXDA	I	Serial data in
SSITXFR	I/O	Transmit frame sync
SSIRXFR	I/O	Receive frame sync

Table G. SSI2 Interface Pin Assignments

Note: See Table R on page 11 for information on pin multiplexes.

Synchronous Serial Interface

- ADC (SSI) Interface: Master mode only; SPI and Microwire1-compatible (128 kbps operation)
- Selectable serial clock polarity

Pin Mnemonic	I/O	Pin Description
ADCLK	0	SSI1 ADC serial clock
ADCIN	I	SSI1 ADC serial input
ADCOUT	0	SSI1 ADC serial output
nADCCS	0	SSI1 ADC chip select
SMPCLK	0	SSI1 ADC sample clock

LCD Controller

A DMA address generator is provided that fetches video display data for the LCD controller from memory. The display frame buffer start address is programmable, allowing the LCD frame buffer to be in SDRAM, internal SRAM or external SRAM.

- Interfaces directly to a single-scan panel monochrome STN LCD
- Interfaces to a single-scan panel color STN LCD with minimal external glue logic
- Panel width size is programmable from 32 to 1024 pixels in 16-pixel increments
- Video frame buffer size programmable up to 128 KB
- Bits per pixel of 1, 2, or 4 bits

Pin Mnemonic	I/O	Pin Description
CL1	0	LCD line clock
CL2	0	LCD pixel clock out
DD[3:0]	0	LCD serial display data bus
FRM	0	LCD frame synchronization pulse
М	0	LCD AC bias drive

Table I. LCD Interface Pin Assignments

DC-to-DC converter interface (PWM)

• Provides two 96 kHz clock outputs with programmable duty ratio (from 1-in-16 to 15-in-16) that can be used to drive a positive or negative DC to DC converter

Pin Mnemonic	I/O	Pin Description
DRIVE[1:0]	I/O	PWM drive output
FB[1:0]	I	PWM feedback input

Table N. DC-to-DC Converter Interface Pin Assignments

Timers

- Internal (RTC) timer
- Two internal 16-bit programmable hardware count-down timers

General Purpose Input/Output (GPIO)

- Three 8-bit and one 3-bit GPIO ports
- Supports scanning keyboard matrix

Pin Mnemonic	I/O	Pin Description
PA[7:0]	I/O	GPIO port A
PB[7:0]	I/O	GPIO port B
PD[0]/LEDFLSH (Note)	I/O	GPIO port D
PD[5:1]	I/O	GPIO port D
PD[7:6]/SDQM[1:0] (Note)	I/O	GPIO port D
PE[1:0]/BOOTSEL[1:0] (Note)	I/O	GPIO port E
PE[2]/CLKSEL (Note)	I/O	GPIO port E

 Table O. General Purpose Input/Output Pin Assignments

Note: Pins are multiplexed. See Table S on page 11 for more information.

Hardware debug Interface

• Full JTAG boundary scan and Embedded ICE® support

Pin Mnemonic	I/O	Pin Description
TCLK	I	JTAG clock
TDI	Ι	JTAG data input
TDO	0	JTAG data output
nTRST	I	JTAG async reset input
TMS	I	JTAG mode select

Table P. Hardware	e Debug	Interface	Pin	Assignments
-------------------	---------	-----------	-----	-------------

LED Flasher

A dedicated LED flasher module can be used to generate a low frequency signal on Port D pin 0 for the purpose of blinking an LED without CPU intervention. The LED flasher feature is ideal as a visual annunciator in battery powered applications, such as a voice mail indicator on a portable phone or an appointment reminder on a PDA.

- Software adjustable flash period and duty cycle
- Operates from 32 kHz RTC clock
- Will continue to flash in IDLE and STANDBY states
- 4 mA drive current

Pin Mnemonic		I/O	Pin Description	
PD[0]	/LEDFLSH	(Note)	0	LED flasher driver

Table Q. LED Flasher Pin Assignments

Note: Pins are multiplexed. See Table S on page 11 for more information.

Internal Boot ROM

The internal 128 byte Boot ROM facilitates download of saved code to the on-board SRAM/FLASH.

Packaging

The EP7311 is available in a 208-pin LQFP package, 256-ball PBGA package or a 204-ball TFBGA package.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

DC Core, PLL, and RTC Supply Voltage	2.9 V
DC I/O Supply Voltage (Pad Ring)	3.6 V
DC Pad Input Current	±10 mA/pin; ±100 mA cumulative
Storage Temperature, No Power	-40°C to +125°C

Recommended Operating Conditions

DC core, PLL, and RTC Supply Voltage	$2.5~V\pm0.2~V$
DC I/O Supply Voltage (Pad Ring)	2.3 V - 3.5 V
DC Input / Output Voltage	O–I/O supply voltage
Operating Temperature	Extended -20°C to +70°C; Commercial 0°C to +70°C; Industrial -40°C to +85°C

DC Characteristics

All characteristics are specified at $V_{DDCORE} = 2.5 \text{ V}$, $V_{DDIO} = 3.3 \text{ V}$ and $V_{SS} = 0 \text{ V}$ over an operating temperature of 0° C to $+70^{\circ}$ C for all frequencies of operation. The current consumption figures have test conditions specified per parameter."

Symbol	Parameter	Min	Тур	Мах	Unit	Conditions
VIH	CMOS input high voltage	$0.65 imes V_{DDIO}$	-	V _{DDIO} + 0.3	V	V _{DDIO} = 2.5 V
VIL	CMOS input low voltage	V _{SS} -0.3	-	$0.25 \times V_{DDIO}$	V	V _{DDIO} = 2.5 V
VT+	Schmitt trigger positive going threshold	-	-	2.1	V	
VT-	Schmitt trigger negative going threshold	0.8	-	-	V	
Vhst	Schmitt trigger hysteresis	0.1	-	0.4	V	VIL to VIH
voh	CMOS output high voltage ^a Output drive 1 ^a Output drive 2 ^a	V _{DD} – 0.2 2.5 2.5	- - -	- - -	V V V	IOH = 0.1 mA IOH = 4 mA IOH = 12 mA
VOL	CMOS output low voltage ^a Output drive 1 ^a Output drive 2 ^a	- - -	- - -	0.3 0.5 0.5	V V V	IOL = -0.1 mA IOL = -4 mA IOL = -12 mA
IIN	Input leakage current	-	-	1.0	μA	VIN = V _{DD} or GND
IOZ	Bidirectional 3-state leakage current ^{b c}	25	-	100	μA	VOUT = V _{DD} or GND
CIN	Input capacitance	8	-	10.0	pF	
COUT	Output capacitance	8	-	10.0	pF	

EP7311 High-Performance, Low-Power System on Chip

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
CI/O	Transceiver capacitance	8	-	10.0	pF	
IDD _{STANDBY} @ 25 C	Standby current consumption ¹ Core, Osc, RTC @2.5 V I/O @ 3.3 V	-	77 41	-	μΑ	Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = $V_{DD} \pm 0.1 V$, VIL = GND $\pm 0.1 V$
IDD _{STANDBY} @ 70 C	Standby current consumption ¹ Core, Osc, RTC @2.5 V I/O @ 3.3 V			570 111	μΑ	Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = $V_{DD} \pm 0.1 V$, VIL = GND $\pm 0.1 V$
IDD _{STANDBY} @ 85 C	Standby current consumption ¹ Core, Osc, RTC @2.5 V I/O @ 3.3 V	-	-	1693 163	μA	Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = $V_{DD} \pm 0.1$ V, VIL = GND ± 0.1 V
IDD _{idle} at 74 MHz	Idle current consumption ¹ Core, Osc, RTC @2.5 V I/O @ 3.3 V		6 10		mA	Both oscillators running, CPU static, Cache enabled, LCD disabled, VIH = $V_{DD} \pm 0.1$ V, VIL = GND ± 0.1 V
VDD _{STANDBY}	Standby supply voltage	2.0	-	-	V	Minimum standby voltage for state retention, internal SRAM cache, and RTC operation only

a. Refer to the strength column in the pin assignment tables for all package types.

b. Assumes buffer has no pull-up or pull-down resistors.

c. The leakage value given assumes that the pin is configured as an input pin but is not currently being driven.

Note: 1) Total power consumption = IDD_{CORE} x 2.5 V + IDD_{IO} x 3.3 V

 A typical design will provide 3.3 V to the I/O supply (i.e., V_{DDIO}), and 2.5 V to the remaining logic. This is to allow the I/O to be compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs).

2) Pull-up current = 50 μ A typical at V_{DD} = 3.3 V.

Timings

Timing Diagram Conventions

This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated.

Figure 2. Legend for Timing Diagrams

Timing Conditions

Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are specified at $V_{DDIO} = 3.1 - 3.5$ V and $V_{SS} = 0$ V over an operating temperature of -40°C to +85°C. Pin loadings is 50 pF. The timing values are referenced to 1/2 V_{DD} .

SDRAM Interface

Figure 3 through Figure 6 define the timings associated with all phases of the SDRAM. The following table contains the values for the timings of each of the SDRAM modes.

Parameter	Symbol	Min	Тур	Max	Unit
SDCLK rising edge to SDCS assert delay time	t _{CSa}	0	2	4	ns
SDCLK rising edge to SDCS deassert delay time	t _{CSd}	- 3	2	10	ns
SDCLK rising edge to SDRAS assert delay time	t _{RAa}	1	3	7	ns
SDCLK rising edge to SDRAS deassert delay time	t _{RAd}	- 3	1	10	ns
SDCLK rising edge to SDRAS invalid delay time	t _{RAnv}	2	4	7	ns
SDCLK rising edge to SDCAS assert delay time	t _{CAa}	- 2	2	5	ns
SDCLK rising edge to SDCAS deassert delay time	t _{CAd}	- 5	0	3	ns
SDCLK rising edge to ADDR transition time	t _{ADv}	- 3	1	5	ns
SDCLK rising edge to ADDR invalid delay time	t _{ADx}	- 2	2	5	ns
SDCLK rising edge to SDMWE assert delay time	t _{MWa}	- 3	1	5	ns
SDCLK rising edge to SDMWE deassert delay time	t _{MWd}	- 4	0	4	ns
DATA transition to SDCLK rising edge time	t _{DAs}	2	-	-	ns
SDCLK rising edge to DATA transition hold time	t _{DAh}	1	-	-	ns
SDCLK rising edge to DATA transition delay time	t _{DAd}	0	-	15	ns

SDRAM Load Mode Register Cycle

Figure 3. SDRAM Load Mode Register Cycle Timing Measurement

 Note:
 1. Timings are shown with CAS latency = 2

 2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.

 Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal

SDRAM Refresh Cycle

Figure 6. SDRAM Refresh Cycle Timing Measurement

Note: 1. Timings are shown with CAS latency = 2

2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal

Static Memory Burst Read Cycle

Figure 9. Static Memory Burst Read Cycle Timing Measurement

Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion cycles. This improves performance so the SQAEN bit should always be set where possible.
4. Address, Halfword, Word, and Write hold state until next cycle.

JTAG Interface

Parameter	Symbol	Min	Мах	Units
TCK clock period	t _{clk_per}	2	-	ns
TCK clock high time	t _{clk_high}	1	-	ns
TCK clock low time	t _{clk_low}	1	-	ns
JTAG port setup time	t _{JPs}	-	0	ns
JTAG port hold time	t _{JPh}	-	3	ns
JTAG port clock to output	t _{JPco}	-	10	ns
JTAG port high impedance to valid output	t _{JPzx}	-	12	ns
JTAG port valid output to high impedance	t _{JPxz}	-	19	ns

Figure 14. JTAG Timing Measurement

Packages

208-Pin LQFP Package Characteristics

208-Pin LQFP Package Specifications

Figure 15. 208-Pin LQFP Package Outline Drawing

- Note: 1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.
 - 2) Drawing above does not reflect exact package pin count.
 - 3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.
 - 4) For pin locations, please see Figure 16. For pin descriptions see the EP7311 User's Manual.

Table 21. 204-Ball TFBGA Ball Listing (Continued)

Ball Location	Name	Strength [†]	Reset State	Туре	Description
V2	VSSIO			Pad ground	I/O ground
V3	VSSIO			Pad ground	I/O ground
V4	PD[7]/SDQM[1]	1	Low	I/O	GPIO port D / SDRAM byte lane mask
V5	PD[4]	1	Low	I/O	GPIO port D
V6	PD[2]	1	Low	I/O	GPIO port D
V7	SSICLK	1	Input [‡]	I/O	DAI/CODEC/SSI2 serial clock
V8	SSIRXDA			I/O	DAI/CODEC/SSI2 serial data input
V9	nADCCS	1	High	0	SSI1 ADC chip select
V10	VDDIO			Pad power	Digital I/O power, 3.3V
V11	ADCCLK	1	Low	0	SSI1 ADC serial clock
V12	COL[7]	1	High	0	Keyboard scanner column drive
V13	COL[4]	1	High	0	Keyboard scanner column drive
V14	TCLK			I	JTAG clock
V15	BUZ	1	Low	0	Buzzer drive output
V16	D[29]	1	Low	I/O	Data I/O
V17	A[26]/DRA[1]	2	Low	0	System byte address / SDRAM address
V18	VDDIO			Pad power	Digital I/O power, 3.3 V
V19	VDDIO			Pad power	Digital I/O power, 3.3 V
V20	A[24]/DRA[3]	i	Low	0	System byte address / SDRAM address
W1	VSSIO			Pad ground	I/O ground
W2	VSSIO			Pad ground	I/O ground
W3	VSSIO			Pad ground	I/O ground
W4	PD[6]/SDQM[0]	1	Low	I/O	GPIO port D / SDRAM byte lane mask
W5	TMS	with p/u*		I	JTAG mode select
W6	PD[1]	1	Low	I/O	GPIO port D
W7	SSITXFR	1	Low	I/O	DAI/CODEC/SSI2 frame sync
W8	SSIRXFR	1	Input [‡]	I/O	DAI/CODEC/SSI2 frame sync
W9	VSSCORE			Core Ground	Core Ground
W10	DRIVE[1]	2	High / Low	1/0	PWM drive output

Ball Location	Name	Strength [†]	Reset State	Туре	Description
W11	ADCOUT	1	Low	0	SSI1 ADC serial data output
W12	FB[0]			I	PWM feedback input
W13	COL[5]	1	High	0	Keyboard scanner column drive
W14	COL[2]	1	High	0	Keyboard scanner column drive
W15	COL[0]	1	High	0	Keyboard scanner column drive
W16	D[30]	1	Low	I/O	Data I/O
W17	A[27]/DRA[0]	2	Low	0	System byte address / SDRAM address
W18	D[26]	1	Low	I/O	Data I/O
W19	VDDIO			Pad power	Digital I/O power, 3.3V
W20	D[25]	1	Low	I/O	Data I/O
Y1	VSSIO			Pad ground	I/O ground
Y2	VSSIO			Pad ground	I/O ground
Y3	VSSIO			Pad ground	I/O ground
Y4	PD[5]	1	Low	I/O	GPIO port D
Y5	PD[3]	1	Low	I/O	GPIO port D
Y6	PD[0]/LEDFLSH	1	Low	I/O	GPIO port D / LED blinker output
Y7	SSITXDA	1	Low	0	DAI/CODEC/SSI2 serial data output
Y8	ADCIN			I	SSI1 ADC serial input
Y9	VDDCORE			Core power	Digital core power, 2.5V
Y10	DRIVE[0]	2	İnput [‡]	I/O	PWM drive output
Y11	SMPCLK	1	Low	0	SSI1 ADC sample clock
Y12	FB[1]			I	PWM feedback input
Y13	COL[6]	1	High	0	Keyboard scanner column drive
Y14	COL[3]	1	High	0	Keyboard scanner column drive
Y15	COL[1]	1	High	0	Keyboard scanner column drive
Y16	D[31]	1	Low	I/O	Data I/O
Y17	D[28]	1	Low	I/O	Data I/O
Y18	D[27]	1	Low	I/O	Data I/O
Y19	A[25]/DRA[2]	2	Low	0	System byte address / SDRAM address

Table 21. 204-Ball TFBGA Ball Listing (Continued)

256-Ball PBGA Ball Listing

The list is ordered by ball location.

Table V. 256-Ball PBGA Ball Listing

Ball Location	Name	Туре	Description	
A1	VDDIO	Pad power	Digital I/O power, 3.3V	
A2	nCS[4]	0	Chip select out	
A3	nCS[1]	0	Chip select out	
A4	SDCLK	0	SDRAM clock out	
A5	SDQM[3]	0	SDRAM byte lane mask	
A6	DD[1]	0	LCD serial display data	
A7	М	0	LCD AC bias drive	
A8	VDDIO	Pad power	Digital I/O power, 3.3V	
A9	D[0]	I/O	Data I/O	
A10	D[2]	I/O	Data I/O	
A11	A[3]	0	System byte address	
A12	VDDIO	Pad power	Digital I/O power, 3.3V	
A13	A[6]	0	System byte address	
A14	MOSCOUT	0	Main oscillator out	
A15	VDDOSC	Oscillator power	Oscillator power in, 2.5V	
A16	VSSIO	Pad ground	I/O ground	
B1	nCS[5]	0	Chip select out	
B2	VDDIO	Pad power	I/O ground	
B3	nCS[3]	0	Chip select out	
B4	nMOE/nSDCAS	0	ROM, expansion OP enable/SDRAM CAS control signal	
B5	VDDIO	Pad power	Digital I/O power, 3.3V	
B6	nSDCS[1]	0	SDRAM chip select out	
B7	DD[2]	0	LCD serial display data	
B8	CL[1]	0	LCD line clock	
B9	VDDCORE	Core power	Digital core power, 2.5V	
B10	D[1]	I/O	Data I/O	
B11	A[2]	0	System byte address	
B12	A[4]	0	System byte address	
B13	A[5]	0	System byte address	
B14	WAKEUP	I	System wake up input	
B15	VDDIO	Pad power	Digital I/O power, 3.3V	
B16	nURESET	I	User reset input	
C1	VDDIO	Pad power	Digital I/O power, 3.3V	
C2	EXPCLK	I	Expansion clock input	
C3	VSSIO	Pad ground	I/O ground	
C4	VDDIO	Pad power	Digital I/O power, 3.3V	
C5	VSSIO	Pad ground	I/O ground	
C6	VSSIO	Pad ground	und I/O ground	
C7	VSSIO	Pad ground	I/O ground	
C8	VDDIO	Pad power	Digital I/O power, 3.3V	
C9	VSSIO	Pad ground	I/O ground	
C10	VSSIO	Pad ground	I/O ground	
C11	VSSIO	Pad ground	I/O ground	

Ball Location	Name	Туре	Description
C12	VDDIO	Pad power	Digital I/O power, 3.3V
C13	VSSIO	Pad ground	I/O ground
C14	VSSIO	Pad ground	I/O ground
C15	nPOR	I	Power-on reset input
C16	nEXTPWR	I	External power supply sense input
D1	WRITE/nSDRAS	0	Transfer direction / SDRAM RAS signal output
D2	EXPRDY	I	Expansion port ready input
D3	VSSIO	Pad ground	I/O ground
D4	VDDIO	Pad power	Digital I/O power, 3.3V
D5	nCS[2]	0	Chip select out
D6	nMWE/nSDWE	0	ROM, expansion write enable/ SDRAM write enable control signal
D7	nSDCS[0]	0	SDRAM chip select out
D8	CL[2]	0	LCD pixel clock out
D9	VSSRTC	Core ground	Real time clock ground
D10	D[4]	I/O	Data I/O
D11	nPWRFL	I	Power fail sense input
D12	MOSCIN	I	Main oscillator input
D13	VDDIO	Pad power	Digital I/O power, 3.3V
D14	VSSIO	Pad ground	I/O ground
D15	D[7]	I/O	Data I/O
D16	D[8]	I/O	Data I/O
E1	RXD[2]	Ι	UART 2 receive data input
E2	PB[7]	I	GPIO port B
E3	TDI	I	JTAG data input
E4	WORD	0	Word access select output
E5	VSSIO	Pad ground	I/O ground
E6	nCS[0]	0	Chip select out
E7	SDQM[2]	0	SDRAM byte lane mask
E8	FRM	0	LCD frame synchronization pulse
E9	A[0]	0	System byte address
E10	D[5]	I/O	Data I/O
E11	VSSOSC	Oscillator ground	PLL ground
E12	VSSIO	Pad ground	I/O ground
E13	nMEDCHG/nBROM	I	Media change interrupt input / internal ROM boot enable
E14	VDDIO	Pad power Digital I/O power, 3.3V	
E15	D[9]	I/O	Data I/O
E16	D[10]	I/O	Data I/O
F1	PB[5]	I	GPIO port B
F2	PB[3]	I	GPIO port B
F3	VSSIO	Pad ground	I/O ground
F4	TXD[2]	0	UART 2 transmit data output
F5	RUN/CLKEN	0	Run output / clock enable output
F6	VSSIO	Pad ground	I/O ground

Table V. 256-Ball PBGA Ball Listing (Continued)

CIRRUS LOGIC°

LQFP Pin No.	TFBGA Ball	PBGA Ball	Signal	Туре	Position
201	A7	D6	nMWE/nSDWE	0	358
202	B7	B4	nMOE/nSDCAS	0	360
204	C7	E6	nCS[0]	0	362
205	A6	A3	nCS[1]	0	364
206	B6	D5	nCS[2]	0	366
207	C6	B3	nCS[3]	0	368
208	A5	A2	nCS[4]	0	370

Table W. JTAG Boundary Scan Signal Ordering (Continued)

1) See EP7311 Users' Manual for pin naming / functionality.

2) For each pad, the JTAG connection ordering is input, output, then enable as applicable.

CONVENTIONS

This section presents acronyms, abbreviations, units of measurement, and conventions used in this data sheet.

Acronyms and Abbreviations

Table X lists abbreviations and acronyms used in this data sheet.

Table X. Acronyms and Abbreviations

Acronym/ Abbreviation	Definition
A/D	analog-to-digital
ADC	analog-to-digital converter
CODEC	coder / decoder
D/A	digital-to-analog
DMA	direct-memory access
EPB	embedded peripheral bus
FCS	frame check sequence
FIFO	first in / first out
FIQ	fast interrupt request
GPIO	general purpose I/O
ICT	in circuit test
IR	infrared
IRQ	standard interrupt request
IrDA	Infrared Data Association
JTAG	Joint Test Action Group
LCD	liquid crystal display
LED	light-emitting diode
LQFP	low profile quad flat pack
LSB	least significant bit
MIPS	millions of instructions per second
MMU	memory management unit
MSB	most significant bit
PBGA	plastic ball grid array
РСВ	printed circuit board
PDA	personal digital assistant
PLL	phase locked loop
p/u	pull-up resistor
RISC	reduced instruction set computer
RTC	Real-Time Clock
SIR	slow (9600–115.2 kbps) infrared
SRAM	static random access memory
SSI	synchronous serial interface

Table X. Acronyms and Abbreviations (Continued)

Acronym/ Abbreviation	Definition
ТАР	test access port
TLB	translation lookaside buffer
UART	universal asynchronous receiver

Units of Measurement

Table Y. Unit of Measurement

Symbol	Unit of Measure
°C	degree Celsius
fs	sample frequency
Hz	hertz (cycle per second)
kbps	kilobits per second
KB	kilobyte (1,024 bytes)
kHz	kilohertz
kΩ	kilohm
Mbps	megabits (1,048,576 bits) per second
MB	megabyte (1,048,576 bytes)
MBps	megabytes per second
MHz	megahertz (1,000 kilohertz)
μΑ	microampere
μF	microfarad
μW	microwatt
μs	microsecond (1,000 nanoseconds)
mA	milliampere
mW	milliwatt
ms	millisecond (1,000 microseconds)
ns	nanosecond
V	volt
W	watt

General Conventions

Hexadecimal numbers are presented with all letters in uppercase and a lowercase "h" appended or with a 0x at the beginning. For example, 0x14 and 03CAh are hexadecimal numbers. Binary numbers are enclosed in single quotation marks when in text (for example, '11' designates a binary number). Numbers not indicated by an "h", 0x or quotation marks are decimal.

Registers are referred to by acronym, with bits listed in brackets separated by a colon (:) (for example, CODR[7:0]), and are described in the EP7311 User's Manual. The use of "TBD" indicates values that are "to be determined," "n/a" designates "not available," and "n/c" indicates a pin that is a "no connect."

Pin Description Conventions

Abbreviations used for signal directions are listed in Table Z.

Table Z. Pin Description Conventions

Abbreviation	Direction
1	Input
0	Output
I/O	Input or Output

Revision History

Revision	Date	Changes
PP1	NOV 2003	First preliminary release.
F1	AUG 2005	Updated SDRAM timing. Added MSL data.

Contacting Cirrus Logic Support

For all product questions and inquiries contact a Cirrus Logic Sales Representative.

To find the one nearest to you go to <u>www.cirrus.com</u>

IMPORTANT NOTICE

Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SEVERE PROP-VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICA-TIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.

SPI is a trademark of Motorola, Inc.

Microwire is a trademark of National Semiconductor Corporation.

LINUX is a registered trademark of Linus Torvalds.

Microsoft Windows and Microsoft are registered trademarks of Microsoft Corporation.

